Surgicogenomics: The Role of Genetics in Deep Brain Stimulation in Parkinson’s Disease Patients
Abstract
:1. Introduction
2. Methods
3. Results
3.1. GBA
3.2. SNCA
3.3. LRRK2
3.4. Parkin
3.5. PINK1
3.6. VPS35
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fahn, S. Description of Parkinson’s disease as a clinical syndrome. Ann. N. Y. Acad. Sci. 2003, 991, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kalinderi, K.; Papaliagkas, V.; Fidani, L. Current genetic data on depression and anxiety in Parkinson’s disease patients. Park. Relat. Disord. 2024, 118, 105922. [Google Scholar] [CrossRef] [PubMed]
- Kalinderi, K.; Papaliagkas, V.; Fidani, L. The Genetic Landscape of Sleep Disorders in Parkinson’s Disease. Diagnostics 2024, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Kalinderi, K.; Papaliagkas, V.; Fidani, L. GLP-1 Receptor Agonists: A New Treatment in Parkinson’s Disease. Int. J. Mol. Sci. 2024, 25, 3812. [Google Scholar] [CrossRef] [PubMed]
- França, C.; Carra, R.B.; Diniz, J.M.; Munhoz, R.P.; Cury, R.G. Deep brain stimulation in Parkinson’s disease: State of the art and future perspectives. Arq. Neuropsiquiatr. 2022, 80, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Salles, P.A.; Liao, J.; Shuaib, U.; Mata, I.F.; Fernandez, H.H. A Review on Response to Device-Aided Therapies Used in Monogenic Parkinsonism and GBA Variants Carriers: A Need for Guidelines and Comparative Studies. J. Parkinsons Dis. 2022, 12, 1703–1725. [Google Scholar] [CrossRef] [PubMed]
- Neudorfer, O.; Giladi, N.; Elstein, D.; Abrahamov, A.; Turezkite, T.; Aghai, E.; Reches, A.; Bembi, B.; Zimran, A. Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM 1996, 89, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Halperin, A.; Elstein, D.; Zimran, A. Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol. Dis. 2006, 36, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Schapira, A.H.V. GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef]
- Kalinderi, K.; Bostantjopoulou, S.; Paisan-Ruiz, C.; Katsarou, Z.; Hardy, J.; Fidani, L. Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Greece. Neurosci. Lett. 2009, 452, 87–89. [Google Scholar] [CrossRef]
- Brockmann, K.; Berg, D. The significance of GBA for Parkinson’s disease. J. Inherit. Metab. Dis. 2014, 37, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Brockmann, K.; Srulijes, K.; Meisner, C.; Klotz, R.; Reinbold, S.; Hauser, A.K.; Schulte, C.; Berg, D.; Gasser, T.; et al. Long-term follow-up of subthalamic nucleus stimulation in glucocerebrosidase-associated Parkinson’s disease. J. Neurol. 2012, 259, 1970–1972. [Google Scholar] [CrossRef] [PubMed]
- Angeli, A.; Mencacci, N.E.; Duran, R.; Aviles-Olmos, I.; Kefalopoulou, Z.; Candelario, J.; Rusbridge, S.; Foley, J.; Pradhan, P.; Jahanshahi, M.; et al. Genotype and phenotype in Parkinson’s disease: Lessons in heterogeneity from deep brain stimulation. Mov. Disord. 2013, 28, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Lythe, V.; Athauda, D.; Foley, J.; Mencacci, N.E.; Jahanshahi, M.; Cipolotti, L.; Hyam, J.; Zrinzo, L.; Hariz, M.; Hardy, J.; et al. GBA-Associated Parkinson’s Disease: Progression in a Deep Brain Stimulation Cohort. J. Parkinsons. Dis. 2017, 7, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Mangone, G.; Bekadar, S.; Cormier-Dequaire, F.; Tahiri, K.; Welaratne, A.; Czernecki, V.; Pineau, F.; Karachi, C.; Castrioto, A.; Durif, F.; et al. Early cognitive decline after bilateral subthalamic deep brain stimulation in Parkinson’s disease patients with GBA mutations. Park. Relat. Disord. 