Subtypes and Mechanistic Advances of Extracorporeal Membrane Oxygenation-Related Acute Brain Injury
Abstract
:1. Introduction
2. Patterns of ECMO-Related ABI
2.1. Intracranial Hemorrhage
2.2. Ischemic Stroke
2.3. Seizures
2.4. Hypoxic–Ischemic Brain Injury (HIBI)
2.5. Brain Death
3. Possible Mechanisms of ABI in ECMO
3.1. Common Mechanisms
3.1.1. Altered Hemostasis
3.1.2. Immune System Activation
3.2. Mechanism of ABI Specific to VA-ECMO
3.2.1. Hemodynamics in ECMO
3.2.2. Cannulation Method
3.2.3. Changes in Cerebral Autoregulation
3.2.4. Changes in Pulse Pressure
3.3. Mechanisms of ABI Specific to VV-ECMO
3.4. Damage Caused by Underlying Disease
3.5. Neuromonitoring Based on the Possible Mechanisms
4. Future Perspectives and Development
4.1. Anticoagulants Monitoring
4.2. Therapeutic Hypothermia
4.3. Hemoadsorption in ECMO
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kennedy, J.H. The role of assisted circulation in cardiac resuscitation. JAMA 1966, 197, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.R.; Gu, Y.; George, B.P.; Malone, L.; Conway, K.S.; Francois, F.; Donlon, J.; Quazi, N.; Reddi, A.; Ho, C.Y.; et al. Brain Histopathology of Adult Decedents After Extracorporeal Membrane Oxygenation. Neurology 2021, 96, e1278–e1289. [Google Scholar] [CrossRef] [PubMed]
- Gajkowski, E.F.; Herrera, G.; Hatton, L.; Velia Antonini, M.; Vercaemst, L.; Cooley, E. ELSO Guidelines for Adult and Pediatric Extracorporeal Membrane Oxygenation Circuits. ASAIO J. 2022, 68, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.R.; Saulle, M.; Oldham, M.A.; Weber, M.T.; Schifitto, G.; Lee, H.B. Cognitive, Psychiatric, and Quality of Life Outcomes in Adult Survivors of Extracorporeal Membrane Oxygenation Therapy: A Scoping Review of the Literature. Crit. Care Med. 2020, 48, e959–e970. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, R.; Barili, F.; Mauro, M.D.; Gelsomino, S.; Parise, O.; Rycus, P.T.; Maessen, J.; Mueller, T.; Muellenbach, R.; Belohlavek, J.; et al. In-Hospital Neurologic Complications in Adult Patients Undergoing Venoarterial Extracorporeal Membrane Oxygenation: Results From the Extracorporeal Life Support Organization Registry. Crit. Care Med. 2016, 44, e964–e972. [Google Scholar] [CrossRef]
- Cho, S.M.; Canner, J.; Chiarini, G.; Calligy, K.; Caturegli, G.; Rycus, P.; Barbaro, R.P.; Tonna, J.; Lorusso, R.; Kilic, A.; et al. Modifiable Risk Factors and Mortality From Ischemic and Hemorrhagic Strokes in Patients Receiving Venoarterial Extracorporeal Membrane Oxygenation: Results From the Extracorporeal Life Support Organization Registry. Crit. Care Med. 2020, 48, e897–e905. [Google Scholar] [CrossRef]
- Rajsic, S.; Treml, B.; Jadzic, D.; Breitkopf, R.; Oberleitner, C.; Popovic Krneta, M.; Bukumiric, Z. Extracorporeal membrane oxygenation for cardiogenic shock: A meta-analysis of mortality and complications. Ann. Intensive Care 2022, 12, 93. [Google Scholar] [CrossRef]
- Jeong, S.C.; Kim, H.J.; Shin, Y.S.; Han, J.W.; Lim, J.Y.; Son, H.S. Influence of cannula positioning on brain injury during extracorporeal membrane oxygenation. J. Thorac. Dis. 2018, 10, 6184–6191. [Google Scholar] [CrossRef]
- Caturegli, G.; Kapoor, S.; Ponomarev, V.; Kim, B.S.; Whitman, G.J.R.; Ziai, W.; Cho, S.M. Transcranial Doppler microemboli and acute brain injury in extracorporeal membrane oxygenation: A prospective observational study. JTCVS Tech. 2022, 15, 111–122. [Google Scholar] [CrossRef]
- Lorusso, R.; Gelsomino, S.; Parise, O.; Di Mauro, M.; Barili, F.; Geskes, G.; Vizzardi, E.; Rycus, P.T.; Muellenbach, R.; Mueller, T.; et al. Neurologic Injury in Adults Supported With Veno-Venous Extracorporeal Membrane Oxygenation for Respiratory Failure: Findings From the Extracorporeal Life Support Organization Database. Crit. Care Med. 2017, 45, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Rastan, A.J.; Dege, A.; Mohr, M.; Doll, N.; Falk, V.; Walther, T.; Mohr, F.W. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. J. Thorac. Cardiovasc. Surg. 2010, 139, 302–311.e1. [Google Scholar] [CrossRef] [Green Version]
- Makdisi, G.; Wang, I.W. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J. Thorac. Dis. 2015, 7, E166–E176. [Google Scholar] [CrossRef] [Green Version]
- Raets, M.M.; Dudink, J.; Ijsselstijn, H.; van Heijst, A.F.; Lequin, M.H.; Houmes, R.J.; Wildschut, E.D.; Reiss, I.K.; Govaert, P.; Tibboel, D. Brain injury associated with neonatal extracorporeal membrane oxygenation in the Netherlands: A nationwide evaluation spanning two decades. Pediatr. Crit. Care Med. 2013, 14, 884–892. [Google Scholar] [CrossRef]
- Cho, S.M.; Geocadin, R.G.; Caturegli, G.; Chan, V.; White, B.; Dodd, O.J.; Kim, B.S.; Sussman, M.; Choi, C.W.; Whitman, G.; et al. Understanding Characteristics of Acute Brain Injury in Adult Extracorporeal Membrane Oxygenation: An Autopsy Study. Crit. Care Med. 2020, 48, e532–e536. [Google Scholar] [CrossRef]
