Fronto-Central Changes in Multiple Frequency Bands in Active Tactile Width Discrimination Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
Width Discrimination Task
2.2. EEG Recording and Pre-Processing
EEG Power and Processing
2.3. Statistical Analysis
3. Results
3.1. Behavioral Results
3.2. Neurophysiological Analysis
Power Changes between Blocks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krupa, D.J.; Wiest, M.C.; Shuler, M.G.; Laubach, M.; Nicolelis, M.A.L. Layer-specific somatosensory cortical activation during active tactile discrimination. Science 2004, 304, 1989–1992. [Google Scholar] [CrossRef] [PubMed]
- O’Doherty, J.E.; Lebedev, M.A.; Ifft, P.J.; Zhuang, K.Z.; Shokur, S.; Bleuler, H.; Nicolelis, M.A. Active tactile exploration using a brain-machine-brain interface. Nature 2011, 479, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Simões-Franklin, C.; Whitaker, T.A.; Newell, F.N. Active and passive touch differentially activate somatosensory cortex in texture perception. Hum. Brain Mapp. 2011, 32, 1067–1080. [Google Scholar] [CrossRef]
- Pais-Vieira, M.; Kunicki, C.; Tseng, P.-H.; Martin, J.; Lebedev, M.; Nicolelis, M.A.L. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination. J. Neurophysiol. 2015, 114, 1652–1676. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, A.; Pais-Vieira, C.; Allahdad, M.K.; Bicho, E.; Pais-Vieira, M. Differential width discrimination task for active and passive tactile discrimination in humans. MethodsX 2020, 7, 100852. [Google Scholar] [CrossRef]
- Wheat, H.E.; Goodwin, A.W. Tactile Discrimination of Gaps by Slowly Adapting Afferents: Effects of Population Parameters and Anisotropy in the Fingerpad. J. Neurophysiol. 2000, 84, 1430–1444. [Google Scholar] [CrossRef]
- Lebedev, M.A.; Nicolelis, M.A.L. Brain-Machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 2017, 97, 767–837. [Google Scholar] [CrossRef]
- Ramos, J.; Aguiar, M.; Pais-Vieira, M. Neural Encoding of Pavement Textures during Exoskeleton Control: A Pilot Study. Appl. Sci. 2023, 13, 9356. [Google Scholar] [CrossRef]
- Bertrand, O.; Perrin, F.; Pernier, J. A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect. 1985, 62, 462–464. [Google Scholar] [CrossRef]
- Pais-Vieira, C.; Allahdad, M.K.; Perrotta, A.; Peres, A.S.; Kunicki, C.; Aguiar, M.; Oliveira, M.; Pais-Vieira, M. Neurophysiological correlates of tactile width discrimination in humans. Front. Hum. Neurosci. 2023, 17, 1155102. [Google Scholar] [CrossRef]
- Hari, R.; Salmelin, R.; Makela, J.P.; Salenius, S.; Helle, M. Magnetoencephalographic cortical rhythms. Int. J. Psychophysiol. 1997, 26, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Lopes Da Silva, F.H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, H.; Hallett, M. What is the Bereitschaftspotential? Clin. Neurophysiol. 2006, 117, 2341–2356. [Google Scholar] [CrossRef] [PubMed]
- Deecke, L. Bereitschaftspotential as an Indicator of Movement Preparation in Supplementary Motor Area and Motor Cortex. In Novartis. Foundation; Wiley: Hoboken, NJ, USA, 2007; pp. 231–250. [Google Scholar]
- Sullivan, J.H.; Warkentin, M.; Wallace, L. So many ways for assessing outliers: What really works and does it matter? J. Bus. Res. 2021, 132, 530–543. [Google Scholar] [CrossRef]
- Na, S.E.; Ha, C.W.; Lee, C.H. A new high-flexion knee scoring system to eliminate the ceiling effect. Clin. Orthop. Relat. Res. 2012, 470, 584–593. [Google Scholar] [CrossRef]
- Pais-Vieira, M.; Kunicki, C.; Peres, A.; Sousa, N. Ceftriaxone modulates the acute corticosterone effects in local field potentials in the primary somatosensory cortex of anesthetized mice. Sci. Rep. 2019, 9, 20289. [Google Scholar] [CrossRef]
- Celka, P. Neuronal coordination in the brain: A signal processing perspective. Signal Process. 2005, 85, 2063–2064. [Google Scholar] [CrossRef]
- Fisher, R.A. The Coefficient of Racial Likeness’ and the Future of Craniometry. J. R. Anthropol. Inst. Great Br. Irel. 1936, 66, 57–63. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB, version 23.2.0.2409890 (R2023b); The MathWorks Inc.: Natick, MA, USA, 2023.