2020, 76, 56–62. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.M.; Barbosa, E.R.; Aquino, C.C.; Munhoz, R.P.; Fasano, A.; Cury, R.G. Deep Brain Stimulation in Patients with Mutations in Parkinson’s Disease-Related Genes: A Systematic Review. Mov. Disord. Clin. Pract. 2019, 6, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Artusi, C.A.; Dwivedi, A.K.; Romagnolo, A.; Pal, G.; Kauffman, M.; Mata, I.; Patel, D.; Vizcarra, J.A.; Duker, A.; Marsili, L.; et al. Association of Subthalamic Deep Brain Stimulation with Motor, Functional, and Pharmacologic Outcomes in Patients with Monogenic Parkinson Disease: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e187800. [Google Scholar] [CrossRef] [PubMed]
- Neri, M.; Braccia, A.; Panteghini, C.; Garavaglia, B.; Gualandi, F.; Cavallo, M.A.; Scerrati, A.; Ferlini, A.; Sensi, M. Parkinson’s disease-dementia in trans LRP10 and GBA variants: Response to deep brain stimulation. Park. Relat. Disord. 2021, 92, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Ledda, C.; Artusi, C.A.; Montanaro, E.; Martone, T.; Zibetti, M.; Lopiano, L. G325R GBA mutation in Parkinson’s disease: Disease course and long-term DBS outcome. Brain Stimul. 2021, 14, 1169–1171. [Google Scholar] [CrossRef]
- Racki, V.; Papic, E.; Almahariq, F.; Chudy, D.; Vuletic, V. The Successful Three-Year Outcome of Deep Brain Stimulation in Gaucher Disease Type 1 Associated Parkinson’s Disease: A Case Report. Mov. Disord. Clin. Pract. 2021, 8, 604–606. [Google Scholar] [CrossRef]
- Pal, G.; Mangone, G.; Hill, E.J.; Ouyang, B.; Liu, Y.; Lythe, V.; Ehrlich, D.; Saunders-Pullman, R.; Shanker, V.; Bressman, S.; et al. Parkinson Disease and Subthalamic Nucleus Deep Brain Stimulation: Cognitive Effects in GBA Mutation Carriers. Ann. Neurol. 2022, 91, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Almelegy, A.; Gunda, S.; Buyske, S.; Rosenbaum, M.; Sani, S.; Afshari, M.; Metman, L.V.; Goetz, C.G.; Hall, D.; Mouradian, M.M.; et al. NIH Toolbox performance of persons with Parkinson’s disease according to GBA1 and STN-DBS status. Ann. Clin. Transl. Neurol. 2024, 11, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Avenali, M.; Zangaglia, R.; Cuconato, G.; Palmieri, I.; Albanese, A.; Artusi, C.A.; Bozzali, M.; Calandra-Buonaura, G.; Cavallieri, F.; Cilia, R.; et al. Are patients with GBA-Parkinson disease good candidates for deep brain stimulation? A longitudinal multicentric study on a large Italian cohort. J. Neurol. Neurosurg. Psychiatry 2024, 95, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Asimakidou, E.; Xiromerisiou, G.; Sidiropoulos, C. Motor and Non-motor Outcomes of Deep Brain Stimulation across the Genetic Panorama of Parkinson’s Disease: A Multi-Scale Meta-Analysis. Mov. Disord. Clin. Pract. 2024, 11, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Kalinderi, K.; Bostantjopoulou, S.; Fidani, L. The genetic background of Parkinson’s disease: Current progress and future prospects. Acta Neurol. Scand. 2016, 134, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Shimo, Y.; Natori, S.; Oyama, G.; Nakajima, M.; Ishii, H.; Arai, H.; Hattori, N. Subthalamic deep brain stimulation for a Parkinson’s disease patient with duplication of SNCA. Neuromodulation 2014, 17, 102–103. [Google Scholar] [CrossRef]
