On the Move: Correlation of Impaired Mobility with Spatial Navigation Ability in Persons with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedures
2.2.1. Spatial Navigation Ability Assessment
2.2.2. Mobility Assessments
2.3. Statistical Analyses
3. Results
3.1. Poor Mobility Was Associated with Worse Virtual Navigation Ability in pwMS
3.2. PDDS-Stratified Correlations Reveal Similar Associations between Mobility and Navigation Performance for pwMS Who Have Lower Disability Levels
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; Rocca, N.L.; Uitdehaag, B.; van der Mei, I.; et al. Rising Prevalence of Multiple Sclerosis Worldwide: Insights from the Atlas of MS, Third Edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Islas, M.Á.M.; Ciampi, E. Assessment and Impact of Cognitive Impairment in Multiple Sclerosis: An Overview. Biomedicines 2019, 7, 22. [Google Scholar] [CrossRef]
- Iaffaldano, P.; Viterbo, R.G.; Goretti, B.; Portaccio, E.; Amato, M.P.; Trojano, M. Emotional and Neutral Verbal Memory Impairment in Multiple Sclerosis. J. Neurol. Sci. 2014, 341, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Meca-Lallana, V.; Gascón-Giménez, F.; Ginestal-López, R.C.; Higueras, Y.; Téllez-Lara, N.; Carreres-Polo, J.; Eichau-Madueño, S.; Romero-Imbroda, J.; Vidal-Jordana, Á.; Pérez-Miralles, F. Cognitive Impairment in Multiple Sclerosis: Diagnosis and Monitoring. Neurol. Sci. 2021, 42, 5183–5193. [Google Scholar] [CrossRef] [PubMed]
- Langdon, D.W. Cognition in Multiple Sclerosis. Curr. Opin. Neurol. 2011, 24, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Bergendal, G.; Fredrikson, S.; Almkvist, O. Selective Decline in Information Processing in Subgroups of Multiple Sclerosis: An 8-Year Longitudinal Study. Eur. Neurol. 2007, 57, 193–202. [Google Scholar] [CrossRef]
- Guimarães, J.; Sá, M.J. Cognitive Dysfunction in Multiple Sclerosis. Front. Neurol. 2012, 3, 74. [Google Scholar] [CrossRef]
- Dalton, R.C.; Hölscher, C.; Montello, D.R. Wayfinding as a Social Activity. Front. Psychol. 2019, 10, 142. [Google Scholar] [CrossRef]
- Spiers, H.J.; Maguire, E.A. The Dynamic Nature of Cognition during Wayfinding. J. Environ. Psychol. 2008, 28, 232–249. [Google Scholar] [CrossRef]
- O’Keefe, J.; Nadel, L. The Cognitive Map as a Hippocampus. Behav. Brain Sci. 1979, 2, 520–533. [Google Scholar] [CrossRef]
- Epstein, R.A.; Patai, E.Z.; Julian, J.B.; Spiers, H.J. The Cognitive Map in Humans: Spatial Navigation and Beyond. Nat. Neurosci. 2017, 20, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Moffat, S.D.; Resnick, S.M. Effects of Age on Virtual Environment Place Navigation and Allocentric Cognitive Mapping. Behav. Neurosci. 2002, 116, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Després, O.; Courtès, M.; Couval, O.; Pebayle, T.; Lithfous, S. Impaired Creation of Cognitive Maps from Active Exploration During Normal Aging. Int. J. Aging Health 2022, 1, 1–11. [Google Scholar]
- Meneghetti, C.; Borella, E.; Gyselinck, V.; Beni, R.D. Age-Differences in Environment Route Learning: The Role of Input and Recall-Test Modalities in Young and Older Adults. Learn Individ. Differ. 2012, 22, 884–890. [Google Scholar] [CrossRef]