- Caturegli, G.; Cho, S.M.; White, B.; Chen, L.L. Acute Brain Injury in Infant Venoarterial Extracorporeal Membrane Oxygenation: An Autopsy Study. Pediatr. Crit. Care Med. 2021, 22, 297–302. [Google Scholar] [CrossRef]
- Khan, I.; Rehan, M.; Parikh, G.; Zammit, C.; Badjatia, N.; Herr, D.; Kon, Z.; Hogue, C.; Mazzeffi, M. Regional Cerebral Oximetry as an Indicator of Acute Brain Injury in Adults Undergoing Veno-Arterial Extracorporeal Membrane Oxygenation-A Prospective Pilot Study. Front. Neurol. 2018, 9, 993. [Google Scholar] [CrossRef] [Green Version]
- Omar, H.R.; Mirsaeidi, M.; Mangar, D.; Camporesi, E.M. Duration of ECMO Is an Independent Predictor of Intracranial Hemorrhage Occurring During ECMO Support. ASAIO J. 2016, 62, 634–636. [Google Scholar] [CrossRef] [PubMed]
- Fletcher-Sandersjöö, A.; Bartek, J., Jr.; Thelin, E.P.; Eriksson, A.; Elmi-Terander, A.; Broman, M.; Bellander, B.M. Predictors of intracranial hemorrhage in adult patients on extracorporeal membrane oxygenation: An observational cohort study. J. Intensive Care 2017, 5, 27. [Google Scholar] [CrossRef]
- Lockie, C.J.A.; Gillon, S.A.; Barrett, N.A.; Taylor, D.; Mazumder, A.; Paramesh, K.; Rowland, K.; Daly, K.; Camporota, L.; Meadows, C.I.S.; et al. Severe Respiratory Failure, Extracorporeal Membrane Oxygenation, and Intracranial Hemorrhage. Crit. Care Med. 2017, 45, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
- Mazzeffi, M.; Kon, Z.; Menaker, J.; Johnson, D.M.; Parise, O.; Gelsomino, S.; Lorusso, R.; Herr, D. Large Dual-Lumen Extracorporeal Membrane Oxygenation Cannulas Are Associated with More Intracranial Hemorrhage. ASAIO J. 2019, 65, 674–677. [Google Scholar] [CrossRef] [PubMed]
- Mazzeffi, M.; Kon, Z.; Sanchez, P.; Herr, D. Impact of acute liver failure on mortality during adult ECLS. Intensive Care Med. 2016, 42, 299–300. [Google Scholar] [CrossRef]
- Cho, S.M.; Lee, T.; Starling, R.C.; Thompson, N.R.; Uchino, K. The Impact of Infection and Elevated INR in LVAD-Associated Intracranial Hemorrhage: A Case-Crossover Study. ASAIO J. 2019, 65, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Buletko, A.B.; Matthew, J.; Cho, S.M. Bloodstream infection is associated with subarachnoid hemorrhage and infectious intracranial aneurysm in left ventricular assist device. Perfusion 2020, 35, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Farhat, A.; Morriss, M.C.; Tweed, J.; Li, X.; Huet, B.; Thiagarajan, R.R.; Raman, L. Cerebral Hemodynamic Profile in Ischemic and Hemorrhagic Brain Injury Acquired During Pediatric Extracorporeal Membrane Oxygenation. Pediatr. Crit. Care Med. 2020, 21, 879–885. [Google Scholar] [CrossRef]
- Le Guennec, L.; Cholet, C.; Huang, F.; Schmidt, M.; Bréchot, N.; Hékimian, G.; Besset, S.; Lebreton, G.; Nieszkowska, A.; Leprince, P.; et al. Ischemic and hemorrhagic brain injury during venoarterial–extracorporeal membrane oxygenation. Ann. Intensive Care 2018, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shou, B.L.; Ong, C.S.; Zhou, A.L.; Al-Kawaz, M.N.; Etchill, E.; Giuliano, K.; Dong, J.; Bush, E.; Kim, B.S.; Choi, C.W.; et al. Arterial Carbon Dioxide and Acute Brain Injury in Venoarterial Extracorporeal Membrane Oxygenation. ASAIO J. 2022, 68, 1501. [Google Scholar] [CrossRef]
- Luyt, C.E.; Bréchot, N.; Demondion, P.; Jovanovic, T.; Hékimian, G.; Lebreton, G.; Nieszkowska, A.; Schmidt, M.; Trouillet, J.L.; Leprince, P.; et al. Brain injury during venovenous extracorporeal membrane oxygenation. Intensive Care Med. 2016, 42, 897–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, D.M.; Rabinstein, A.A. Neurologic Complications of Extracorporeal Membrane Oxygenation. J. Clin. Neurol. 2015, 11, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Rajsic, S.; Breitkopf, R.; Treml, B.; Jadzic, D.; Oberleitner, C.; Oezpeker, U.C.; Innerhofer, N.; Bukumiric, Z. Association of aPTT-Guided Anticoagulation Monitoring with Thromboembolic Events in Patients Receiving V-A ECMO Support: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 3224. [Google Scholar] [CrossRef]
- He, Y.; Ying, J.; Tang, J.; Zhou, R.; Qu, H.; Qu, Y.; Mu, D. Neonatal Arterial Ischaemic Stroke: Advances in Pathologic Neural Death, Diagnosis, Treatment, and Prognosis. Curr. Neuropharmacol. 2022, 20, 2248–2266. [Google Scholar] [CrossRef]
- Lee, K.J.; Jung, K.H.; Byun, J.I.; Kim, J.M.; Roh, J.K. Infarct pattern and clinical outcome in acute ischemic stroke following middle cerebral artery occlusion. Cerebrovasc. Dis. 2014, 38, 31–38. [Google Scholar] [CrossRef]