- Nishioka, K.; Hayashi, S.; Farrer, M.J.; Singleton, A.B.; Yoshino, H.; Imai, H.; Kitami, T.; Sato, K.; Kuroda, R.; Tomiyama, H.; et al. Clinical heterogeneity of a-synuclein gene duplication in Parkinson’s disease. Ann. Neurol. 2006, 59, 298–309. [Google Scholar] [CrossRef]
- Antonini, A.; Pilleri, M.; Padoan, A.; Landi, A.; Ferla, S.; Biundo, R.; D’Avella, D. Successful subthalamic stimulation in genetic Parkinson’s disease caused by duplication of the alpha-synuclein gene. J. Neurol. 2012, 259, 165–167. [Google Scholar] [CrossRef]
- Perandones, C.; Aráoz Olivos, N.; Raina, G.B.; Pellene, L.A.; Giugni, J.C.; Calvo, D.S.; Radrizzani, M.; Piedimonte, F.; Micheli, F.E. Successful GPi stimulation in genetic Parkinson’s disease caused by mosaicism of alpha-synuclein gene duplication: First description. J. Neurol. 2015, 262, 222–223. [Google Scholar] [CrossRef]
- Weiss, D.; Herrmann, S.; Wang, L.; Schulte, C.; Brockmann, K.; Plewnia, C.; Gasser, T.; Sharma, M.; Gharabaghi, A.; Krüger, R. Alpha-synuclein gene variants may predict neurostimulation outcome. Mov. Disord. 2016, 31, 601–603. [Google Scholar] [CrossRef]
- Weiss, D.; Landoulsi, Z.; May, P.; Sharma, M.; Schüpbach, M.; You, H.; Corvol, J.C.; Paschen, S.; Helmers, A.K.; Barbe, M.; et al. Genetic stratification of motor and QoL outcomes in Parkinson’s disease in the EARLYSTIM study. Park. Relat. Disord. 2022, 103, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Semmler, C.; Stopic, V.; Jost, S.T.; Fink, G.R.; Weiss, P.H.; Barbe, M.T. Preoperative motor deficits and depressive symptoms predict quality of life in patients with Parkinson’s disease at different time points after surgery for subthalamic stimulation: A retrospective study. Neurol. Res. Pract. 2024, 6, 8. [Google Scholar] [CrossRef]
- Youn, J.; Oyama, G.; Hattori, N.; Shimo, Y.; Kuusimäki, T.; Kaasinen, V.; Antonini, A.; Kim, D.; Lee, J.I.; Cho, K.R.; et al. Subthalamic deep brain stimulation in Parkinson’s disease with SNCA mutations: Based on the follow-up to 10 years. Brain Behav. 2022, 12, e2503. [Google Scholar] [CrossRef] [PubMed]
- Kalinderi, K.; Fidani, L.; Bostantjopoulou, S.; Katsarou, Z.; Kotsis, A. The G2019S LRRK2 mutation is uncommon amongst Greek patients with sporadic Parkinson’s disease. Eur. J. Neurol. 2007, 14, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Aasly, J.O.; Toft, M.; Fernandez-Mata, I.; Kachergus, J.; Hulihan, M.; White, L.R.; Farrer, M. Clinical features of LRRK2-associated Parkinson’s disease in central Norway. Ann. Neurol. 2005, 57, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.K.; Jørgensen, J.V.; White, L.R.; Farrer, M.J.; Aasly, J.O. Parkinson-related genetics in patients treated with deep brain stimulation. Acta Neurol. Scand. 2011, 123, 201–206. [Google Scholar] [CrossRef]
- Prendes Fernández, P.; Blázquez Estrada, M.; Sol Álvarez, J.; Álvarez Martínez, V.; Suárez San Martín, E.; García Fernández, C.; Álvarez Carriles, J.C.; Lozano Aragoneses, B.; Saiz Ayala, A.; Santamarta Liébana, E.; et al. Analysis of deep brain stimulation of the subthalamic nucleus (STN-DBS) in patients with monogenic PRKN and LRRK2 forms of Parkinson’s disease. Park. Relat. Disord. 2023, 107, 105282. [Google Scholar] [CrossRef]
- Greenbaum, L.; Israeli-Korn, S.D.; Cohen, O.S.; Elincx-Benizri, S.; Yahalom, G.; Kozlova, E.; Strauss, H.; Molshatzki, N.; Inzelberg, R.; Spiegelmann, R.; et al. The LRRK2 G2019S mutation status does not affect the outcome of subthalamic stimulation in patients with Parkinson’s disease. Park. Relat. Disord. 2013, 19, 1053–1056. [Google Scholar] [CrossRef]