- The MathWorks Inc. Parallel Computing Package, version 23.2; The MathWorks Inc.: Natick, MA, USA, 2023.
- GraphPad Software. False Discovery Rate, version 10.1.2 for Windows; Paired Samples T-tests, Spearman’s Rho Followed by Benjamini and Hochberg Correction for was Performed Using GraphPad Prism; GraphPad Software version 10.1.2: Boston, MA, USA, 2023. Available online: https://www.graphpad.com (accessed on 1 February 2024).
- Eldeeb, S.; Ting, J.; Erdogmus, D.; Weber, D.; Akcakaya, M. EEG-based texture classification during active touch. Sci. Rep. 2020, 10, 20755. [Google Scholar] [CrossRef]
- Adhikari, B.M.; Sathian, K.; Epstein, C.M.; Lamichhane, B.; Dhamala, M. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity. Neuroimage 2014, 91, 300–310. [Google Scholar] [CrossRef]
- Staines, W.R.; Graham, S.J.; Black, S.E.; McIlroy, W.E. Task-relevant modulation of contralateral and ipsilateral primary somatosensory cortex and the role of a prefrontal-cortical sensory gating system. Neuroimage 2002, 15, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Wiesman, A.I.; Wilson, T.W. Attention modulates the gating of primary somatosensory oscillations. Neuroimage 2020, 211, 116610. [Google Scholar] [CrossRef] [PubMed]
Delta | Theta | Alpha | Beta | Low Gamma | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrode | 1st Block | 2nd Block | p Value | 1st Block | 2nd Block | p Value | 1st Block | 2nd Block | p Value | 1st Block | 2nd Block | p Value | 1st Block | 2nd Block | p Value |
Fp1 | 1.6611 ± 0.8673 | 1.4206 ± 0.6371 | 0.8641 | −0.0086 ± 0.4489 | −0.0339 ± 0.0978 | 0.8527 | −0.0356 ± 0.1101 | −0.0399 ± 0.0511 | 0.7127 | −0.0445 ± 0.0207 | −0.0449 ± 0.0258 | 0.4256 | −0.0548 ± 0.0409 | −0.0470 ± 0.0223 | 0.1069 |
Fp2 | 1.6826 ± 0.7694 | 1.7525 ± 0.8438 | 0.2072 | −0.0124 ± 0.1211 | 0.0246 ± 0.1577 | 0.1363 | −0.0408 ± 0.0831 | −0.0361 ± 0.0748 | 0.4616 | −0.0490 ± 0.0202 | −0.0454 ± 0.0360 | 0.4835 | −0.0558 ± 0.0317 | −0.0601 ± 0.0287 | 0.7612 |
F3 | 2.9046 ± 0.6669 | 2.3935 ± 0.8941 | 0.6002 | 0.1372 ± 0.6375 | 0.2749 ± 0.2339 | 0.8163 | 0.0660 ± 0.1497 | 0.0495 ± 0.3234 | 0.1887 | −0.0497 ± 0.0567 | −0.0288 ± 0.0984 | 0.0795 | −0.0973 ± 0.0404 | −0.0815 ± 0.0654 | 0.0160 |
Fz | 2.8447 ± 0.7748 | 2.8816 ± 1.0236 | 0.6997 | 0.4186 ± 0.5685 | 0.3041 ± 0.8422 | 0.3299 | 0.1063 ± 0.1268 | 0.0163 ± 0.2178 | 0.2558 | −0.0709 ± 0.0386 | −0.0554 ± 0.0361 | 0.2228 | −0.1099 ± 0.0434 | −0.1239 ± 0.0546 | 0.4455 |