- Clair, M.P.; Rambaud, J.; Flahault, A.; Guedj, R.; Guilbert, J.; Guellec, I.; Durandy, A.; Demoulin, M.; Jean, S.; Mitanchez, D.; et al. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation. PLoS ONE 2017, 12, e0172991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.M.; Farrokh, S.; Whitman, G.; Bleck, T.P.; Geocadin, R.G. Neurocritical Care for Extracorporeal Membrane Oxygenation Patients. Crit. Care Med. 2019, 47, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- de Waha, S.; Schoene, K.; Fuernau, G.; Desch, S.; Eitel, I.; Pöss, J.; Meyer-Saraei, R.; Eitel, C.; Tilz, R.; Schuler, G.; et al. Prognostic impact of atrial fibrillation in cardiogenic shock complicating acute myocardial infarction: A substudy of the IABP-SHOCK II trial. Clin. Res. Cardiol. 2018, 107, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Omar, H.R.; Mirsaeidi, M.; Socias, S.; Sprenker, C.; Caldeira, C.; Camporesi, E.M.; Mangar, D. Plasma Free Hemoglobin Is an Independent Predictor of Mortality among Patients on Extracorporeal Membrane Oxygenation Support. PLoS ONE 2015, 10, e0124034. [Google Scholar] [CrossRef]
- Chiarini, G.; Cho, S.M.; Whitman, G.; Rasulo, F.; Lorusso, R. Brain Injury in Extracorporeal Membrane Oxygenation: A Multidisciplinary Approach. Semin. Neurol. 2021, 41, 422–436. [Google Scholar] [CrossRef]
- Johnson, T.P.; Nath, A. Neurological syndromes driven by postinfectious processes or unrecognized persistent infections. Curr. Opin. Neurol. 2018, 31, 318–324. [Google Scholar] [CrossRef]
- Slinko, S.; Caspersen, C.; Ratner, V.; Kim, J.J.; Alexandrov, P.; Polin, R.; Ten, V.S. Systemic hyperthermia induces ischemic brain injury in neonatal mice with ligated carotid artery and jugular vein. Pediatr. Res. 2007, 62, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Sansevere, A.J.; DiBacco, M.L.; Akhondi-Asl, A.; LaRovere, K.; Loddenkemper, T.; Rivkin, M.J.; Thiagarajan, R.R.; Pearl, P.L.; Libenson, M.H.; Tasker, R.C. EEG features of brain injury during extracorporeal membrane oxygenation in children. Neurology 2020, 95, e1372–e1380. [Google Scholar] [CrossRef]
- Lorusso, R.; Belliato, M.; Mazzeffi, M.; Di Mauro, M.; Taccone, F.S.; Parise, O.; Albanawi, A.; Nandwani, V.; McCarthy, P.; Kon, Z.; et al. Neurological complications during veno-venous extracorporeal membrane oxygenation: Does the configuration matter? A retrospective analysis of the ELSO database. Crit. Care 2021, 25, 107. [Google Scholar] [CrossRef]
- Abend, N.S.; Arndt, D.H.; Carpenter, J.L.; Chapman, K.E.; Cornett, K.M.; Gallentine, W.B.; Giza, C.C.; Goldstein, J.L.; Hahn, C.D.; Lerner, J.T.; et al. Electrographic seizures in pediatric ICU patients: Cohort study of risk factors and mortality. Neurology 2013, 81, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Payne, E.T.; Zhao, X.Y.; Frndova, H.; McBain, K.; Sharma, R.; Hutchison, J.S.; Hahn, C.D. Seizure burden is independently associated with short term outcome in critically ill children. Brain 2014, 137, 1429–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.M.; Ziai, W.; Mayasi, Y.; Gusdon, A.M.; Creed, J.; Sharrock, M.; Stephens, R.S.; Choi, C.W.; Ritzl, E.K.; Suarez, J.; et al. Noninvasive Neurological Monitoring in Extracorporeal Membrane Oxygenation. ASAIO J. 2020, 66, 388–393. [Google Scholar] [CrossRef]
- Lin, J.J.; Banwell, B.L.; Berg, R.A.; Dlugos, D.J.; Ichord, R.N.; Kilbaugh, T.J.; Kirsch, R.E.; Kirschen, M.P.; Licht, D.J.; Massey, S.L.; et al. Electrographic Seizures in Children and Neonates Undergoing Extracorporeal Membrane Oxygenation. Pediatr. Crit. Care Med. 2017, 18, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piantino, J.A.; Wainwright, M.S.; Grimason, M.; Smith, C.M.; Hussain, E.; Byron, D.; Chin, A.; Backer, C.; Reynolds, M.; Goldstein, J. Nonconvulsive seizures are common in children treated with extracorporeal cardiac life support. Pediatr. Crit. Care Med. 2013, 14, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Illum, B.; Odish, M.; Minokadeh, A.; Yi, C.; Owens, R.L.; Pollema, T.; LaBuzetta, J.N. Evaluation, Treatment, and Impact of Neurologic Injury in Adult Patients on Extracorporeal Membrane Oxygenation: A Review. Curr. Treat. Options Neurol. 2021, 23, 15. [Google Scholar] [CrossRef] [PubMed]
- Bauer Huang, S.L.; Said, A.S.; Smyser, C.D.; Lin, J.C.; Guilliams, K.P.; Guerriero, R.M. Seizures Are Associated With Brain Injury in Infants Undergoing Extracorporeal Membrane Oxygenation. J. Child. Neurol. 2021, 36, 230–236. [Google Scholar] [CrossRef]
- Cook, R.J.; Rau, S.M.; Lester-Pelham, S.G.; Vesper, T.; Peterson, Y.; Adamowski, T.; Sturza, J.; Silverstein, F.S.; Shellhaas, R.A. Electrographic Seizures and Brain Injury in Children Requiring Extracorporeal Membrane Oxygenation. Pediatr. Neurol. 2020, 108, 77–85. [Google Scholar] [CrossRef]
- Sinnah, F.; Dalloz, M.A.; Magalhaes, E.; Wanono, R.; Neuville, M.; Smonig, R.; Radjou, A.; Mourvillier, B.; Bouadma, L.; Timsit, J.F.; et al. Early Electroencephalography Findings in Cardiogenic Shock Patients Treated by Venoarterial Extracorporeal Membrane Oxygenation. Crit. Care Med. 2018, 46, e389–e394. [Google Scholar] [CrossRef]