- Schüpbach, M.; Lohmann, E.; Anheim, M.; Lesage, S.; Czernecki, V.; Yaici, S.; Worbe, Y.; Charles, P.; Welter, M.L.; Pollak, P.; et al. Subthalamic nucleus stimulation is efficacious in patients with Parkinsonism and LRRK2 mutations. Mov. Disord. 2007, 22, 119–122. [Google Scholar] [CrossRef]
- Anis, S.; Goldberg, T.; Shvueli, E.; Kozlov, Y.; Redlich, Y.; Lavi, N.; Lavie, I.; Sosero, Y.L.; Gan-Or, Z.; Ungar, L.; et al. Are LRRK2 p.G2019S or GBA1 variants associated with long-term outcomes of deep brain stimulation for Parkinson’s disease? Park. Relat. Disord. 2024, 124, 106008. [Google Scholar] [CrossRef]
- Sayad, M.; Zouambia, M.; Chaouch, M.; Ferrat, F.; Nebbal, M.; Bendini, M.; Lesage, S.; Brice, A.; Brahim Errahmani, M.; Asselah, B. Greater improvement in LRRK2 G2019S patients undergoing Subthalamic Nucleus Deep Brain Stimulation compared to non-mutation carriers. BMC Neurosci. 2016, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Stefani, A.; Marzetti, F.; Pierantozzi, M.; Petrucci, S.; Olivola, E.; Galati, S.; Bassi, M.S.; Imbriani, P.; Valente, E.M.; Pastore, F.S. Successful subthalamic stimulation, but levodopa-induced dystonia, in a genetic Parkinson’s disease. Neurol. Sci. 2013, 34, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Leaver, K.; Viser, A.; Kopell, B.H.; Ortega, R.A.; Miravite, J.; Okun, M.S.; Elango, S.; Raymond, D.; Bressman, S.B.; Saunders-Pullman, R.; et al. Clinical profiles and outcomes of deep brain stimulation in G2019S LRRK2 Parkinson disease. J. Neurosurg. 2021, 137, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Breit, S.; Wächter, T.; Schmid-Bielenberg, D.; Weiss, D.; Leitner, P.; Nägele, T.; Freudenstein, D.; Gasser, T.; Krüger, R. Effective long-term subthalamic stimulation in PARK8 positive Parkinson’s disease. J. Neurol. 2010, 257, 1205–1207. [Google Scholar] [CrossRef] [PubMed]
- Perju-Dumbrava, L.D.; McDonald, M.; Kneebone, A.C.; Long, R.; Thyagarajan, D. Sustained response to deep brain stimulation in LRRK2 parkinsonism with the Y1699C mutation. J. Parkinsons. Dis. 2012, 2, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Esteban, J.C.; Lezcano, E.; Zarranz, J.J.; González, C.; Bilbao, G.; Lambarri, I.; Rodríguez, O.; Garibi, J. Outcome of bilateral deep brain subthalamic stimulation in patients carrying the R1441G mutation in the LRRK2 dardarin gene. Neurosurgery 2008, 62, 857–862, discussion 862–863. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Funayama, M.; Kubo, S.I.; Mata, I.F.; Oji, Y.; Mori, A.; Zabetian, C.P.; Waldherr, S.M.; Yoshino, H.; Oyama, G.; et al. Identification of a Japanese family with LRRK2 p.R1441G-related Parkinson’s disease. Neurobiol. Aging 2014, 35, 2656.e17–2656.e23. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, H.; Wu, Q.Q.; Xu, S.J.; Li, W.G.; Chen, T.; Li, C.; Ma, X.Y.; Xu, S.; Liu, Y.M. Effect of LRRK2 G2385R Variant on Subthalamic Deep Brain Stimulation Efficacy in Parkinson’s Disease in a Han Chinese Population. Front. Neurol. 2019, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Shen, B.; Yang, Y.J.; Liu, F.T.; Zhao, J.; Tang, Y.L.; Chen, C.; Ding, Z.T.; An, Y.; Wu, J.J.; et al. Nonmotor symptoms in parkinson’s disease patients with parkin mutations: More depression and less executive dysfunction. J. Mol. Neurosci. 2020, 70, 246–253. [Google Scholar] [CrossRef]
