fNIRS Assessment during Cognitive Tasks in Elderly Patients with Depressive Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Depression Symptoms
2.3. Experimental Design
2.4. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyness, J.M.; Caine, E.D.; King, D.A.; Cox, C.; Yoediono, Z. Psychiatric disorders in older primary care patients. J. Gen. Intern. Med. 1999, 14, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Unutzer, J. Diagnosis and treatment of older adults with depression in primary care. Biol. Psychiatry 2002, 52, 285–292. [Google Scholar] [CrossRef]
- Ng, A.; Tam, W.W.; Zhang, M.W.; Ho, C.S.; Husain, S.F.; McIntyre, R.S.; Ho, R.C. IL-1β, IL-6, TNF-α and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis. Sci. Rep. 2018, 8, 12050. [Google Scholar] [CrossRef]
- Vu, T.T.M.; Le, T.V.; Dang, A.K.; Nguyen, L.H.; Nguyen, B.C.; Tran, B.X.; Latkin, C.A.; Ho, C.S.H.; Ho, R.C.M. Socioeconomic Vulnerability to Depressive Symptoms in Patients with Chronic Hepatitis B. Int. J. Environ. Res. Public Health 2019, 16, 255. [Google Scholar] [CrossRef] [Green Version]
- Vu, H.T.T.; Nguyen, T.X.; Nguyen, H.T.T.; Le, T.A.; Nguyen, T.N.; Nguyen, A.T.; Nguyen, T.T.H.; Nguyen, H.L.; Nguyen, C.T.; Tran, B.X.; et al. Depressive symptoms among elderly diabetic patients in Vietnam. Diabetes Metab. Syndr. Obes. 2018, 11, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Grabovich, A.; Lu, N.; Tang, W.; Tu, X.; Lyness, J.M. Outcomes of subsyndromal depression in older primary care patients. Am. J. Geriatr. Psychiatry 2010, 18, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Remick, R.A. Diagnosis and management of depression in primary care: A clinical update and review. Cmaj 2002, 167, 1253–1260. [Google Scholar]
- Oxman, T.E.; Sengupta, A. Treatment of minor depression. Am. J. Geriatr. Psychiatry 2002, 10, 256–264. [Google Scholar] [CrossRef]
- Bruce, M.L.; Ten Have, T.R.; Reynolds, C.F., 3rd; Katz, I.I.; Schulberg, H.C.; Mulsant, B.H.; Brown, G.K.; McAvay, G.J.; Pearson, J.L.; Alexopoulos, G.S. Reducing suicidal ideation and depressive symptoms in depressed older primary care patients: A randomized controlled trial. JAMA 2004, 291, 1081–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, S.F.; Tang, T.-B.; Yu, R.; Tam, W.W.; Tran, B.; Quek, T.T.; Hwang, S.-H.; Chang, C.W.; Ho, C.S.; Ho, R.C. Cortical haemodynamic response measured by functional near infrared spectroscopy during a verbal fluency task in patients with major depression and borderline personality disorder. eBioMedicine 2020, 51, 102586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, S.F.; Yu, R.; Tang, T.-B.; Tam, W.W.; Tran, B.; Quek, T.T.; Hwang, S.-H.; Chang, C.W.; Ho, C.S.; Ho, R.C. Validating a functional near-infrared spectroscopy diagnostic paradigm for Major Depressive Disorder. Sci. Rep. 2020, 10, 9740. [Google Scholar] [CrossRef] [PubMed]
- Bendall, R.C.A.; Eachus, P.; Thompson, C. A Brief Review of Research Using Near-Infrared Spectroscopy to Measure Activation of the Prefrontal Cortex during Emotional Processing: The Importance of Experimental Design. Front. Hum. Neurosci. 2016, 10, 529. [Google Scholar] [CrossRef] [Green Version]
- Mehagnoul-Schipper, D.J.; van der Kallen, B.F.; Colier, W.N.; van der Sluijs, M.C.; van Erning, L.J.; Thijssen, H.O.; Oeseburg, B.; Hoefnagels, W.H.; Jansen, R.W. Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum. Brain Mapp. 2002, 16, 14–23. [Google Scholar] [CrossRef]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dong, W.; Dang, W.; Quan, W.; Tian, J.; Chen, R.; Zhan, S.; Yu, X. Near-infrared spectroscopy for examination of prefrontal activation during cognitive tasks in patients with major depressive disorder: A meta-analysis of observational studies. Psychiatry Clin. Neurosci. 2015, 69, 22–33. [Google Scholar] [CrossRef]
- Kurlowicz, L. The geriatric depression scale (GDS). Insight 2000, 25, 18–19. [Google Scholar] [PubMed] [Green Version]
- Bae, J.N.; Cho, M.J. Development of the Korean version of the Geriatric Depression Scale and its short form among elderly psychiatric patients. J. Psychosom. Res. 2004, 57, 297–305. [Google Scholar] [CrossRef]