F4 | 2.5040 ± 0.8625 | 2.4231 ± 0.7992 | 0.6014 | 0.0928 ± 0.3776 | 0.1634 ± 0.4769 | 0.3818 | −0.0367 ± 0.1487 | −0.0008 ± 0.1814 | 0.3192 | −0.0559 ± 0.0242 | −0.0554 ± 0.0282 | 0.4581 | −0.0854 ± 0.0458 | −0.0928 ± 0.0466 | 0.4481 |
T3 | 2.7204 ± 0.4576 | 1.9961 ± 0.6904 | 0.8002 | 0.2701 ± 0.3630 | 0.1503 ± 0.5923 | 0.3639 | 0.0617 ± 0.2182 | 0.0076 ± 0.1936 | 0.2710 | −0.0234 ± 0.0672 | −0.0409 ± 0.0987 | 0.2186 | −0.0867 ± 0.0376 | −0.0590 ± 0.0466 | 0.3314 |
C3 | 2.8788 ± 0.7331 | 2.1428 ± 0.8343 | 0.9253 | 0.2385 ± 0.6844 | 0.2480 ± 0.4386 | 0.8802 | 0.0844 ± 0.3681 | 0.2163 ± 0.2558 | 0.3507 | −0.0516 ± 0.1169 | −0.0450 ± 0.1522 | 0.2782 | −0.0983 ± 0.0422 | −0.0618 ± 0.0828 | 0.0358 |
Cz | 2.2233 ± 0.6967 | 2.6410 ± 0.9653 | 0.2917 | 0.3027 ± 0.3109 | 0.1563 ± 0.4816 | 0.5320 | 0.0246 ± 0.1052 | −0.0175 ± 0.0994 | 0.7712 | −0.0688 ± 0.0264 | −0.0667 ± 0.0301 | 0.6554 | −0.1103 ± 0.0321 | −0.0986 ± 0.0530 | 0.6685 |
C4 | 2.7756 ± 0.8746 | 2.8074 ± 0.8181 | 0.4940 | 0.1464 ± 0.6937 | 0.3296 ± 0.5377 | 0.4436 | −0.0016 ± 0.2755 | 0.0660 ± 0.3921 | 0.1679 | −0.0515 ± 0.0367 | −0.0649 ± 0.1454 | 0.2535 | −0.0908 ± 0.0526 | −0.1081 ± 0.0896 | 0.4415 |
T4 | 2.2457 ± 0.8514 | 2.2777 ± 0.7393 | 0.6964 | 0.1027 ± 0.6003 | 0.1577 ± 0.7796 | 0.5702 | 0.0231 ± 0.3943 | 0.0756 ± 0.1252 | 0.7316 | −0.0503 ± 0.2430 | −0.0258 ± 0.0534 | 0.5429 | −0.0839 ± 0.0379 | −0.0677 ± 0.0462 | 0.1720 |
P3 | 3.0268 ± 0.5750 | 2.2269 ± 0.7362 | 0.9644 | 0.4237 ± 0.8182 | 0.3259 ± 0.5069 | 0.6983 | 0.0413 ± 0.2015 | 0.1310 ± 0.2593 | 0.1783 | −0.0742 ± 0.0571 | −0.0529 ± 0.0648 | 0.2880 | −0.1300 ± 0.0382 | −0.0956 ± 0.0572 | 0.0819 |
Pz | 2.8522 ± 0.7742 | 2.2218 ± 0.7133 | 0.9450 | 0.5234 ± 0.4923 | 0.3734 ± 0.9479 | 0.3020 | 0.0017 ± 0.2819 | 0.0759 ± 0.2900 | 0.3005 | −0.0799 ± 0.0412 | −0.0694 ± 0.0236 | 0.5180 | −0.1166 ± 0.0432 | −0.1076 ± 0.0374 | 0.2758 |
P4 | 2.4519 ± 0.5919 | 2.1943 ± 0.6952 | 0.6558 | 0.4864 ± 0.5340 | 0.1935 ± 0.9309 | 0.3503 | 0.0162 ± 0.1712 | 0.0513 ± 0.3989 | 0.1097 | −0.0685 ± 0.0339 | −0.0647 ± 0.0384 | 0.2538 | −0.1099 ± 0.0393 | −0.0857 ± 0.0609 | 0.5894 |
O1 | 2.4528 ± 0.5793 | 2.8235 ± 0.7791 | 0.4849 | 0.7438 ± 0.5566 | 0.3474 ± 0.8173 | 0.4640 | 0.1496 ± 0.1841 | 0.2471 ± 0.2763 | 0.1267 | −0.0070 ± 0.1817 | 0.0359 ± 0.2068 | 0.3725 | −0.0971 ± 0.0480 | −0.0746 ± 0.0631 | 0.4265 |