- Lohmann, E.; Welter, M.L.; Fraix, V.; Krack, P.; Lesage, S.; Laine, S.; Tanguy, M.L.; Houeto, J.L.; Mesnage, V.; Pollak, P.; et al. French Parkinson’s Disease Genetics study group. Are parkin patients particularly suited for deep-brain stimulation? Mov. Disord. 2008, 23, 740–743. [Google Scholar] [CrossRef]
- Moro, E.; Volkmann, J.; König, I.R.; Winkler, S.; Hiller, A.; Hassin-Baer, S.; Herzog, J.; Schnitzler, A.; Lohmann, K.; Pinsker, M.O.; et al. Bilateral subthalamic stimulation in Parkin and PINK1 parkinsonism. Neurology 2008, 70, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Yun, J.Y.; Kim, Y.E.; Lee, J.Y.; Kim, H.J.; Kim, J.Y.; Park, S.S.; Paek, S.H.; Jeon, B.S. Parkin mutation and deep brain stimulation outcome. J. Clin. Neurosci. 2014, 21, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Romito, L.M.; Contarino, M.F.; Ghezzi, D.; Franzini, A.; Garavaglia, B.; Albanese, A. High frequency stimulation of the subthalamic nucleus is efficacious in Parkin disease. J. Neurol. 2005, 252, 208–211. [Google Scholar] [CrossRef]
- Capecci, M.; Passamonti, L.; Annesi, F.; Annesi, G.; Bellesi, M.; Candiano, I.C.; Ricciuti, R.; Iacoangeli, M.; Scerrati, M.; Zappia, M.; et al. Chronic bilateral subthalamic deep brain stimulation in a patient with homozygous deletion in the parkin gene. Mov. Disord. 2004, 19, 1450–1452. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, K.; Ueda, M.; Yamada, K.; Koide, T.; Yoshimochi, G.; Funayama, M.; Kim, J.H.; Yamakawa, S.; Mori, A.; Misumi, Y.; et al. Juvenile-onset parkinsonism with digenic parkin and PINK1 mutations treated with subthalamic nucleus stimulation at 45 years after disease onset. J. Neurol. Sci. 2014, 345, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, R.; Derrey, S.; Guyant-Maréchal, L.; Chastan, N.; Maltête, D. Whatever the disease duration, stimulation of the subthalamic nucleus improves Parkin disease. Park. Relat. Disord. 2010, 16, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Genç, G.; Apaydın, H.; Gündüz, A.; Poyraz, Ç.; Oğuz, S.; Yağcı, S.; Canaz, H.; Aydın, S.; Gündoğdu-Eken, A.; Başak, A.N.; et al. Successful treatment of Juvenile parkinsonism with bilateral subthalamic deep brain stimulation in a 14-year-old patient with parkin gene mutation. Park. Relat. Disord. 2016, 24, 137–138. [Google Scholar] [CrossRef]
- Covolo, A.; Imbalzano, G.; Artusi, C.A.; Montanaro, E.; Ledda, C.; Bozzali, M.; Rizzone, M.G.; Zibetti, M.; Martone, T.; Lopiano, L.; et al. 15-Year Subthalamic Deep Brain Stimulation outcome in a Parkinson’s disease patient with Parkin gene mutation: A case report. Neurol. Sci. 2023, 44, 2939–2942. [Google Scholar] [CrossRef] [PubMed]
- Contaldi, E.; Leogrande, G.; Fornaro, R.; Comi, C.; Magistrelli, L. Menstrual-Related Fluctuations in a Juvenile-Onset Parkinson’s Disease Patient Treated with STN-DBS: Correlation with Local Field Potentials. Mov. Disord. Clin. Pract. 2024, 11, 101–104. [Google Scholar] [CrossRef]
- Balestrino, R.; Ledda, C.; Romagnolo, A.; Bozzali, M.; Giulietti, G.; Montanaro, E.; Rizzone, M.; Zibetti, M.; Artusi, C.A.; Lopiano, L. Motor and non-motor outcomes of subthalamic deep brain stimulation in a case of juvenile PARK-PINK1. Brain Stimul. 2021, 14, 725–727. [Google Scholar] [CrossRef]
