Is Balance Training Using Biofeedback Effective in the Prophylaxis of Falls in Women over the Age of 65?
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Report on Ageing and Health; World Health Organization: Geneva, Switzerland. 2015. Available online: http://apps.who.int/iris/bitstream/10665/186463/1/9789240694811_eng.pdf (accessed on 4 December 2015).
- Chatterji, S.; Byles, J.; Cutler, D.; Seeman, T.; Verdes, E. Health, functioning, and disability in older adults—Present status and future implications. Lancet 2014, 385, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Oo, W.M.; Little, C.; Duong, V.; Hunter, D.J. The Development of Disease-Modifying Therapies for Osteoarthritis (DMOADs): The Evidence to Date. Drug Des. Dev. Ther. 2021, 15, 2921–2945. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.D.; Golightly, Y. State of the evidence. Curr. Opin. Rheumatol. 2015, 27, 276–283. [Google Scholar] [CrossRef]
- Harris, E.C.; Coggon, D. HIP osteoarthritis and work. Best Pract. Res. Clin. Rheumatol. 2015, 29, 462–482. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, A.M.; Li, L.C. Occupational Physical Loading Tasks and Knee Osteoarthritis: A Review of the Evidence. Physiother. Can. 2014, 66, 91–107. [Google Scholar] [CrossRef]
- MBerková, M.; Berka, Z. Falls: A significant cause of morbidity and mortality in elderly people. Vnitr. Lek. 2018, 64, 1076–1083. [Google Scholar] [CrossRef]
- Sharif, S.I.; Al-Harbi, A.B.; Al-Shihabi, A.M.; Al-Daour, D.S.; Sharif, R.S. Falls in the elderly: Assessment of prevalence and risk factors. Pharm. Pract. 2018, 16, 1206. [Google Scholar] [CrossRef]
- Sherrington, C.; Tiedemann, A. Physiotherapy in the prevention of falls in older people. J. Physiother. 2015, 61, 54–60. [Google Scholar] [CrossRef]
- Medical Advisory Secretariat. Prevention of falls and fall-related injuries in community-dwelling seniors: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2008, 8, 1–78. [Google Scholar]
- Alghwiri, A.A.; Whitney, S.L. Balance and falls. In Geriatric Physical Therapy, 3rd ed.; Guccione, A.A., Wong, R.A., Avers, D., Eds.; Elsevier Mosby: St. Louis, MO, USA, 2012; pp. 389–419. [Google Scholar]
- Chen, T.; Yoshida, Y. Effects of Power on Balance and Fall Prevention in Aging and Older Adults. Top. Geriatr. Rehabil. 2021, 37, 7–11. [Google Scholar] [CrossRef]
- Guirguis-Blake, J.M.; Michael, Y.L.; Perdue, L.A.; Coppola, E.L.; Beil, T.L. Interventions to Prevent Falls in Older Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 319, 1705–1716. [Google Scholar] [CrossRef]
- Gschwind, Y.J.; Eichberg, S.; Marston, H.R.; Ejupi, A.; Rosario, H.; Kroll, M.; Drobics, M.; Annegarn, J.; Wieching, R.; Lord, S.R.; et al. ICT-based system to predict and prevent falls (iStoppFalls): Study protocol for an international multicenter randomized controlled trial. BMC Geriatrs 2014, 14, 91. [Google Scholar] [CrossRef]
- Bevilacqua, R.; Maranesi, E.; Riccardi, G.R.; Donna, V.D.; Pelliccioni, P.; Luzi, R.; Lattanzio, F.; Pelliccioni, G. Non-Immersive Virtual Reality for Rehabilitation of the Older People: A Systematic Review into Efficacy and Effectiveness. J. Clin. Med. 2019, 8, 1882. [Google Scholar] [CrossRef]
- Czerwosz, L.; Mraz, M.; Mraz, M. Posturography as a rehabilitation, diagnostic, or imbalance assessment tool. Biophilia 2011, 1, 4_23. [Google Scholar] [CrossRef]
- Maranesi, E.; Casoni, E.; Baldoni, R.; Barboni, I.; Rinaldi, N.; Tramontana, B.; Amabili, G.; Benadduci, M.; Barbarossa, F.; Luzi, R.; et al. The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14818. [Google Scholar] [CrossRef]