- Daugherty, A.M.; Raz, N. A Virtual Water Maze Revisited: Two-Year Changes in Navigation Performance and Their Neural Correlates in Healthy Adults. Neuroimage 2017, 146, 492–506. [Google Scholar] [CrossRef]
- Sheldon, S.; Ruel, A. The Many Routes of Mental Navigation: Contrasting the Effects of a Detailed and Gist Retrieval Approach on Using and Forming Spatial Representations. Psychol. Res. 2018, 82, 1130–1143. [Google Scholar] [CrossRef]
- Bestgen, A.-K.; Edler, D.; Mller, C.; Schulze, P.; Dickmann, F.; Kuchinke, L. Where Is It (in the Map)? Recall and Recognition of Spatial Information. Cartogr. Int. J. Geogr. Inf. Geovisualization 2017, 52, 80–97. [Google Scholar] [CrossRef]
- Driscoll, I.; Hamilton, D.A.; Petropoulos, H.; Yeo, R.A.; Brooks, W.M.; Baumgartner, R.N.; Sutherland, R.J. The Aging Hippocampus: Cognitive, Biochemical and Structural Findings. Cereb. Cortex 2003, 13, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Chrastil, E.R. Neural Evidence Supports a Novel Framework for Spatial Navigation. Psychon. Bull. Rev. 2013, 20, 208–227. [Google Scholar] [CrossRef]
- Comber, L.; Sosnoff, J.J.; Galvin, R.; Coote, S. Postural Control Deficits in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. Gait Posture 2018, 61, 445–452. [Google Scholar] [CrossRef]
- Coca-Tapia, M.; Cuesta-Gómez, A.; Molina-Rueda, F.; Carratalá-Tejada, M. Gait Pattern in People with Multiple Sclerosis: A Systematic Review. Diagnostics 2021, 11, 584. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.H.; Nilsagard, Y. Balance, Gait, and Falls in Multiple Sclerosis. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 159, pp. 237–250. [Google Scholar] [CrossRef]
- Takla, T.N.; Chargo, A.N.; Daugherty, A.M.; Fritz, N.E. Cognitive Contributors of Backward Walking in Persons with Multiple Sclerosis. Mult. Scler. Int. 2023, 2023, 5582242. [Google Scholar] [CrossRef] [PubMed]
- Edwards, E.M.; Daugherty, A.M.; Nitta, M.; Atalla, M.; Fritz, N.E. Backward Walking Sensitively Detects Fallers in Persons with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2020, 45, 102390. [Google Scholar] [CrossRef] [PubMed]
- van der Ham, I.J.M.; Koutzmpi, V.; van der Kuil, M.N.A.; van der Hiele, K. Spatial Navigation Performance in People with Multiple Sclerosis-a Large-Scale Online Study. Mult. Scler. Relat. Disord. 2022, 58, 103423. [Google Scholar] [CrossRef] [PubMed]
- van der Ham, I.J.M.; Faber, A.M.E.; Venselaar, M.; van Kreveld, M.J.; Löffler, M. Ecological Validity of Virtual Environments to Assess Human Navigation Ability. Front. Psychol. 2015, 6, 637. [Google Scholar] [CrossRef] [PubMed]
- Learmonth, Y.C.; Motl, R.W.; Sandroff, B.M.; Pula, J.H.; Cadavid, D. Validation of Patient Determined Disease Steps (PDDS) Scale Scores in Persons with Multiple Sclerosis. BMC Neurol. 2013, 13, 37. [Google Scholar] [CrossRef]
- Rodgers, M.K.; Sindone, J.A.; Moffat, S.D. Effects of Age on Navigation Strategy. Neurobiol. Aging 2012, 33, 202.e15–202.e22. [Google Scholar] [CrossRef]
- Rudick, R.; Antel, J.; Confavreux, C.; Cutter, G.; Ellison, G.; Fischer, J.; Lublin, F.; Miller, A.; Petkau, J.; Rao, S.; et al. Recommendations from the National Multiple Sclerosis Society Clinical Outcomes Assessment Task Force. Ann. Neurol. 1997, 42, 379–382. [Google Scholar] [CrossRef]