- Borellini, L.; Cogiamanian, F.; Carrabba, G.; Locatelli, M.; Rampini, P.; Di Fonzo, A.; Bana, C.; Barbieri, S.; Ardolino, G. Globus pallidus internus deep brain stimulation in PINK-1 related Parkinson’s disease: A case report. Park. Relat. Disord. 2017, 38, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Borellini, L.; Cogiamanian, F.; Ardolino, G. Globus pallidus internus deep brain stimulation in PINK-1 related Parkinson’s disease: An update. Park. Relat. Disord. 2021, 82, 104–105. [Google Scholar] [CrossRef] [PubMed]
- Fleury, V.; Wider, C.; Horvath, J.; Zacharia, A.; Bally, J.; Pollak, P.; Pollo, C.; Vingerhoets, F.J.; Burkhard, P.R. Successful long-term bilateral subthalamic nucleus deep brain stimulation in VPS35 Parkinson’s disease. Park. Relat. Disord. 2013, 19, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Chang, Y.Y.; Lan, M.Y.; Chen, P.L.; Lin, C.H. Identification of VPS35 p.D620N mutation-related Parkinson’s disease in a Taiwanese family with successful bilateral subthalamic nucleus deep brain stimulation: A case report and literature review. BMC Neurol. 2017, 7, 191. [Google Scholar] [CrossRef]
- Veeranki, Y.R.; Ganapathy, N.; Swaminathan, R.; Posada-Quintero, H.F. Comparison of Electrodermal Activity Signal Decomposition Techniques for Emotion Recognition. IEEE Access 2024, 12, 19952–19966. [Google Scholar] [CrossRef]
- Veeranki, Y.R.; Diaz, L.R.M.; Swaminathan, R.; Posada-Quintero, H.F. Nonlinear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity. IEEE Sens. J. 2024, 24, 8079–8093. [Google Scholar] [CrossRef]
- Mohammadi, A.; Mehdizadeh, A.R. Deep Brain Stimulation and Gene Expression Alterations in Parkinson’s Disease. J. Biomed. Phys. Eng. 2016, 6, 47–50. [Google Scholar]
- Pohodich, A.E.; Yalamanchili, H.; Raman, A.T.; Wan, Y.W.; Gundry, M.; Hao, S.; Jin, H.; Tang, J.; Liu, Z.; Zoghbi, H.Y. Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity. Elife 2018, 7, e34031. [Google Scholar] [CrossRef]
Gene | Study Design | N | Type of DBS | Follow-up | Main Results | Reference |
---|---|---|---|---|---|---|
GBA | Case series | 9 | STN-DBS | 6–10 yrs | GBA carriers—increase in axial motor impairment, decline in therapeutic efficacy and cognitive decline | [12] |
Case series | 94 | STN-DBS GPi-DBS Vim-DBS | 1–5 yrs | GBA carriers—steeper cognitive decline | [13] | |
Case–control | 34 | STN-DBS GPi-DBS | 7.5 yrs | GBA carriers—more severe cognitive impairment, non-motor symptoms and lower quality of life | [14] | |
Retrospective | 208 | STN-DBS | 1 yr | GBA carriers—earlier cognitive decline | [15] | |
Systematic review | 19 | STN-DBS | 2–6 yrs | GBA carriers—faster cognitive and functional decline po | [16] | |
Systematic review and meta-analysis | 33 | STN-DBS | 2–7 yrs | GBA carriers—worse post-surgical cognitive and functional performance | [17] | |
Case | 1 | STN-DBS | 4 yrs | c.348_349delCA, p. Tyr116* LRP10 and p. Leu444Pro GBA—improvement in motor function, but rapid cognitive deterioration | [18] | |
Case report | 1 | STN-DBS | 14 yrs | G325R GBA mutation—stable cognitive and neurobehavioral performances | [19] | |
Case report | 1 | STN-DBS | 3 yrs | Improvement in motor functions and quality of life after DBS with no cognitive decline | [20] | |
Case–control | 366 | STN-DBS | 3–5 yrs | GBA carriers—more rapid cognitive decline | [21] | |
Cross-sectional | 66 | STN-DBS | 1 yr | GBA1 + DBS+ PD—more severe cognitive dysfunction | [22] | |
Retrospective | 365 | STN-DBS | 1–5 yrs | GBA carriers—significant motor improvement, reduction in fluctuations, dyskinesias and impulsive-compulsive disorders, faster rate of cognitive decline | [23] | |