- Patel, A.K.; Biagas, K.V.; Clark, E.C.; Traube, C. Delirium in the Pediatric Cardiac Extracorporeal Membrane Oxygenation Patient Population: A Case Series. Pediatr. Crit. Care Med. 2017, 18, e621–e624. [Google Scholar] [CrossRef]
- Pinho, J.; Amorim, J.M.; Araújo, J.M.; Vilaça, H.; Ribeiro, M.; Pereira, J.; Ferreira, C. Cerebral gas embolism associated with central venous catheter: Systematic review. J. Neurol. Sci. 2016, 362, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Yuliati, A.; Federman, M.; Rao, L.M.; Chen, L.; Sim, M.S.; Matsumoto, J.H. Prevalence of Seizures and Risk Factors for Mortality in a Continuous Cohort of Pediatric Extracorporeal Membrane Oxygenation Patients. Pediatr. Crit. Care Med. 2020, 21, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Shoskes, A.; Migdady, I.; Rice, C.; Hassett, C.; Deshpande, A.; Price, C.; Hernandez, A.V.; Cho, S.M. Brain Injury Is More Common in Venoarterial Extracorporeal Membrane Oxygenation Than Venovenous Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-Analysis. Crit. Care Med. 2020, 48, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Mateen, F.J.; Muralidharan, R.; Shinohara, R.T.; Parisi, J.E.; Schears, G.J.; Wijdicks, E.F. Neurological injury in adults treated with extracorporeal membrane oxygenation. Arch. Neurol. 2011, 68, 1543–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, N.M.; Rycus, P.T.; Zwischenberger, J.B.; Bartlett, R.H.; Undar, A. Extracorporeal Life Support Registry Report 2008: Neonatal and pediatric cardiac cases. ASAIO J. 2009, 55, 111–116. [Google Scholar] [CrossRef]
- Russell, J.A.; Epstein, L.G.; Greer, D.M.; Kirschen, M.; Rubin, M.A.; Lewis, A. Brain death, the determination of brain death, and member guidance for brain death accommodation requests: AAN position statement. Neurology 2019, 92, 228–232. [Google Scholar] [CrossRef] [Green Version]
- Bein, T.; Müller, T.; Citerio, G. Determination of brain death under extracorporeal life support. Intensive Care Med. 2019, 45, 364–366. [Google Scholar] [CrossRef]
- Thomas, E.O.; Manara, A.; Dineen, R.A.; Mortimer, A.; Aziz, O.; Dean, P.; Elliott, P.; Summers, D.M.; Whitfield, P.C.; Hutchinson, P.J.; et al. The use of cerebral computed tomographic angiography as an ancillary investigation to support a clinical diagnosis of death using neurological criteria: A consensus guideline. Anaesthesia 2023, 78, 330–336. [Google Scholar] [CrossRef]
- Bembea, M.M.; Savage, W.; Strouse, J.J.; Schwartz, J.M.; Graham, E.; Thompson, C.B.; Everett, A. Glial fibrillary acidic protein as a brain injury biomarker in children undergoing extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. 2011, 12, 572–579. [Google Scholar] [CrossRef]
- Lie, S.A.; Hwang, N.C. Challenges of Brain Death and Apnea Testing in Adult Patients on Extracorporeal Membrane Oxygenation-A Review. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2266–2272. [Google Scholar] [CrossRef]
- Rajsic, S.; Breitkopf, R.; Oezpeker, U.C.; Bukumirić, Z.; Dobesberger, M.; Treml, B. The Role of Excessive Anticoagulation and Missing Hyperinflammation in ECMO-Associated Bleeding. J. Clin. Med. 2022, 11, 2314. [Google Scholar] [CrossRef]
- Datzmann, T.; Träger, K. Extracorporeal membrane oxygenation and cytokine adsorption. J. Thorac. Dis. 2018, 10, S653–S660. [Google Scholar] [CrossRef]
- Wendel, H.P.; Scheule, A.M.; Eckstein, F.S.; Ziemer, G. Haemocompatibility of paediatric membrane oxygenators with heparin-coated surfaces. Perfusion 1999, 14, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef] [Green Version]
- Rajsic, S.; Breitkopf, R.; Jadzic, D.; Popovic Krneta, M.; Tauber, H.; Treml, B. Anticoagulation Strategies during Extracorporeal Membrane Oxygenation: A Narrative Review. J. Clin. Med. 2022, 11, 5147. [Google Scholar] [CrossRef]
- Esper, S.A.; Welsby, I.J.; Subramaniam, K.; John Wallisch, W.; Levy, J.H.; Waters, J.H.; Triulzi, D.J.; Hayanga, J.W.A.; Schears, G.J. Adult extracorporeal membrane oxygenation: An international survey of transfusion and anticoagulation techniques. Vox Sang. 2017, 112, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Hunt, B.J. A critical appraisal of point-of-care coagulation testing in critically ill patients. J. Thromb. Haemost. 2015, 13, 1960–1967. [Google Scholar] [CrossRef] [PubMed]
- Rajsic, S.; Treml, B.; Jadzic, D.; Breitkopf, R.; Oberleitner, C.; Bachler, M.; Bösch, J.; Bukumiric, Z. aPTT-guided anticoagulation monitoring during ECMO support: A systematic review and meta-analysis. J. Crit. Care 2023, 77, 154332. [Google Scholar] [CrossRef]