- Motl, R.W.; Cohen, J.A.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Multiple Sclerosis Outcome Assessments Consortium. Validity of the Timed 25-Foot Walk as an Ambulatory Performance Outcome Measure for Multiple Sclerosis. Mult. Scler. 2017, 23, 704–710. [Google Scholar] [CrossRef]
- Kieseier, B.C.; Pozzilli, C. Assessing Walking Disability in Multiple Sclerosis. Mult. Scler. J. 2012, 18, 914–924. [Google Scholar] [CrossRef]
- Moffat, S.D. Aging and Spatial Navigation: What Do We Know and Where Do We Go? Neuropsychol. Rev. 2009, 19, 478. [Google Scholar] [CrossRef]
- Harbo, H.F.; Gold, R.; Tintoré, M. Sex and Gender Issues in Multiple Sclerosis. Ther. Adv. Neurol. Disord. 2013, 6, 237–248. [Google Scholar] [CrossRef]
- Němá, E.; Kalina, A.; Nikolai, T.; Vyhnálek, M.; Meluzínová, E.; Laczó, J. Spatial Navigation in Early Multiple Sclerosis: A Neglected Cognitive Marker of the Disease? J. Neurol. 2021, 268, 77–89. [Google Scholar] [CrossRef]
- Wong, A.L.; Haith, A.M.; Krakauer, J.W. Motor Planning. Neuroscience 2015, 21, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front. Public Health 2016, 4, 94. [Google Scholar] [CrossRef]
- VanSwearingen, J.M.; Studenski, S.A. Aging, Motor Skill, and the Energy Cost of Walking: Implications for the Prevention and Treatment of Mobility Decline in Older Persons. J. Gerontol. Ser. A 2014, 69, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.M.; Downes, J.J.; Sahakian, B.J.; Polkey, C.E.; Robbins, T.W. Planning and Spatial Working Memory Following Frontal Lobe Lesions in Man. Neuropsychologia 1990, 28, 1021–1034. [Google Scholar] [CrossRef]
- Marvel, C.L.; Morgan, O.P.; Kronemer, S.I. How the Motor System Integrates with Working Memory. Neurosci. Biobehav. Rev. 2019, 102, 184–194. [Google Scholar] [CrossRef]
- Rogge, A.-K.; Hamacher, D.; Cappagli, G.; Kuhne, L.; Hötting, K.; Zech, A.; Gori, M.; Röder, B. Balance, Gait, and Navigation Performance Are Related to Physical Exercise in Blind and Visually Impaired Children and Adolescents. Exp. Brain Res. 2021, 239, 1111–1123. [Google Scholar] [CrossRef]
- Ramanoël, S.; Durteste, M.; Delaux, A.; de Saint Aubert, J.-B.; Arleo, A. Future Trends in Brain Aging Research: Visuo-Cognitive Functions at Stake during Mobility and Spatial Navigation. Aging Brain 2022, 2, 100034. [Google Scholar] [CrossRef] [PubMed]
- Ramanoël, S.; Durteste, M.; Bécu, M.; Habas, C.; Arleo, A. Differential Brain Activity in Regions Linked to Visuospatial Processing during Landmark-Based Navigation in Young and Healthy Older Adults. Front. Hum. Neurosci. 2020, 14, 552111. [Google Scholar] [CrossRef]
- Soke, F.; Aydin, F.; Karakoc, S.; Gulsen, C.; Yasa, M.E.; Ersoy, N.; Gulsen, E.O.; Yucesan, C. Effects of Backward Walking Training on Balance, Gait, and Functional Mobility in People with Multiple Sclerosis: A Randomized Controlled Study. Mult. Scler. Relat. Disord. 2023, 79, 104961. [Google Scholar] [CrossRef]