Meta-analysis | 380 | STN-DBS | GBA carriers—more prone to cognitive decline po and a low quality of life | [24] |
Gene | Study Design | N | Type of DBS | Follow-Up | Main Results | Reference |
---|---|---|---|---|---|---|
SNCA | Case report | 1 | STN-DBS | 4 yrs | Improvement in motor fluctuation, reduction in the dose of anti-parkinsonian drugs | [26] |
Case report | 1 | STN-DBS | 2 yrs | Short-term follow-up—reduction in UPDRS III, long-term—cognitive decline | [28] | |
Case report | 1 | GPi-DBS | 1 month | Improvement in motor features, reduction in the dose of anti-parkinsonian drugs | [29] | |
Genetic association study | 85 | STN-DBS | 2 yrs | rs356220 carriers—better response in UPDRS-III and motor and axial symptomatology | [30] | |
Genetic analyses of DBS group vs. BMT group | 176 | STN-DBS | 2 yrs | rs356220—improvement in quality of life | [31] | |
Retrospective observational study | 4 | STN-DBS | 3.5 yrs | Significant decrease in the levodopa, p.A53E patients—benefits to motor fluctuation, but in long-term follow-up, progressed axial, cognitive and psychiatric symptoms | [33] |
Gene | Study Design | N | Type of DBS | Follow-Up | Main Results | Reference |
---|---|---|---|---|---|---|
LRRK2 | Cross-sectional study | 37 | STN-DBS | 5 yrs | G2019S: no significant difference po | [36] |
Case series | 94 | STN-DBS | 1–5 yrs | G2019S: no significant difference po | [13] | |
Case–control study | 39 | STN-DBS | 6–12 months + 3 yrs | G2019S: no significant difference po | [38] | |
Case–control study | 97 | STN-DBS | 1 yr | G2019S: no significant difference po | [37] | |
Case–control study | 69 | STN-DBS | 9–10 yrs | G2019S patients—sustained beneficial effect T2031S patient—not favorable outcomes | [39] | |
Genetic association study of common SNPS versus DBS response | 85 | STN-DBS | 2 yrs | rs1491923 LRRK2—did not predict motor symptom progression after STN-DBS | [30] | |
Retrospective case–control study | 103 | STN-DBS STN + GPi-DBS | Mean po follow-up 7.0 ± 4.1 yrs | LRRK2—no significant differences in motor outcomes po | [40] | |
Case–control study | 27 | STN-DBS | 2 yrs | G2019S: better surgical response | [41] | |
Descriptive case report | 1 | STN-DBS | 3 months | G2019S: good motor response, levodopa-related dystonia | [42] | |
Systematic review and meta-analysis | 33 | STN-DBS | Mean follow-up of 12 months | LRRK2 mutation carriers—sustained improvements in UPDRS-IV | [17] | |
Retrospective cohort, case–control study | 87 | STN-DBS, GPi-DBS | 2 yrs | G2019S: slightly slower rate of motor progression | [43] | |
Case report | 1 | STN-DBS | 8 yrs | Y1699C or R793M mutation carriers—sustained improvement in UPDRS | [44] | |
Descriptive case report | 1 | 2.5 yrs | Marked improvement in UPDRS Part III scores in the “on” and “off” states | [45] | ||
Case series | 45 | STN-DBS | 6 months | R1441G carriers—worse response | [46] | |
Systematic review | 19 | STN-DBS | 2–6 yrs | R1441G carriers—worse response DBS | [16] | |
Case report | 1 | STN-DBS | 2 yrs | Double LRRK2 R1441G and G2385R mutation—severe motor psychiatric complications 1 yr po | [47] | |
Retrospective case–control study | 57 | STN-DBS | 1 yr | G2385R mutation carriers—no significant difference on motor outcomes except in terms of rigidity | [48] |
Gene | Study Design | N | Type of DBS | Follow-Up | Main Results | Reference |
---|---|---|---|---|---|---|
Parkin | Case–control study | 54 | STN-DBS | 1–2 yrs | Levodopa doses significantly lower in patients with two parkin mutations | [50] |