- Malfertheiner, M.V.; Philipp, A.; Lubnow, M.; Zeman, F.; Enger, T.B.; Bein, T.; Lunz, D.; Schmid, C.; Müller, T.; Lehle, K. Hemostatic Changes During Extracorporeal Membrane Oxygenation: A Prospective Randomized Clinical Trial Comparing Three Different Extracorporeal Membrane Oxygenation Systems. Crit. Care Med. 2016, 44, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Atchison, C.; Widdershins, A.; Chandler, W.L. Causes of platelet loss during extracorporeal life support. Artif. Organs 2023, 47, 160–167. [Google Scholar] [CrossRef]
- Cheung, P.Y.; Sawicki, G.; Salas, E.; Etches, P.C.; Schulz, R.; Radomski, M.W. The mechanisms of platelet dysfunction during extracorporeal membrane oxygenation in critically ill neonates. Crit. Care Med. 2000, 28, 2584–2590. [Google Scholar] [CrossRef]
- Fisser, C.; Reichenbächer, C.; Müller, T.; Schneckenpointner, R.; Malfertheiner, M.V.; Philipp, A.; Foltan, M.; Lunz, D.; Zeman, F.; Lubnow, M. Incidence and Risk Factors for Cannula-Related Venous Thrombosis After Venovenous Extracorporeal Membrane Oxygenation in Adult Patients With Acute Respiratory Failure. Crit. Care Med. 2019, 47, e332–e339. [Google Scholar] [CrossRef] [PubMed]
- Figueroa Villalba, C.A.; McMullan, D.M.; Reed, R.C.; Chandler, W.L. Thrombosis in Extracorporeal Membrane Oxygenation (ECMO) Circuits. ASAIO J. 2022, 68, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.H.; Staudinger, T.; Steiner, M.E. How to manage anticoagulation during extracorporeal membrane oxygenation. Intensive Care Med. 2022, 48, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Abruzzo, A.; Gorantla, V.; Thomas, S.E. Venous thromboembolic events in the setting of extracorporeal membrane oxygenation support in adults: A systematic review. Thromb. Res. 2022, 212, 58–71. [Google Scholar] [CrossRef]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022, 68, 303–310. [Google Scholar] [CrossRef]
- Henderson, N.; Sullivan, J.E.; Myers, J.; Wells, T.; Calhoun, A.; Berkenbosch, J.; Tzanetos, D.T. Use of Thromboelastography to Predict Thrombotic Complications in Pediatric and Neonatal Extracorporeal Membranous Oxygenation. J. Extra Corpor. Technol. 2018, 50, 149–154. [Google Scholar] [CrossRef]
- Cartwright, B.; Bruce, H.M.; Kershaw, G.; Cai, N.; Othman, J.; Gattas, D.; Robson, J.L.; Hayes, S.; Alicajic, H.; Hines, A.; et al. Hemostasis, coagulation and thrombin in venoarterial and venovenous extracorporeal membrane oxygenation: The HECTIC study. Sci. Rep. 2021, 11, 7975. [Google Scholar] [CrossRef]
- Ortega, S.B.; Pandiyan, P.; Windsor, J.; Torres, V.O.; Selvaraj, U.M.; Lee, A.; Morriss, M.; Tian, F.; Raman, L.; Stowe, A.M. A Pilot Study Identifying Brain-Targeting Adaptive Immunity in Pediatric Extracorporeal Membrane Oxygenation Patients With Acquired Brain Injury. Crit. Care Med. 2019, 47, e206–e213. [Google Scholar] [CrossRef]
- Nilsson, B.; Ekdahl, K.N.; Mollnes, T.E.; Lambris, J.D. The role of complement in biomaterial-induced inflammation. Mol. Immunol. 2007, 44, 82–94. [Google Scholar] [CrossRef]
- Dunkelberger, J.R.; Song, W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graulich, J.; Walzog, B.; Marcinkowski, M.; Bauer, K.; Kössel, H.; Fuhrmann, G.; Bührer, C.; Gaehtgens, P.; Versmold, H.T. Leukocyte and endothelial activation in a laboratory model of extracorporeal membrane oxygenation (ECMO). Pediatr. Res. 2000, 48, 679–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mc, I.R.B.; Timpa, J.G.; Kurundkar, A.R.; Holt, D.W.; Kelly, D.R.; Hartman, Y.E.; Neel, M.L.; Karnatak, R.K.; Schelonka, R.L.; Anantharamaiah, G.M.; et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab. Investig. 2010, 90, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Ricklin, D.; Lambris, J.D. Complement in immune and inflammatory disorders: Pathophysiological mechanisms. J. Immunol. 2013, 190, 3831–3838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePuydt, L.E.; Schuit, K.E.; Smith, S.D. Effect of extracorporeal membrane oxygenation on neutrophil function in neonates. Crit. Care Med. 1993, 21, 1324–1327. [Google Scholar] [CrossRef] [PubMed]
- Fortenberry, J.D.; Bhardwaj, V.; Niemer, P.; Cornish, J.D.; Wright, J.A.; Bland, L. Neutrophil and cytokine activation with neonatal extracorporeal membrane oxygenation. J. Pediatr. 1996, 128, 670–678. [Google Scholar] [CrossRef]
- Gerszten, R.E.; Garcia-Zepeda, E.A.; Lim, Y.C.; Yoshida, M.; Ding, H.A.; Gimbrone, M.A., Jr.; Luster, A.D.; Luscinskas, F.W.; Rosenzweig, A. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999, 398, 718–723. [Google Scholar] [CrossRef]
- Shi, J.; Chen, Q.; Yu, W.; Shen, J.; Gong, J.; He, C.; Hu, Y.; Zhang, J.; Gao, T.; Xi, F.; et al. Continuous renal replacement therapy reduces the systemic and pulmonary inflammation induced by venovenous extracorporeal membrane oxygenation in a porcine model. Artif. Organs 2014, 38, 215–223. [Google Scholar] [CrossRef]