O2 | 2.4857 ± 0.8050 | 3.2250 ± 0.8105 | 0.3172 | 0.5660 ± 0.3712 | 0.4088 ± 0.6432 | 0.4056 | 0.1172 ± 0.2012 | 0.1062 ± 0.3738 | 0.2802 | −0.0310 ± 0.0919 | −0.0391 ± 0.1298 | 0.2722 | −0.0761 ± 0.0399 | −0.0871 ± 0.0426 | 0.5433 |
Tp10 | 2.3179 ± 0.8875 | 2.7886 ± 0.9398 | 0.4768 | 0.1308 ± 0.5248 | 0.1374 ± 0.9237 | 0.2401 | −0.0138 ± 0.2505 | 0.0743 ± 0.2230 | 0.2909 | −0.0403 ± 0.0456 | −0.0378 ± 0.0508 | 0.3745 | −0.0845 ± 0.0409 | −0.0924 ± 0.0500 | 0.6949 |
Frequency Band | Rho | p-Value | |
---|---|---|---|
Latency | Delta (0.3−4 Hz) | 0.3562 | 0.24660 |
Theta (4−8 HZ) | 0.1419 | 0.57140 | |
Alpha (8−13 Hz) | 0.0606 | 0.83100 | |
Beta (13−30 Hz) | −0.2719 | 0.38310 | |
Low Gamma (30−45 Hz) | −0.2246 | 0.38310 | |
Performance | Delta (0.3−4 Hz) | −0.3453 | 0.24660 |
Theta (4−8 HZ) | 0.0435 | 0.83100 | |
Alpha (8−13 Hz) | 0.2034 | 0.40270 | |
Beta (13−30 Hz) | 0.5536 | 0.020000 | |
Low Gamma (30−45 Hz) | 0.2554 | 0.38310 | |
Latency × Performance | ------------------------ | −0.2364 | 0.38310 |
Passive width Discrimination Reference [10] | Active width Discrimination Present Study | |
---|---|---|
Within-subjects (1st block->2nd block) | Parieto-occipital correlated to performance | Frontal correlated to performance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, T.; Ramos, J.; Pais-Vieira, C.; Pais-Vieira, M. Fronto-Central Changes in Multiple Frequency Bands in Active Tactile Width Discrimination Task. Brain Sci. 2024, 14, 915. https://doi.org/10.3390/brainsci14090915
Ramos T, Ramos J, Pais-Vieira C, Pais-Vieira M. Fronto-Central Changes in Multiple Frequency Bands in Active Tactile Width Discrimination Task. Brain Sciences. 2024; 14(9):915. https://doi.org/10.3390/brainsci14090915
Chicago/Turabian StyleRamos, Tiago, Júlia Ramos, Carla Pais-Vieira, and Miguel Pais-Vieira. 2024. "Fronto-Central Changes in Multiple Frequency Bands in Active Tactile Width Discrimination Task" Brain Sciences 14, no. 9: 915. https://doi.org/10.3390/brainsci14090915
APA StyleRamos, T., Ramos, J., Pais-Vieira, C., & Pais-Vieira, M. (2024). Fronto-Central Changes in Multiple Frequency Bands in Active Tactile Width Discrimination Task. Brain Sciences, 14(9), 915. https://doi.org/10.3390/brainsci14090915