- Burke, W.J.; Roccaforte, W.H.; Wengel, S.P. The short form of the Geriatric Depression Scale: A comparison with the 30-item form. J. Geriatr. Psychiatry Neurol 1991, 4, 173–178. [Google Scholar] [CrossRef]
- Watson, L.C.; Pignone, M.P. Screening accuracy for late-life depression in primary care: A systematic review. J. Fam. Pract. 2003, 52, 956–964. [Google Scholar]
- Laudisio, A.; Antonelli Incalzi, R.; Gemma, A.; Marzetti, E.; Pozzi, G.; Padua, L.; Bernabei, R.; Zuccala, G. Definition of a Geriatric Depression Scale cutoff based upon quality of life: A population-based study. Int. J. Geriatr. Psychiatry 2018, 33, e58–e64. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, J.; Hwang, G.; Yang, J.; Choi, M.; Bae, H. Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging. IEEE J. Solid-State Circuits 2016, 51, 484–495. [Google Scholar] [CrossRef]
- Schroeder, R.W.; Twumasi-Ankrah, P.; Baade, L.E.; Marshall, P.S. Reliable Digit Span: A systematic review and cross-validation study. Assessment 2012, 19, 21–30. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, Y.W.; Na, D.L. Efficiencies of stroop interference indexes in healthy older adults and dementia patients. Korean J. Clin. Psychol. 2000, 19, 807–818. [Google Scholar]
- Pendleton, M.G.; Heaton, R.K.; Lehman, R.A.; Hulihan, D. Diagnostic utility of the Thurstone Word Fluency Test in neuropsychological evaluations. J. Clin. Neuropsychol. 1982, 4, 307–317. [Google Scholar] [CrossRef]
- Delpy, D.T.; Cope, M.; Zee, P.v.d.; Arridge, S.; Wray, S.; Wyatt, J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 1988, 33, 1433–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, A.; Meek, J.H.; Clemence, M.; Elwell, C.E.; Fallon, P.; Tyszczuk, L.; Cope, M.; Delpy, D.T. Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatr. Res. 1996, 39, 889–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, S.S.; Alexopoulos, G.S. Cognitive deficits in geriatric depression: Clinical correlates and implications for current and future treatment. Psychiatr. Clin. N. Am. 2013, 36, 517–531. [Google Scholar] [CrossRef] [Green Version]
- Potter, G.G.; Kittinger, J.D.; Wagner, H.R.; Steffens, D.C.; Krishnan, K.R. Prefrontal neuropsychological predictors of treatment remission in late-life depression. Neuropsychopharmacology 2004, 29, 2266–2271. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, S.S.; Gunning, F.M.; Murphy, C.F.; Kanellopoulos, D.; Kelly, R.E.; Alexopoulos, G.S. Executive function and short-term remission of geriatric depression: The role of semantic strategy. Am. J. Geriatr. Psychiatry 2011, 19, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drevets, W.C.; Price, J.L.; Furey, M.L. Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Struct. Funct. 2008, 213, 93–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, G.; Okamoto, Y.; Morinobu, S.; Yamawaki, S.; Yokota, N. Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology 2003, 47, 21–26. [Google Scholar] [CrossRef]
- Kimbrell, T.A.; Ketter, T.A.; George, M.S.; Little, J.T.; Benson, B.E.; Willis, M.W.; Herscovitch, P.; Post, R.M. Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol. Psychiatry 2002, 51, 237–252. [Google Scholar] [CrossRef]
- Ho, C.S.H.; Lim, L.J.H.; Lim, A.Q.; Chan, N.H.C.; Tan, R.S.; Lee, S.H.; Ho, R.C.M. Diagnostic and Predictive Applications of Functional Near-Infrared Spectroscopy for Major Depressive Disorder: A Systematic Review. Front. Psychiatry 2020, 11, 378. [Google Scholar] [CrossRef]
- Diener, C.; Kuehner, C.; Brusniak, W.; Ubl, B.; Wessa, M.; Flor, H. A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression. Neuroimage 2012, 61, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Gerton, B.K.; Brown, T.T.; Meyer-Lindenberg, A.; Kohn, P.; Holt, J.L.; Olsen, R.K.; Berman, K.F. Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 2004, 42, 1781–1787. [Google Scholar] [CrossRef]
- Kaneko, H.; Yoshikawa, T.; Nomura, K.; Ito, H.; Yamauchi, H.; Ogura, M.; Honjo, S. Hemodynamic changes in the prefrontal cortex during digit span task: A near-infrared spectroscopy study. Neuropsychobiology 2011, 63, 59–65. [Google Scholar] [CrossRef]