- Sokołowska, B.; Sadura-Sieklucka, T.; Czerwosz, L.; Hallay-Suszek, M.; Lesyng, B.; Księżopolska-Orłowska, K. Estimation of Posturographic Trajectory using k-Nearest Neighbors Classifier in Patients with Rheumatoid Arthritis and Osteoarthritis. Adv. Exp. Med. Biol. 2018, 39, 85–95. [Google Scholar] [CrossRef]
- Czerwosz, L.; Mraz, M.; Curzytek, M.; Blaszczyk, J. Application of Virtual Reality in Postural Stability Rehabilitation. In Proceedings of the 2009 Virtual Rehabilitation International Conference, Haifa, Israel, 29 June–2 July 2009. [Google Scholar] [CrossRef]
- Litvinenkova, V.; Hlavacka, F. The visual feed-back gain influence upon the regulation of the upright posture in man. Agressologie 1973, 14, 95–99. [Google Scholar]
- Pinsault, N.; Vuillerme, N. The effects of scale display of visual feedback on postural control during quiet standing in healthy elderly subjects. Arch. Phys. Med. Rehabil. 2008, 89, 1772–1774. [Google Scholar] [CrossRef]
- Sherrington, C.; Whitney, J.C.; Lord, S.R.; Herbert, R.D.; Cumming, R.G.; Close, J.C. Effective exercise for the prevention of falls: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2008, 56, 2234–2243. [Google Scholar] [CrossRef]
- Urabe, Y.; Fukui, K.; Harada, K.; Tashiro, T.; Komiya, M.; Maeda, N. The Application of Balance Exercise Using Virtual Reality for Rehabilitation. Healthcare 2022, 10, 680. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, K.; Chen, Y.; Zhou, L.; Bao, D.; Zhou, J. Is Virtual Reality Training More Effective Than Traditional Physical Training on Balance and Functional Mobility in Healthy Older Adults? A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2022, 16, 843481. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Jehu, D.A.; Daneshjoo, A.; Shakoor, E.; Razeghi, M.; Amani, A.; Hakim, M.N.; Yusof, A. Effects of 8 Weeks of Balance Training, Virtual Reality Training, and Combined Exercise on Lower Limb Muscle Strength, Balance, and Functional Mobility Among Older Men: A Randomized Controlled Trial. Sports Health 2021, 13, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Babadi, S.Y.; Daneshmandi, H. Effects of virtual reality versus conventional balance training on balance of the elderly. Exp. Gerontol. 2021, 153, 111498. [Google Scholar] [CrossRef] [PubMed]
- Komar, M.; Czerwosz, L. Physical Aspects of Posturography in Virtual Reality. Acta Phys. Pol. A 2021, 4, 468–472. [Google Scholar] [CrossRef]
- Imaizumi, S.; Asai, T.; Hiromitsu, K.; Imamizu, H. Voluntarily controlled but not merely observed visual feedback affects postural sway. PeerJ 2018, 6, e4643. [Google Scholar] [CrossRef]
- Dault, M.C.; De Haart, M.; Geurts, A.C.; Arts, I.M.; Nienhuis, B. Effects of visual center of pressure feedback on postural control in young and elderly healthy adults and in stroke patients. Hum. Mov. Sci. 2003, 22, 221–236. [Google Scholar] [CrossRef]
- Freitas, S.M.; Duarte, M. Joint coordination in young and older adults during quiet stance: Effect of visual feedback of the centre of pressure. Gait Posture 2012, 35, 83–87. [Google Scholar] [CrossRef]
- Dite, W.; Temple, V.A. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1566–1571. [Google Scholar] [CrossRef]
- Whitney, S.L.; Marchetti, G.F.; Morris, L.O.; Sparto, P.J. The reliability and validity of the Four Square Step Test for people with balance deficits secondary to a vestibular disorder. Arch. Phys. Med. Rehabil. 2007, 88, 99–104. [Google Scholar] [CrossRef]
- Ambrens, M.; van Schooten, K.S.; Lung, T.; Clemson, L.; Close, J.C.; Howard, K.; Lord, S.R.; Zijlstra, G.R.; Tiedemann, A.; Valenzuela, T.; et al. Economic evaluation of the e-Health StandingTall balance exercise programme for fall prevention in people aged 70 years and over. Age Ageing 2022, 51, afac130. [Google Scholar] [CrossRef]
