Effects of Olfactory Valence on the Neural and Behavioral Dynamics of Approach-Avoidance: An EEG Study
Abstract
1. Introduction
- Early sensory-attentional components (P1/N1) would be modulated by odor valence, indicating that olfactory cues can influence the perceptual processing of motivationally relevant stimuli;
- The conflict-related N2 component would vary with odor valence, consistent with the notion that odors may alter general control demands during response selection;
- P3 amplitude may reflect late-stage processing of response tendencies under odor conditions.
2. Materials and Methods
2.1. Participants
2.2. Equipment and Stimuli
2.3. Procedure
2.4. Data Collection and Analysis
3. Results
3.1. Behavioral Results
3.1.1. Reaction Times (Figure 2, Left Panels)
3.1.2. Accuracy (Figure 2, Right Panels)
3.2. ERP Results
3.2.1. N1 Component (Figure 3)
3.2.2. N2 Component (Figure 4)
3.2.3. P1 Component (Figure 5)
3.2.4. P3 Component (Figure 6)
4. Discussion
4.1. Behavioral Effects of Olfactory Cues on Approach–Avoidance
4.2. A Preemptive Role for Olfactory Cues in Resolving Motivational Conflict
4.3. A Temporal Cascade of Olfactory Influence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
AAT | Approach-Avoidance Task |
References
- Corr, P.J. Approach and Avoidance Behaviour: Multiple Systems and Their Interactions. Emot. Rev. 2013, 5, 285–290. [Google Scholar] [CrossRef]
- Eder, A.B.; Elliot, A.J.; Harmon-Jones, E. Approach and Avoidance Motivation: Issues and Advances. Emot. Rev. 2013, 5, 227–229. [Google Scholar] [CrossRef]
- Moberly, A.H.; Schreck, M.; Bhattarai, J.P.; Zweifel, L.S.; Luo, W.; Ma, M. Olfactory Inputs Modulate Respiration-Related Rhythmic Activity in the Prefrontal Cortex and Freezing Behavior. Nat. Commun. 2018, 9, 1528. [Google Scholar] [CrossRef]
- Krusemark, E.A.; Li, W. From Early Sensory Specialization to Later Perceptual Generalization: Dynamic Temporal Progression in Perceiving Individual Threats. J. Neurosci. 2013, 33, 587–594. [Google Scholar] [CrossRef]
- Mutic, S.; Parma, V.; Brünner, Y.F.; Freiherr, J. You Smell Dangerous: Communicating Fight Responses Through Human Chemosignals of Aggression. Chem. Senses 2016, 41, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; De Capua, A.; Pasqualetti, P.; Ulivelli, M.; Fadiga, L.; Falzarano, V.; Bartalini, S.; Passero, S.; Nuti, D.; Rossini, P. Distinct Olfactory Cross-Modal Effects on the Human Motor System. PLoS ONE 2008, 3, e1702. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, L.K.; Bhutani, S.; Kahnt, T. Olfactory Perceptual Decision-Making Is Biased by Motivational State. PLoS Biol. 2021, 19, e3001374. [Google Scholar] [CrossRef]
- Iravani, B.; Schaefer, M.; Wilson, D.A.; Arshamian, A.; Lundström, J.N. The Human Olfactory Bulb Processes Odor Valence Representation and Cues Motor Avoidance Behavior. Proc. Natl. Acad. Sci. USA 2021, 118, e2101209118. [Google Scholar] [CrossRef]
- Pause, B.M.; Krauel, K. Chemosensory Event-Related Potentials (CSERP) as a Key to the Psychology of Odors. Int. J. Psychophysiol. 2000, 36, 105–122. [Google Scholar] [CrossRef]
- Pessoa, L. On the Relationship between Emotion and Cognition. Nat. Rev. Neurosci. 2008, 9, 148–158. [Google Scholar] [CrossRef]