- Risnes, I.; Wagner, K.; Ueland, T.; Mollnes, T.; Aukrust, P.; Svennevig, J. Interleukin-6 may predict survival in extracorporeal membrane oxygenation treatment. Perfusion 2008, 23, 173–178. [Google Scholar] [CrossRef]
- Frerou, A.; Lesouhaitier, M.; Gregoire, M.; Uhel, F.; Gacouin, A.; Reizine, F.; Moreau, C.; Loirat, A.; Maamar, A.; Nesseler, N.; et al. Venoarterial extracorporeal membrane oxygenation induces early immune alterations. Crit. Care 2021, 25, 9. [Google Scholar] [CrossRef]
- Spaan, A.N.; Surewaard, B.G.; Nijland, R.; van Strijp, J.A. Neutrophils versus Staphylococcus aureus: A biological tug of war. Annu. Rev. Microbiol. 2013, 67, 629–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhel, F.; Azzaoui, I.; Grégoire, M.; Pangault, C.; Dulong, J.; Tadié, J.M.; Gacouin, A.; Camus, C.; Cynober, L.; Fest, T.; et al. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis. Am. J. Respir. Crit. Care Med. 2017, 196, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Siegel, P.M.; Orlean, L.; Bojti, I.; Kaier, K.; Witsch, T.; Esser, J.S.; Trummer, G.; Moser, M.; Peter, K.; Bode, C.; et al. Monocyte Dysfunction Detected by the Designed Ankyrin Repeat Protein F7 Predicts Mortality in Patients Receiving Veno-Arterial Extracorporeal Membrane Oxygenation. Front. Cardiovasc. Med. 2021, 8, 689218. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Brodie, D.; Chen, Y.S.; Fan, E.; Henriques, J.P.S.; Hodgson, C.; Lepper, P.M.; Leprince, P.; Maekawa, K.; Muller, T.; et al. The ICM research agenda on extracorporeal life support. Intensive Care Med. 2017, 43, 1306–1318. [Google Scholar] [CrossRef]
- Yu, S.H.; Mao, D.H.; Ju, R.; Fu, Y.Y.; Zhang, L.B.; Yue, G. ECMO in neonates: The association between cerebral hemodynamics with neurological function. Front. Pediatr. 2022, 10, 908861. [Google Scholar] [CrossRef]
- Alwardt, C.M.; Patel, B.M.; Lowell, A.; Dobberpuhl, J.; Riley, J.B.; DeValeria, P.A. Regional perfusion during venoarterial extracorporeal membrane oxygenation: A case report and educational modules on the concept of dual circulations. J. Extra Corpor. Technol. 2013, 45, 187–194. [Google Scholar] [CrossRef]
- Cove, M.E. Disrupting differential hypoxia in peripheral veno-arterial extracorporeal membrane oxygenation. Crit. Care 2015, 19, 280. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.C.; Callaghan, F.M.; Forrest, P.; Bannon, P.G.; Grieve, S.M. Flow mixing during peripheral veno-arterial extra corporeal membrane oxygenation—A simulation study. J. Biomech. 2017, 55, 64–70. [Google Scholar] [CrossRef]
- Nezami, F.R.; Khodaee, F.; Edelman, E.R.; Keller, S.P. A Computational Fluid Dynamics Study of the Extracorporeal Membrane Oxygenation-Failing Heart Circulation. ASAIO J. 2021, 67, 276–283. [Google Scholar] [CrossRef]
- Lohrer, R.M.; Bejar, R.F.; Simko, A.J.; Moulton, S.L.; Cornish, J.D. Internal carotid artery blood flow velocities before, during, and after extracorporeal membrane oxygenation. Am. J. Dis. Child. 1992, 146, 201–207. [Google Scholar] [CrossRef]
- O’Brien, N.F.; Hall, M.W. Extracorporeal membrane oxygenation and cerebral blood flow velocity in children. Pediatr. Crit. Care Med. 2013, 14, e126–e134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulson, O.B.; Strandgaard, S.; Edvinsson, L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 1990, 2, 161–192. [Google Scholar] [PubMed]
- Brady, K.M.; Mytar, J.O.; Lee, J.K.; Cameron, D.E.; Vricella, L.A.; Thompson, W.R.; Hogue, C.W.; Easley, R.B. Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery. Stroke 2010, 41, 1957–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.; Morriss, M.C.; Chalak, L.; Venkataraman, R.; Ahn, C.; Liu, H.; Raman, L. Impairment of cerebral autoregulation in pediatric extracorporeal membrane oxygenation associated with neuroimaging abnormalities. Neurophotonics 2017, 4, 041410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmore, M.M.; Stone, B.S.; Shepard, J.A.; Czosnyka, M.; Easley, R.B.; Brady, K.M. Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant. J. Perinatol. 2011, 31, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Shou, B.L.; Wilcox, C.; Florissi, I.; Kalra, A.; Caturegli, G.; Zhang, L.Q.; Bush, E.; Kim, B.; Keller, S.P.; Whitman, G.J.R.; et al. Early Low Pulse Pressure in VA–eCMO Is Associated with Acute Brain Injury. Neurocrit. Care 2022, 38, 612–621. [Google Scholar] [CrossRef]
- O’Neil, M.P.; Fleming, J.C.; Badhwar, A.; Guo, L.R. Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: Microcirculatory and systemic effects. Ann. Thorac. Surg. 2012, 94, 2046–2053. [Google Scholar] [CrossRef]
- Wang, S.; Force, M.; Moroi, M.K.; Patel, S.; Kunselman, A.R.; Ündar, A. Effects of Pulsatile Control Algorithms for Diagonal Pump on Hemodynamic Performance and Hemolysis. Artif. Organs 2019, 43, 60–75. [Google Scholar] [CrossRef]