FPT | GT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Examination (N) | I (28) | II (28) | III (27) | Comparison of Examinations | I (29) | II (29) | III (28) | Comparison of Examinations | ||
I vs. II | II vs. III | I vs. II | II vs. III | |||||||
Lequesne index | 12.6 ± 3.9 | 10.0 ± 4.2 | 9.5 ± 3.9 | p < 0.02 | ns | 11.6 ± 5.7 | 9.1 ± 6.1 | 9.7 ± 6.9 | ns | ns |
Laitinen scale | 6.3 ± 1.9 | 4.4 ± 2.3 | 4.0 ± 2.1 | p < 0.004 | ns | 6.1 ± 3.3 | 4.2 ± 3.2 | 4.8 ± 3.8 | p < 0.04 | ns |
TUG | 7.5 ± 1.6 | 6.9 ± 1.3 | 6.9 ± 1.0 | ns | ns | 7.6 ± 2.1 | 6.8 ± 1.1 | 6.8 ± 1.04 | ns | ns |
FSST | 10.0 ± 2.0 | 9.1 ± 1.5 | 8.9 ± 1.5 | p < 0.05 | ns | 10.5 ± 3.7 | 8.9 ± 1.9 | 8.8 ± 1.8 | p < 0.05 | ns |
Number of stumbling | 9.1 ± 11.0 | --- | 2.8 ± 4.2 | p < 0.02 * | --- | 6.9 ± 10.5 | --- | 4.0 ± 6.4 | ns * | --- |
Number of falls | 0.2 ± 0.6 | --- | 0.0 ± 0.2 | ns * | --- | 0.3 ± 0.8 | --- | 0.1 ± 0.3 | ns * | --- |
FPT | GT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Examination (N) | I (36) | II (34) | III (29) | Comparison of Examinations | I (36) | II (32) | III (28) | Comparison of Examinations | Group Comparison FPT vs. GT | ||
Eyes open EO | I vs. II | II vs. III | I vs. II | II vs. III | |||||||
R_mm | 3.82 ± 1.24 | 3.32 ± 0.86 | 3.77 ± 1.24 | ns | ns | 4.28 ± 2.01 | 3.93 ± 1.50 | 3.70 ± 0.98 | ns | ns | I, II, III: ns |
L_cm | 34.4 ± 7.8 | 35.3 ± 7.5 | 34.3 ± 9.2 | ns | ns | 34.6 ± 9.0 | 36.3 ± 8.4 | 34.9 ± 9.3 | ns | ns | I, II, III: ns |
Eyes closed EC | I vs. II | II vs. III | I vs. II | II vs. III | |||||||
R_mm | 4.80 ± 1.57 | 4.29 ± 1.40 | 4.56 ± 1.42 | ns | ns | 4.98 ± 2.06 | 4.81 ± 1.58 | 4.21 ± 1.02 | ns | ns | I, II, III: ns |
L_cm | 45.9 ± 12.4 | 46.7 ± 13.0 | 44.9 ± 14.3 | ns | ns | 47.8 ± 15.5 | 53.6 ± 25.5 | 47.0 ± 14.4 | ns | ns | I, II, III: ns |
Feedback FB | I vs. II | II vs. III | I vs. II | II vs. III | |||||||
R_mm | 4.57 ± 2.01 | 2.92 ± 0.66 | 3.12 ± 0.92 | p < 0.00002 | ns | 4.14 ± 1.95 | 4.44 ± 2.35 | 3.56 ± 1.01 | ns | ns | I, III: ns II p < 0.0006 |
L_cm | 46.7 ± 17.9 | 44.4 ± 9.4 | 41.7 ± 10.1 | ns | ns | 44.6 ± 18.7 | 49.9 ± 25.6 | 42.6 ± 14.60 | ns | ns | I, II, III: ns |
K% | 80.0 ± 18.2 | 92.1 ± 10.0 | 93.4 ± 7.5 | p < 0.001 | 84.1 ± 16.3 | 81.2 ± 17.8 | 88.8 ± 9.3 | ns | ns | I, III: ns II p < 0.003 |
R | K% | |||||
---|---|---|---|---|---|---|
RII < RI | RII > RI | Total | KII < KI | KII > KI | Total | |
FPT | 30 | 4 | 34 | 5 | 29 | 34 |
GT | 16 | 16 | 32 | 16 | 16 | 32 |
Total | 46 | 20 | 66 | 46 | 20 | 66 |
χ2 = 11.4 p < 0.0007 | χ2 = 9.5 p < 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadura-Sieklucka, T.; Czerwosz, L.T.; Kądalska, E.; Kożuchowski, M.; Księżopolska-Orłowska, K.; Targowski, T. Is Balance Training Using Biofeedback Effective in the Prophylaxis of Falls in Women over the Age of 65? Brain Sci. 2023, 13, 629. https://doi.org/10.3390/brainsci13040629
Sadura-Sieklucka T, Czerwosz LT, Kądalska E, Kożuchowski M, Księżopolska-Orłowska K, Targowski T. Is Balance Training Using Biofeedback Effective in the Prophylaxis of Falls in Women over the Age of 65? Brain Sciences. 2023; 13(4):629. https://doi.org/10.3390/brainsci13040629
Chicago/Turabian StyleSadura-Sieklucka, Teresa, Leszek Tomasz Czerwosz, Ewa Kądalska, Marcin Kożuchowski, Krystyna Księżopolska-Orłowska, and Tomasz Targowski. 2023. "Is Balance Training Using Biofeedback Effective in the Prophylaxis of Falls in Women over the Age of 65?" Brain Sciences 13, no. 4: 629. https://doi.org/10.3390/brainsci13040629
APA StyleSadura-Sieklucka, T., Czerwosz, L. T., Kądalska, E., Kożuchowski, M., Księżopolska-Orłowska, K., & Targowski, T. (2023). Is Balance Training Using Biofeedback Effective in the Prophylaxis of Falls in Women over the Age of 65? Brain Sciences, 13(4), 629. https://doi.org/10.3390/brainsci13040629