Artificial Intelligence: Deciphering the Links between Psychiatric Disorders and Neurodegenerative Disease
Funding
Conflicts of Interest
References
- Turing, A.M. Computing Machinery and Intelligence; Mind New Series; Oxford University Press: Oxford, UK, 1950; Volume 59, pp. 433–460. [Google Scholar]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine learning in medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef] [PubMed]
- Kline, A.; Wang, H.; Li, Y.; Dennis, S.; Hutch, M.; Xu, Z.; Wang, F.; Cheng, F.; Luo, Y. Multimodal machine learning in precision health: A scoping review. NPJ Digit. Med. 2022, 5, 171. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury, M. Artificial intelligence in psychiatry. Adv. Exp. Med. Biol. 2019, 1192, 119–125. [Google Scholar] [PubMed]
- Ray, A.; Bhardwaj, A.; Malik, Y.K.; Singh, S.; Gupta, R. Artificial intelligence and psychiatry: An overview. Asian J. Psychiatry 2022, 70, 103021. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Fact Sheet: Mental Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 17 June 2023).
- Friedrich, M.J. Depression is the leading cause of disability around the world. JAMA 2017, 317, 1517. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, J.C. DSM-5, psychiatric epidemiology and the false positives problem. Epidemiol. Psychiatr. Sci. 2015, 24, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Locke, S.; Bashall, A.; Al-Adely, S.; Moore, J.; Wilson, A.; Kitchen, G.B. Natural language processing in medicine: A review. Trends Anaesth. Crit. Care 2021, 38, 4–9. [Google Scholar] [CrossRef]
- Khullar, D. Can A. I. Treat Mental Illness? The New Yorker, 6 March 2023. Available online: https://www.newyorker.com/magazine/2023/03/06/can-ai-treat-mental-illness (accessed on 17 June 2023).
- DeSouza, D.D.; Robin, J.; Gumus, M.; Yeung, A. Natural language processing as an emerging tool to detect late-life depression. Front. Psychiatry 2021, 12, 719125. [Google Scholar] [CrossRef]
- Jackson, R.G.; Patel, R.; Jasyatilleke, N.; Kolliakou, A.; Ball, M.; Gorrell, G.; Roberts, A.; Dobson, R.J.; Stewart, R. Natural language processing to extract symptoms of severe mental illness from clinical text: The Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project. BMJ Open 2017, 7, e012012. [Google Scholar] [CrossRef] [Green Version]
- Masdeu, J.C. Neuroimaging in psychiatric disorders. Neurotherapeutics 2011, 8, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, W.; Toll, R.T.; Naparstek, S.; Maron-Katz, A.; Watts, M.; Gordon, J.; Jeong, J.; Astolfi, L.; Shpigel, E.; et al. Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography. Nat. Biomed. Eng. 2021, 5, 309–323. [Google Scholar] [CrossRef]
- Onyike, C.U. Psychiatric aspects of dementia. Continuum 2016, 22, 600–614. [Google Scholar] [CrossRef] [Green Version]
- Silveira, C.; Guedes, R.; Maia, D.; Curral, R.; Coelho, R. Neuropsychiatric symptoms of multiple sclerosis: State of the art. Psychiatry Investig. 2019, 16, 877–888. [Google Scholar] [CrossRef]
- Weintraub, D.; Aarsland, D.; Chaudhuri, K.R.; Dobkin, R.D.; Leentjens, A.F.G.; Rodriguez-Violante, M.; Schrag, A. The neuropsychiatry of Parkinson’s disease: Advances and challenges. Lancet Neurol. 2022, 21, 89–112. [Google Scholar] [CrossRef]
- Cusick, E.; Gupta, V. Pimavanserin. [Updated 2023 May 1]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557712/ (accessed on 17 June 2023).