- Chiu, J.J.; Chien, S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol. Rev. 2011, 91, 327–387. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhu, S.; Zeng, J.; Yu, Z.; Meng, F.; Tang, Z.; Zhu, P. Arterial Pulsatility Augments Microcirculatory Perfusion and Maintains the Endothelial Integrity during Extracorporeal Membrane Oxygenation via hsa_circ_0007367 Upregulation in a Canine Model with Cardiac Arrest. Oxid. Med. Cell Longev. 2022, 2022, 1630918. [Google Scholar] [CrossRef]
- Wollborn, J.; Siemering, S.; Steiger, C.; Buerkle, H.; Goebel, U.; Schick, M.A. Phosphodiesterase-4 inhibition reduces ECLS-induced vascular permeability and improves microcirculation in a rodent model of extracorporeal resuscitation. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H751–H761. [Google Scholar] [CrossRef] [PubMed]
- Purohit, S.N.; Cornwell, W.K., 3rd; Pal, J.D.; Lindenfeld, J.; Ambardekar, A.V. Living Without a Pulse: The Vascular Implications of Continuous-Flow Left Ventricular Assist Devices. Circ. Heart Fail. 2018, 11, e004670. [Google Scholar] [CrossRef] [PubMed]
- Leoni, M.; Szasz, J.; Meier, J.; Gerardo-Giorda, L. Blood flow but not cannula positioning influences the efficacy of Veno-Venous ECMO therapy. Sci. Rep. 2022, 12, 20950. [Google Scholar] [CrossRef]
- Cavayas, Y.A.; Munshi, L.; Del Sorbo, L.; Fan, E. The Early Change in PaCO2 after Extracorporeal Membrane Oxygenation Initiation Is Associated with Neurological Complications. Am. J. Respir. Crit. Care Med. 2020, 201, 1525–1535. [Google Scholar] [CrossRef]
- Tahsili-Fahadan, P.; Farrokh, S.; Geocadin, R.G. Hypothermia and brain inflammation after cardiac arrest. Brain Circ. 2018, 4, 1–13. [Google Scholar] [CrossRef]
- Levy, D.; Desnos, C.; Lebreton, G.; Théry, G.; Pineton de Chambrun, M.; Leprince, P.; Hammoudi, N.; Schmidt, M.; Combes, A.; Hékimian, G. Early Reversal of Right Ventricular Dysfunction after Venovenous Extracorporeal Membrane Oxygenation in Patients with COVID-19 Pneumonia. Am. J. Respir. Crit. Care Med. 2023, 207, 784–787. [Google Scholar] [CrossRef]
- Rao, P.; Ali, H.; Hypes, C.; Natt, B.; Kazui, T.; Khalpey, Z.; Cairns, C.; Mosier, J. Right Ventricular Dysfunction in Acute Respiratory Distress Syndrome. Crit. Care Med. 2018, 46, 67. [Google Scholar] [CrossRef]
- Fletcher-Sandersjöö, A.; Lindblad, C.; Thelin, E.P.; Bartek, J., Jr.; Sallisalmi, M.; Elmi-Terander, A.; Svensson, M.; Bellander, B.M.; Broman, L.M. Serial S100B Sampling Detects Intracranial Lesion Development in Patients on Extracorporeal Membrane Oxygenation. Front. Neurol. 2019, 10, 512. [Google Scholar] [CrossRef] [Green Version]
- Lidegran, M.K.; Mosskin, M.; Ringertz, H.G.; Frenckner, B.P.; Lindén, V.B. Cranial CT for diagnosis of intracranial complications in adult and pediatric patients during ECMO: Clinical benefits in diagnosis and treatment. Acad. Radiol. 2007, 14, 62–71. [Google Scholar] [CrossRef]
- Marinoni, M.; Migliaccio, M.L.; Trapani, S.; Bonizzoli, M.; Gucci, L.; Cianchi, G.; Gallerini, A.; Tadini Buoninsegni, L.; Cramaro, A.; Valente, S.; et al. Cerebral microemboli detected by transcranial doppler in patients treated with extracorporeal membrane oxygenation. Acta Anaesthesiol. Scand. 2016, 60, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, Y.; Chen, X.; Song, Y.; Zhu, L.; Gong, X.; Zhang, H.; Xu, Z. Application of Near-Infrared Spectroscopy to Monitor Perfusion During Extracorporeal Membrane Oxygenation After Pediatric Heart Surgery. Front. Med. 2021, 8, 762731. [Google Scholar] [CrossRef] [PubMed]
- Reuter, J.; Peoc’h, K.; Bouadma, L.; Ruckly, S.; Chicha-Cattoir, V.; Faille, D.; Bourrienne, M.C.; Dupuis, C.; Magalhaes, E.; Tanaka, S.; et al. Neuron-Specific Enolase Levels in Adults Under Venoarterial Extracorporeal Membrane Oxygenation. Crit. Care Explor. 2020, 2, e0239. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.E.; Pandiyan, P.; Liu, M.M.; Williams, M.A.; Everett, A.D.; Mueller, G.P.; Morriss, M.C.; Raman, L.; Carlson, D.; Gatson, J.W. Tau Is Elevated in Pediatric Patients on Extracorporeal Membrane Oxygenation. ASAIO J. 2020, 66, 91–96. [Google Scholar] [CrossRef]
- Bembea, M.M.; Felling, R.; Anton, B.; Salorio, C.F.; Johnston, M.V. Neuromonitoring During Extracorporeal Membrane Oxygenation: A Systematic Review of the Literature. Pediatr. Crit. Care Med. 2015, 16, 558–564. [Google Scholar] [CrossRef]
- Werho, D.K.; Pasquali, S.K.; Yu, S.; Donohue, J.; Annich, G.M.; Thiagarajan, R.R.; Hirsch-Romano, J.C.; Gaies, M.G. Hemorrhagic complications in pediatric cardiac patients on extracorporeal membrane oxygenation: An analysis of the Extracorporeal Life Support Organization Registry. Pediatr. Crit. Care Med. 2015, 16, 276–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, H.J.; Garcia-Filion, P.; Holubkov, R.; Moler, F.W.; Shanley, T.; Heidemann, S.; Meert, K.; Berg, R.A.; Berger, J.; Carcillo, J.; et al. Association of bleeding and thrombosis with outcome in extracorporeal life support. Pediatr. Crit. Care Med. 2015, 16, 167–174. [Google Scholar] [CrossRef]