- Melcher, T.; Falkai, P.; Gruber, O. Functional brain abnormalities in psychiatric disorders: Neural mechanisms to detect and resolve cognitive conflict and interference. Brain Res. Rev. 2008, 59, 96–124. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.W.; Cohen, J.D.; Stenger, V.A.; Carter, C.S. Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science 2000, 288, 1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Bai, J.; Zhang, D. Cognitive control explored by linear modelling behaviour and fMRI data during Stroop tasks. Physiol. Meas. 2008, 29, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Simeonova, D.; Paunova, R.; Stoyanova, K.; Todeva-Radneva, A.; Kandilarova, S.; Stoyanov, D. Functional MRI Correlates of Stroop N-Back Test Underpin the Diagnosis of Major Depression. J. Integr. Neurosci. 2022, 21, 113. [Google Scholar] [CrossRef]
- Yoon, J.A.; Kong, I.J.; Choi, J.; Baek, J.Y.; Kim, E.J.; Shin, Y.I.; Ko, M.H.; Shin, Y.B.; Shin, M.J. Neural Compensatory Response During Complex Cognitive Function Tasks in Mild Cognitive Impairment: A Near-Infrared Spectroscopy Study. Neural Plast. 2019, 2019, 7845104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saez-Fonseca, J.A.; Lee, L.; Walker, Z. Long-term outcome of depressive pseudodementia in the elderly. J. Affect Disord. 2007, 101, 123–129. [Google Scholar] [CrossRef] [PubMed]
Control | Depressive Symptom | p | |
---|---|---|---|
Number of participants | 117 | 67 | |
Female, n (%) | 82 (70.1) | 54 (80.6) | 0.119 |
Age, year, median (IQR) | 72 (67–74) | 71 (67–73) | 0.484 |
Education, year, mean | 9.90 (3.65) | 8.16 (4.26) | 0.203 |
GDS, mean | 1.65 (1.26) | 7.47 (2.67) | <0.001 |
Task performance | |||
Digit span backward, median (IQR) | 4 (3.5–4.0) | 4 (3.0–4.0) | 0.025 |
VFT, mean | 11.01 (3.31) | 10.08 (2.69) | 0.061 |
Stroop WR, median (IQR) | 24.5 (20.0–25.0) | 23.0 (19.0–25.0) | 0.058 |
Stroop CR, median (IQR) | 10.0 (7.0–19.0) | 12.0 (8.0–18.0) | 0.403 |
Stroop WR-CR, median (IQR) | 10.0 (4.0–16.0) | 8.0 (3.0–13.0) | 0.089 |
Cognitive Task | Channel | accΔHbO2 | t | p | |
---|---|---|---|---|---|
Control | Depressive Symptom | ||||
VFT | All | 0.120 (0.560) | 0.001 (0.434) | 1.608 | 0.110 |
Right hem. | 0.146 (0.588) | 0.031 (0.457) | 1.476 | 0.142 | |
Left hem. | 0.094 (0.609) | −0.029 (0.503) | 1.403 | 0.162 | |
Digit span | All | 0.187 (0.522) | 0.098 (0.373) | 1.343 | 0.181 |
Right hem. | 0.191 (0.559) | 0.151 (0.446) | 0.505 | 0.614 | |
Left hem. | 0.184 (0.542) | 0.045 (0.393) | 1.827 | 0.069 | |
Stroop WR | All | −0.240 (0.538) | −0.170 (0.456) | −0.964 | 0.336 |
Right hem. | −0.251 (0.613) | 0.613 (0.551) | −1.047 | 0.297 | |
Left hem. | −0.232 (0.57) | 0.570 (0.51) | −0.665 | 0.507 | |
Stroop CR | All | −0.110 (0.565) | −0.234 (0.459) | 1.518 | 0.131 |
Right hem. | −0.122 (0.578) | −0.252 (0.526) | 1.438 | 0.152 | |
Left hem. | −0.094 (0.631) | −0.221 (0.505) | 1.360 | 0.175 | |
Stroop CR-WR | All | 0.134 (0.679) | −0.064 (0.468) | 2.308 | 0.022 |
Right hem. | 0.130 (0.75) | −0.088 (0.554) | 2.205 | 0.029 | |
Left hem. | 0.138 (0.714) | −0.040 (0.533) | 2.000 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.-J.; Cho, S.-Y.; Choi, J.-K.; Yang, Y.-S. fNIRS Assessment during Cognitive Tasks in Elderly Patients with Depressive Symptoms. Brain Sci. 2023, 13, 1054. https://doi.org/10.3390/brainsci13071054
Kang M-J, Cho S-Y, Choi J-K, Yang Y-S. fNIRS Assessment during Cognitive Tasks in Elderly Patients with Depressive Symptoms. Brain Sciences. 2023; 13(7):1054. https://doi.org/10.3390/brainsci13071054
Chicago/Turabian StyleKang, Min-Ju, Su-Yeon Cho, Jong-Kwan Choi, and Young-Soon Yang. 2023. "fNIRS Assessment during Cognitive Tasks in Elderly Patients with Depressive Symptoms" Brain Sciences 13, no. 7: 1054. https://doi.org/10.3390/brainsci13071054
APA StyleKang, M.-J., Cho, S.-Y., Choi, J.-K., & Yang, Y.-S. (2023). fNIRS Assessment during Cognitive Tasks in Elderly Patients with Depressive Symptoms. Brain Sciences, 13(7), 1054. https://doi.org/10.3390/brainsci13071054