- Stefano, G.B. Artificial intelligence as a tool for the diagnosis and treatment of neurodegenerative diseases. Brain Sci. 2023, 13, 938. [Google Scholar] [CrossRef]
- Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020, 16, 440–456. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Y.; Zhang, G.; Wang, H.; Chen, Y.-C.; Liu, Y.; Tarolli, C.G.; Crepeau, D.; Bukartyk, J.; Junna, M.R.; et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 2022, 28, 2207–2215. [Google Scholar] [CrossRef]
- McKenzie, A.T.; Marx, G.A.; Koenigsberg, D.; Sawyer, M.; Iida, M.A.; Walker, J.M.; Richardson, T.E.; Campanella, G.; Attems, J.; McKee, A.C.; et al. Interpretable deep learning of myelin histopathology in age-related cognitive impairment. Acta Neuropathol. Commun. 2022, 10, 131. [Google Scholar] [CrossRef]
- Bonacchi, R.; Filippi, M.; Rocca, M.A. Role of artificial intelligence in MS clinical practice. Neuroimage Clin. 2022, 35, 103065. [Google Scholar] [CrossRef]
- Esch, T.; Stefano, G.B.; Fricchione, G.L.; Benson, H. The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinol. Lett. 2002, 23, 199–208. [Google Scholar]
- Hussain, M.; Kumar, P.; Khan, S.; Gordon, D.K.; Khan, S. Similarities between depression and neurodegenerative diseases: Pathophysiology, challenges in diagnosis and treatment options. Cureus 2020, 12, e11613. [Google Scholar] [CrossRef] [PubMed]
- Shdo, S.M.; Ranasinghe, K.G.; Sturm, V.E.; Possin, K.L.; Bettcher, B.M.; Stephens, M.L.; Foley, J.M.; You, S.C.; Rosen, H.J.; Miller, B.L.; et al. Depressive symptom profiles predict specific neurodegenerative disease syndromes in early stages. Front. Neurol. 2020, 11, 446. [Google Scholar] [CrossRef] [PubMed]
- Stanton, B.R.; Leigh, P.N.; Howard, R.J.; Barker, G.J.; Brown, R.G. Behavioural and emotional symptoms of apathy are associated with distinct patterns of brain atrophy in neurodegenerative disorders. J. Neurol. 2013, 260, 2481–2490. [Google Scholar] [CrossRef] [PubMed]
- Wingo, T.S.; Liu, Y.; Gerasimov, E.S.; Vattahil, S.M.; Wynne, M.E.; Liu, J.; Lori, A.; Faundez, V.; Bennett, D.A.; Seyfried, N.T.; et al. Shared mechanisms across the major psychiatric and neurodegenerative diseases. Nat. Commun. 2022, 13, 4314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefano, G.B.; Büttiker, P.; Weissenberger, S.; Esch, T.; Michaelsen, M.M.; Anders, M.; Raboch, J.; Ptacek, R. Artificial Intelligence: Deciphering the Links between Psychiatric Disorders and Neurodegenerative Disease. Brain Sci. 2023, 13, 1055. https://doi.org/10.3390/brainsci13071055
Stefano GB, Büttiker P, Weissenberger S, Esch T, Michaelsen MM, Anders M, Raboch J, Ptacek R. Artificial Intelligence: Deciphering the Links between Psychiatric Disorders and Neurodegenerative Disease. Brain Sciences. 2023; 13(7):1055. https://doi.org/10.3390/brainsci13071055
Chicago/Turabian StyleStefano, George B., Pascal Büttiker, Simon Weissenberger, Tobias Esch, Maren M. Michaelsen, Martin Anders, Jiri Raboch, and Radek Ptacek. 2023. "Artificial Intelligence: Deciphering the Links between Psychiatric Disorders and Neurodegenerative Disease" Brain Sciences 13, no. 7: 1055. https://doi.org/10.3390/brainsci13071055
APA StyleStefano, G. B., Büttiker, P., Weissenberger, S., Esch, T., Michaelsen, M. M., Anders, M., Raboch, J., & Ptacek, R. (2023). Artificial Intelligence: Deciphering the Links between Psychiatric Disorders and Neurodegenerative Disease. Brain Sciences, 13(7), 1055. https://doi.org/10.3390/brainsci13071055