- Tseng, I.-J.; Jeng, C.; Yuan, R.-Y. Comparisons of Forward and Backward Gait between Poorer and Better Attention Capabilities in Early Parkinson’s Disease. Gait Posture 2012, 36, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Lundin-Olsson, L.; Littbrand, H.; Gustafson, Y.; Rosendahl, E.; Toots, A. Cognitive Function and Walking Velocity in People with Dementia; a Comparison of Backward and Forward Walking. Gait Posture 2017, 58, 481–486. [Google Scholar] [CrossRef] [PubMed]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis. JAMA 2021, 325, 765–779. [Google Scholar] [CrossRef] [PubMed]
Variable | Descriptive Statistic |
---|---|
Sample Size | 43 |
Female, n (%) | 35 (81.4%) |
Age (M ± SD, years) | 48.16 ± 10.28 |
Symptom Duration (M ± SD, years) | 17.59 ± 9.98 |
Disease Severity (M ± SD, PDDS) | 2.00 ± 1.98 |
Measure | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. Comfortable FW | -- | ||||||
2. Comfortable BW | 0.834 ** | -- | |||||
3. Fast FW | 0.787 ** | 0.663 ** | -- | ||||
4. Fast BW | 0.779 ** | 0.965 ** | 0.689 ** | -- | |||
5. Average Distance | 0.415 ** | 0.435 ** | 0.137 | 0.284 | -- | ||
6. Average Time | 0.422 ** | 0.441 ** | 0.221 | 0.364 * | 0.793 ** | -- | |
7. Map Free Recall | −0.335 * | −0.29 | −0.159 | −0.195 | −0.516 ** | −0.440 ** | -- |
Descriptive Statistic | ||
---|---|---|
Variable | Low Disability | High Disability |
Sample Size | 28 | 15 |
Female, n (%) | 24 (85.7%) | 11 (73.3%) |
Age (M ± SD, years) | 46.96 ± 9.89 | 50.40 ± 10.96 |
Symptom Duration (M ± SD, years) | 17.42 ± 10.11 | 17.87 ± 10.08 |
Disease Severity (M ± SD, PDDS) | 0.75 ± 0.80 | 4.33 ± 1.23 |
Low Disability (n = 28) | High Disability (n = 15) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Measure | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1. Comfortable FW | -- | -- | ||||||||||||
2. Comfortable BW | 0.853 ** | -- | 0.721 ** | -- | ||||||||||
3. Fast FW | 0.696 ** | 0.519 ** | -- | 0.916 ** | 0.851 ** | -- | ||||||||
4. Fast BW | 0.826 ** | 0.945 ** | 0.564 ** | -- | 0.675 ** | 1.00 ** | 0.851 ** | -- | ||||||
5. Average Distance | 0.392 * | 0.412 * | 0.068 | 0.269 | -- | 0.332 | 0.289 | 0.160 | 0.253 | -- | ||||
6. Average Time | 0.587 ** | 0.571 ** | 0.284 | 0.506 ** | 0.764 ** | -- | 0.314 | 0.343 | 0.182 | 0.327 | 0.904 ** | -- | ||
7. Map Free Recall | −0.418 * | −0.500 ** | −0.273 | −0.501 ** | −0.519 ** | −0.489 ** | -- | −0.155 | −0.141 | −0.120 | −0.184 | −0.392 | −0.379 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chargo, A.N.; Takla, T.N.; Fritz, N.E.; Daugherty, A.M. On the Move: Correlation of Impaired Mobility with Spatial Navigation Ability in Persons with Multiple Sclerosis. Brain Sci. 2024, 14, 277. https://doi.org/10.3390/brainsci14030277
Chargo AN, Takla TN, Fritz NE, Daugherty AM. On the Move: Correlation of Impaired Mobility with Spatial Navigation Ability in Persons with Multiple Sclerosis. Brain Sciences. 2024; 14(3):277. https://doi.org/10.3390/brainsci14030277
Chicago/Turabian StyleChargo, Alexis N., Taylor N. Takla, Nora E. Fritz, and Ana M. Daugherty. 2024. "On the Move: Correlation of Impaired Mobility with Spatial Navigation Ability in Persons with Multiple Sclerosis" Brain Sciences 14, no. 3: 277. https://doi.org/10.3390/brainsci14030277
APA StyleChargo, A. N., Takla, T. N., Fritz, N. E., & Daugherty, A. M. (2024). On the Move: Correlation of Impaired Mobility with Spatial Navigation Ability in Persons with Multiple Sclerosis. Brain Sciences, 14(3), 277. https://doi.org/10.3390/brainsci14030277