- Strack, F.; Deutsch, R. Reflective and Impulsive Determinants of Social Behavior. Pers. Soc. Psychol. Rev. 2004, 8, 220–247. [Google Scholar] [CrossRef] [PubMed]
- Krieglmeyer, R.; Deutsch, R.; De Houwer, J.; De Raedt, R. Being Moved: Valence Activates Approach-Avoidance Behavior Independently of Evaluation and Approach-Avoidance Intentions. Psychol. Sci. 2010, 21, 607–613. [Google Scholar] [CrossRef]
- Folstein, J.R.; Van Petten, C. Influence of Cognitive Control and Mismatch on the N2 Component of the ERP: A Review. Psychophysiology 2008, 45, 152–170. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An Integrative Theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef]
- Pourtois, G.; Schettino, A.; Vuilleumier, P. Brain Mechanisms for Emotional Influences on Perception and Attention: What Is Magic and What Is Not. Biol. Psychol. 2013, 92, 492–512. [Google Scholar] [CrossRef]
- Chen, M.; Bargh, J.A. Consequences of Automatic Evaluation: Immediate Behavioral Predispositions to Approach or Avoid the Stimulus. Pers. Soc. Psychol. B 1999, 25, 215–224. [Google Scholar] [CrossRef]
- David, S.V.; Fritz, J.B.; Shamma, S.A. Task Reward Structure Shapes Rapid Receptive Field Plasticity in Auditory Cortex. Proc. Natl. Acad. Sci. USA 2012, 109, 2144–2149. [Google Scholar] [CrossRef]
- Phaf, R.H.; Mohr, S.E.; Rotteveel, M.; Wicherts, J.M. Approach, Avoidance, and Affect: A Meta-Analysis of Approach-Avoidance Tendencies in Manual Reaction Time Tasks. Front. Psychol. 2014, 5, 378. [Google Scholar] [CrossRef]
- Aupperle, R.L.; Melrose, A.J.; Francisco, A.; Paulus, M.P.; Stein, M.B. Neural Substrates of Approach-Avoidance Conflict Decision-Making. Hum. Brain Mapp. 2015, 36, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Anelli, F.; Borghi, A.M.; Nicoletti, R. Grasping the Pain: Motor Resonance with Dangerous Affordances. Conscious. Cogn. 2012, 21, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Anelli, F.; Nicoletti, R.; Bolzani, R.; Borghi, A.M. Keep Away from Danger: Dangerous Objects in Dynamic and Static Situations. Front. Hum. Neurosci. 2013, 7, 344. [Google Scholar] [CrossRef]
- Mustile, M.; Giocondo, F.; Caligiore, D.; Borghi, A.; Kourtis, D. Motor Inhibition to Dangerous Objects: Electrophysiological Evidence for Task-Dependent Aversive Affordances. J. Cogn. Neurosci. 2021, 33, 826–839. [Google Scholar] [CrossRef]
- Liu, P.; Zheng, J.; Wang, Y.; Chen, L.; Lin, L.; Wang, Y. Motor Inhibition Impacts the Motor Interference Effect of Dangerous Objects Based on a Prime-Target Grasping Consistency Judgment Task. Int. J. Psychophysiol. 2023, 193, 112248. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Dalton, P. The Effect of Emotion and Personality on Olfactory Perception. Chem. Senses 2005, 30, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Edakkot, S.; Krishna, A. Evaluation of the Efficacy of Cardamom Aromatherapy on Aerobic Fitness & Autonomic Functions Among Students. J. Health Allied Sci. NU 2011, 1, 23–29. [Google Scholar] [CrossRef]
- Zufall, F.; Leinders-Zufall, T. The Cellular and Molecular Basis of Odor Adaptation. Chem. Senses 2000, 25, 473–481. [Google Scholar] [CrossRef]