- Meshulami, N.; Green, R.; Kaushik, S. Anti-Xa testing for pediatric and neonatal patients on extracorporeal membrane oxygenation. Perfusion 2023. ahead of print. [Google Scholar] [CrossRef]
- Figueroa Villalba, C.A.; Brogan, T.V.; McMullan, D.M.; Yalon, L.; Jordan, D.I.; Chandler, W.L. Conversion From Activated Clotting Time to Anti-Xa Heparin Activity Assay for Heparin Monitoring During Extracorporeal Membrane Oxygenation. Crit. Care Med. 2020, 48, e1179–e1184. [Google Scholar] [CrossRef]
- Panigada, M.; E Iapichino, G.; Brioni, M.; Panarello, G.; Protti, A.; Grasselli, G.; Occhipinti, G.; Novembrino, C.; Consonni, D.; Arcadipane, A.; et al. Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: A safety and feasibility pilot study. Ann. Intensive Care 2018, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Tagin, M.A.; Woolcott, C.G.; Vincer, M.J.; Whyte, R.K.; Stinson, D.A. Hypothermia for neonatal hypoxic ischemic encephalopathy: An updated systematic review and meta-analysis. Arch. Pediatr. Adolesc. Med. 2012, 166, 558–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, S.; MacLaren, G.; Clark, J.; Paul, E.; Best, D.; Delzoppo, C.; d’Udekem, Y.; Butt, W. Safety of therapeutic hypothermia in children on veno-arterial extracorporeal membrane oxygenation after cardiac surgery. Cardiol. Young 2015, 25, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Al-Kawaz, M.; Shou, B.; Prokupets, R.; Whitman, G.; Geocadin, R.; Cho, S.M. Mild hypothermia and neurologic outcomes in patients undergoing venoarterial extracorporeal membrane oxygenation. J. Card. Surg. 2022, 37, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Cashen, K.; Reeder, R.W.; Shanti, C.; Dalton, H.J.; Dean, J.M.; Meert, K.L. Is therapeutic hypothermia during neonatal extracorporeal membrane oxygenation associated with intracranial hemorrhage? Perfusion 2018, 33, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Ying, J.; Qiu, X.; Yu, L.; Yue, Y.; Liu, Q.; Shi, J.; Li, X.; Qu, Y.; Mu, D. A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy. Chin. Med. J. 2022, 135, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.J.; Chatfield, M.D.; Rycus, P.; MacLaren, G. Extracorporeal Membrane Oxygenation for Group B Streptococcal Sepsis in Neonates: A Retrospective Study of the Extracorporeal Life Support Organization Registry. Pediatr. Crit. Care Med. 2020, 21, E505–E512. [Google Scholar] [CrossRef]
- Napp, L.C.; Ziegeler, S.; Kindgen-Milles, D. Rationale of Hemoadsorption during Extracorporeal Membrane Oxygenation Support. Blood Purif. 2019, 48, 203–214. [Google Scholar] [CrossRef]
- Soltesz, A.; Molnar, Z.A.; Szakal-Toth, Z.; Tamaska, E.; Katona, H.; Fabry, S.; Csikos, G.; Berzsenyi, V.; Tamas, C.; Edes, I.F.; et al. Influence of Venoarterial Extracorporeal Membrane Oxygenation Integrated Hemoadsorption on the Early Reversal of Multiorgan and Microcirculatory Dysfunction and Outcome of Refractory Cardiogenic Shock. J. Clin. Med. 2022, 11, 6517. [Google Scholar] [CrossRef]
Patterns Of ABI | Incidence | Intracranial Location | Timing |
---|---|---|---|
ICH | VV: 2–18%, VA: 4–19% | frontal neocortex, basal ganglia, cerebellum, pons | shortly after cannulation to 7 days cannulation |
Ischemic Stroke | VV: 1.7–2% VA: 3.6–5.3% | frontal neocortex, basal ganglia anterior hypophysis cerebellum | second week of ECMO support |
Seizures | VA: 2–6% VV: 1.3% | MCA territory | 3.2 h of the initiation of cEEG monitoring |
HIBI | VV: 1% VA: 13% | cerebral cortex, cerebellum brain stem, basal ganglia | peri-ECMO cannulation period |
Brain Death | VV: 2% VA: 7.9% | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, B.; Ying, J.; Mu, D. Subtypes and Mechanistic Advances of Extracorporeal Membrane Oxygenation-Related Acute Brain Injury. Brain Sci. 2023, 13, 1165. https://doi.org/10.3390/brainsci13081165
Deng B, Ying J, Mu D. Subtypes and Mechanistic Advances of Extracorporeal Membrane Oxygenation-Related Acute Brain Injury. Brain Sciences. 2023; 13(8):1165. https://doi.org/10.3390/brainsci13081165
Chicago/Turabian StyleDeng, Bixin, Junjie Ying, and Dezhi Mu. 2023. "Subtypes and Mechanistic Advances of Extracorporeal Membrane Oxygenation-Related Acute Brain Injury" Brain Sciences 13, no. 8: 1165. https://doi.org/10.3390/brainsci13081165
APA StyleDeng, B., Ying, J., & Mu, D. (2023). Subtypes and Mechanistic Advances of Extracorporeal Membrane Oxygenation-Related Acute Brain Injury. Brain Sciences, 13(8), 1165. https://doi.org/10.3390/brainsci13081165