Case series | 94 | STN-DBS GPi-DBS | 1–5 yrs | Similar clinical outcomes po | [13] | |
Cross-sectional study | 37 | STN-DBS | 5 yrs | Similar clinical outcomes po | [36] | |
Case–control study | 9 | STN-DBS | 2–5 yrs | Similar clinical outcomes po | [52] | |
Prospective observational study | 80 | STN-DBS | Short-term: 3–12 months Long-term: 3–6 yrs | In the long-term follow-up: similar clinical outcomes | [51] | |
Case–control study | 36 | STN-DBS | 21.6 ± 13.1 months | Similar clinical outcomes | [53] | |
Case report | 1 | STN-DBS | 1 yr | Significant motor improvement, reduction in the levodopa-equivalent daily dose, complete resolution of severe dyskinesias | [54] | |
Case report | 1 | STN-DBS | 8 months | Eminent improvement in PD symptoms po | [55] | |
Case report | 1 | STN-DBS | 6 months | Improvement of the severity of motor fluctuations and dyskinesia, reduced doses of anti-parkinsonian drugs, stable cognitive performance | [56] | |
Case report | 1 | STN-DBS | Not reported | Improvement of UPDRS part III scores, reduced doses of anti-parkinsonian drugs | [57] | |
Case report | 1 | STN-DBS | 15 yrs | Significant improvement in motor symptoms and fluctuations | [58] | |
Case report | 1 | STN-DBS | Not reported | Homozygous c.G859A parkin mutation—eminent clinical improvement po but the patient soon reported more “off” periods with painful dystonia during the luteal phase of her menstrual cycle | [59] |
Gene | Study Design | N | Type of DBS | Follow-Up | Main Results | Reference |
---|---|---|---|---|---|---|
PINK1 | Case report | 1 | STN-DBS | 3 yrs | Dyskinesias, freezing of gait and a sub-continuous tremor; however, good control of motor fluctuations and better quality of life po | [60] |
Prospective observational study | 80 | STN-DBS | Short-term: 3–12 months Long-term: 3–6 yrs | In the long-term follow-up: similar clinical outcomes | [51] | |
Case report | 1 | GPi DBS | Short-term: 1 + 2 months, long-term: >4 yrs | After a transient benefit, the patient in the long-term follow-up—not responsive to medical therapy and stimulation, unable to walk, deterioration of dystonia | [61,62] |
Gene | Study Design | N | Type of DBS | Follow-up | Main Results | Reference |
---|---|---|---|---|---|---|
VPS35 | Descriptive case series | 2 | STN-DBS | 1 and 8 yrs | D620N mutation carriers— good po response | [63] |
Descriptive case report | 1 | STN-DBS | 5 yrs | Marked improvement in motor symptoms | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinderi, K.; Papaliagkas, V.; Fidani, L. Surgicogenomics: The Role of Genetics in Deep Brain Stimulation in Parkinson’s Disease Patients. Brain Sci. 2024, 14, 800. https://doi.org/10.3390/brainsci14080800
Kalinderi K, Papaliagkas V, Fidani L. Surgicogenomics: The Role of Genetics in Deep Brain Stimulation in Parkinson’s Disease Patients. Brain Sciences. 2024; 14(8):800. https://doi.org/10.3390/brainsci14080800
Chicago/Turabian StyleKalinderi, Kallirhoe, Vasileios Papaliagkas, and Liana Fidani. 2024. "Surgicogenomics: The Role of Genetics in Deep Brain Stimulation in Parkinson’s Disease Patients" Brain Sciences 14, no. 8: 800. https://doi.org/10.3390/brainsci14080800
APA StyleKalinderi, K., Papaliagkas, V., & Fidani, L. (2024). Surgicogenomics: The Role of Genetics in Deep Brain Stimulation in Parkinson’s Disease Patients. Brain Sciences, 14(8), 800. https://doi.org/10.3390/brainsci14080800