- Basevitch, I.; Thompson, B.; Braun-Trocchio, R.; Razon, S.; Arsal, G.; Tokac, U.; Filho, E.; Nascimento, T.; Tenenbaum, G. Olfactory Effects on Attention Allocation and Perception of Exertion. Sport. Psychol. 2011, 25, 144–158. [Google Scholar] [CrossRef]
- Pellegrino, R.; Sinding, C.; de Wijk, R.A.; Hummel, T. Habituation and Adaptation to Odors in Humans. Physiol. Behav. 2017, 177, 13–19. [Google Scholar] [CrossRef]
- Gilbert, A.N.; Knasko, S.C.; Sabini, J. Sex Differences in Task Performance Associated with Attention to Ambient Odor. Arch. Environ. Health Int. J. 1997, 52, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Herz, R.S. Emotion Experienced during Encoding Enhances Odor Retrieval Cue Effectiveness. Am. J. Psychol. 1997, 110, 489–505. [Google Scholar] [CrossRef]
- Parma, V.; Ferraro, S.; Miller, S.S.; Åhs, F.; Lundström, J.N. Enhancement of Odor Sensitivity Following Repeated Odor and Visual Fear Conditioning. Chem. Senses 2015, 40, 497–506. [Google Scholar] [CrossRef]
- van Peer, J.M.; Roelofs, K.; Rotteveel, M.; van Dijk, J.G.; Spinhoven, P.; Ridderinkhof, K.R. The Effects of Cortisol Administration on Approach–Avoidance Behavior: An Event-Related Potential Study. Biol. Psychol. 2007, 76, 135–146. [Google Scholar] [CrossRef]
- Ernst, L.H.; Weidner, A.; Ehlis, A.-C.; Fallgatter, A.J. Controlled Attention Allocation Mediates the Relation between Goal-Oriented Pursuit and Approach–Avoidance Reactions to Negative Stimuli. Biol. Psychol. 2012, 91, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Ernst, L.; Ehlis, A.-C.; Dresler, T.; Tupak, S.; Weidner, A.; Fallgatter, A. N1 and N2 ERPs Reflect the Regulation of Automatic Approach Tendencies to Positive Stimuli. Neurosci. Res. 2013, 75, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Cisek, P.; Kalaska, J.F. Neural Mechanisms for Interacting with a World Full of Action Choices. Annu. Rev. Neurosci. 2010, 33, 269–298. [Google Scholar] [CrossRef]
- Celis-Alonso, B.D.; Hidalgo-Tobón, S.; Barragán-Pérez, E.; Castro-Sierra, E.; Dies-Suárez, P.; Garcia, J.; Moreno-Barbosa, E.; Arias-Carrión, Ó. Different Food Odors Control Brain Connectivity in Impulsive Children. CNS Neurol. Disord. Drug Targets 2019, 18, 63–77. [Google Scholar] [CrossRef]
- Albayay, J.; Castiello, U.; Parma, V. Olfactory Influences on Reach-to-Press Movements in a Stop-Signal Task. Cogn. Emot. 2021, 35, 1214–1221. [Google Scholar] [CrossRef]
- Dignath, D.; Eder, A.B.; Steinhauser, M.; Kiesel, A. Conflict Monitoring and the Affective-Signaling Hypothesis—An Integrative Review. Psychon. Bull. Rev. 2020, 27, 193–216. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T.; Kringelbach, M.L.; de Araujo, I.E.T. Different Representations of Pleasant and Unpleasant Odours in the Human Brain. Eur. J. Neurosci. 2003, 18, 695–703. [Google Scholar] [CrossRef]
- Sullivan, N.; Hutcherson, C.; Harris, A.; Rangel, A. Dietary Self-Control Is Related to the Speed With Which Attributes of Healthfulness and Tastiness Are Processed. Psychol. Sci. 2015, 26, 122–134. [Google Scholar] [CrossRef]
- Rolls, E.T.; Grabenhorst, F. The Orbitofrontal Cortex and beyond: From Affect to Decision-Making. Prog. Neurobiol. 2008, 86, 216–244. [Google Scholar] [CrossRef] [PubMed]
- Zinchenko, A.; Kanske, P.; Obermeier, C.; Schröger, E.; Kotz, S.A. Emotion and Goal-Directed Behavior: ERP Evidence on Cognitive and Emotional Conflict. Soc. Cogn. Affect. Neurosci. 2015, 10, 1577–1587. [Google Scholar] [CrossRef]
- Zinchenko, A.; Obermeier, C.; Kanske, P.; Schröger, E.; Kotz, S.A. Positive Emotion Impedes Emotional but Not Cognitive Conflict Processing. Cogn. Affect. Behav. Neurosci. 2017, 17, 665–677. [Google Scholar] [CrossRef]
- Grabenhorst, F.; Rolls, E.T.; Margot, C.; da Silva, M.A.A.P.; Velazco, M.I. How Pleasant and Unpleasant Stimuli Combine in Different Brain Regions: Odor Mixtures. J. Neurosci. 2007, 27, 13532–13540. [Google Scholar] [CrossRef]
- Rolls, E.T.; Grabenhorst, F.; Parris, B.A. Neural Systems Underlying Decisions about Affective Odors. J. Cogn. Neurosci. 2010, 22, 1069–1082. [Google Scholar] [CrossRef]
- Doré, B.P.; Boccagno, C.; Burr, D.; Hubbard, A.; Long, K.; Weber, J.; Stern, Y.; Ochsner, K.N. Finding Positive Meaning in Negative Experiences Engages Ventral Striatal and Ventromedial Prefrontal Regions Associated with Reward Valuation. J. Cogn. Neurosci. 2017, 29, 235–244. [Google Scholar] [CrossRef]
- Machado, L.; Cantilino, A. A Systematic Review of the Neural Correlates of Positive Emotions. Braz. J. Psychiatry 2017, 39, 172–179. [Google Scholar] [CrossRef]
- Adolphs, R. The Biology of Fear. Curr. Biol. 2013, 23, R79–R93. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.K.; Reinhard, J.; Mattingley, J.B. Olfaction Modulates Early Neural Responses to Matching Visual Objects. J. Cogn. Neurosci. 2015, 27, 832–841. [Google Scholar] [CrossRef]
- Correa, A.; Rao, A.; Nobre, A.C. Anticipating Conflict Facilitates Controlled Stimulus-Response Selection. J. Cogn. Neurosci. 2009, 21, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Öhman, A.; Mineka, S. Fears, Phobias, and Preparedness: Toward an Evolved Module of Fear and Fear Learning. Psychol. Rev. 2001, 108, 483–522. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, B.L. The Role of Positive Emotions in Positive Psychology. The Broaden-and-Build Theory of Positive Emotions. Am. Psychol. 2001, 56, 218–226. [Google Scholar] [CrossRef] [PubMed]
Neutral | Danger | p-Value | |
---|---|---|---|
Familiarity | 6.83 ± 0.38 | 6.75 ± 0.44 | 0.488 |
Dangerous | 1.46 ± 0.51 | 6.42 ± 0.65 | <0.001 |
Arousal | 3.58 ± 0.50 | 3.63 ± 0.57 | 0.774 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, X. Effects of Olfactory Valence on the Neural and Behavioral Dynamics of Approach-Avoidance: An EEG Study. Brain Sci. 2025, 15, 1041. https://doi.org/10.3390/brainsci15101041
Yang Y, Wang X. Effects of Olfactory Valence on the Neural and Behavioral Dynamics of Approach-Avoidance: An EEG Study. Brain Sciences. 2025; 15(10):1041. https://doi.org/10.3390/brainsci15101041
Chicago/Turabian StyleYang, Yang, and Xiaochun Wang. 2025. "Effects of Olfactory Valence on the Neural and Behavioral Dynamics of Approach-Avoidance: An EEG Study" Brain Sciences 15, no. 10: 1041. https://doi.org/10.3390/brainsci15101041
APA StyleYang, Y., & Wang, X. (2025). Effects of Olfactory Valence on the Neural and Behavioral Dynamics of Approach-Avoidance: An EEG Study. Brain Sciences, 15(10), 1041. https://doi.org/10.3390/brainsci15101041