Association of Urinary Biomarkers of Renal Tubular Injury with Cognitive Dysfunction in Older Patients with Chronic Kidney Disease: A Cross-Sectional Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedure
2.3. Blood Sample Collection
2.4. Renal Tubular Injury Marker Measurements
2.5. Assessment of Cognitive Function
2.6. Mitochondrial Deoxyribonucleic Acid (mtDNA) Analysis
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Comparison of Urinary Biomarkers of Renal Tubular Injury in the Two Groups of Study Participants
3.3. Association between Urinary Biomarkers of Renal Tubular Injury and Cognitive Impairment
3.4. ROC Curve Analysis of Single Urinary Biomarkers of Renal Tubular Injury and the Multivariable Model
3.5. Association of mtDNA Levels in Peripheral Blood with Tubular Injury Markers and Cognitive Impairment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Fung, E.; Kurella Tamura, M. Epidemiology and public health concerns of ckd in older adults. Adv. Chronic Kidney Dis. 2016, 23, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Fang, E.F.; Scheibye-Knudsen, M.; Jahn, H.J.; Li, J.; Ling, L.; Guo, H.; Zhu, X.; Preedy, V.; Lu, H.; Bohr, V.A.; et al. A research agenda for aging in china in the 21st century. Ageing Res. Rev. 2015, 24, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drew, D.A.; Weiner, D.E.; Sarnak, M.J. Cognitive impairment in ckd: Pathophysiology, management, and prevention. Am. J. Kidney Dis. 2019, 74, 782–790. [Google Scholar] [CrossRef]
- Tanaka, S.; Okusa, M.D. Crosstalk between the nervous system and the kidney. Kidney Int. 2020, 97, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Lockwood, M.B.; Rhee, C.M.; Tantisattamo, E.; Andreoli, S.; Balducci, A.; Laffin, P.; Harris, T.; Knight, R.; Kumaraswami, L.; et al. Patient-centred approaches for the management of unpleasant symptoms in kidney disease. Nat. Rev. Nephrol. 2022, 18, 185–198. [Google Scholar] [CrossRef]
- Tang, X.; Han, Y.P.; Chai, Y.H.; Gong, H.J.; Xu, H.; Patel, I.; Qiao, Y.S.; Zhang, J.Y.; Cardoso, M.A.; Zhou, J.B. Association of kidney function and brain health: A systematic review and meta-analysis of cohort studies. Ageing Res. Rev. 2022, 82, 101762. [Google Scholar] [CrossRef]
- Zhang, W.R.; Parikh, C.R. Biomarkers of acute and chronic kidney disease. Annu. Rev. Physiol. 2019, 81, 309–333. [Google Scholar] [CrossRef] [PubMed]
- Ix, J.H.; Shlipak, M.G. The promise of tubule biomarkers in kidney disease: A review. Am. J. Kidney Dis. 2021, 78, 719–727. [Google Scholar] [CrossRef]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin c. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Julayanont, P.; Tangwongchai, S.; Hemrungrojn, S.; Tunvirachaisakul, C.; Phanthumchinda, K.; Hongsawat, J.; Suwichanarakul, P.; Thanasirorat, S.; Nasreddine, Z.S. The montreal cognitive assessment-basic: A screening tool for mild cognitive impairment in illiterate and low-educated elderly adults. J. Am. Geriatr. Soc. 2015, 63, 2550–2554. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The montreal cognitive assessment, moca: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Venegas, V.; Wang, J.; Dimmock, D.; Wong, L.J. Real-time quantitative pcr analysis of mitochondrial DNA content. Curr. Protoc. Hum. Genet. 2011, 68, 19.7.1–19.7.12. [Google Scholar] [CrossRef] [PubMed]
- Rosa, H.; Malik, A.N. Accurate measurement of cellular and cell-free circulating mitochondrial DNA content from human blood samples using real-time quantitative pcr. Methods Mol. Biol. 2021, 2277, 247–268. [Google Scholar] [PubMed]
- Batchelor, E.K.; Kapitsinou, P.; Pergola, P.E.; Kovesdy, C.P.; Jalal, D.I. Iron deficiency in chronic kidney disease: Updates on pathophysiology, diagnosis, and treatment. J. Am. Soc. Nephrol. 2020, 31, 456–468. [Google Scholar] [CrossRef]
- Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Levey, A.S. Prevalence of chronic kidney disease in the united states. JAMA 2007, 298, 2038–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.K.; Garcia-Garcia, G.; Lui, S.F.; Andreoli, S.; Fung, W.W.; Hradsky, A.; Kumaraswami, L.; Liakopoulos, V.; Rakhimova, Z.; Saadi, G.; et al. Kidney health for everyone everywhere: From prevention to detection and equitable access to care. J. Nephrol. 2020, 33, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.M.; Rothwell, P.M. Disentangling the relationship between chronic kidney disease and cognitive disorders. Front. Neurol. 2022, 13, 830064. [Google Scholar] [CrossRef]
- Scheppach, J.B.; Coresh, J.; Wu, A.; Gottesman, R.F.; Mosley, T.H.; Knopman, D.S.; Grams, M.E.; Sharrett, A.R.; Koton, S. Albuminuria and estimated gfr as risk factors for dementia in midlife and older age: Findings from the aric study. Am. J. Kidney Dis. 2020, 76, 775–783. [Google Scholar] [CrossRef]
- Kurella Tamura, M.; Muntner, P.; Wadley, V.; Cushman, M.; Zakai, N.A.; Bradbury, B.D.; Kissela, B.; Unverzagt, F.; Howard, G.; Warnock, D.; et al. Albuminuria, kidney function, and the incidence of cognitive impairment among adults in the united states. Am. J. Kidney Dis. 2011, 58, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Garimella, P.S.; Katz, R.; Waikar, S.S.; Srivastava, A.; Schmidt, I.; Hoofnagle, A.; Palsson, R.; Rennke, H.G.; Stillman, I.E.; Wang, K.; et al. Kidney tubulointerstitial fibrosis and tubular secretion. Am. J. Kidney Dis. 2022, 79, 709–716. [Google Scholar] [CrossRef]
- Rule, A.D.; Amer, H.; Cornell, L.D.; Taler, S.J.; Cosio, F.G.; Kremers, W.K.; Textor, S.C.; Stegall, M.D. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med. 2010, 152, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Drüeke, T.B.; Massy, Z.A. Beta2-microglobulin. Semin. Dial. 2009, 22, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.; Donadio, C.; Tramonti, G.; Consani, C.; Lorusso, P.; Rossi, G. Reappraisal of serum beta2-microglobulin as marker of gfr. Ren. Fail. 2001, 23, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Bugnicourt, J.M.; Godefroy, O.; Chillon, J.M.; Choukroun, G.; Massy, Z.A. Cognitive disorders and dementia in ckd: The neglected kidney-brain axis. J. Am. Soc. Nephrol. 2013, 24, 353–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Cai, J.; Yin, X.M.; Weinberg, J.M.; Venkatachalam, M.A.; Dong, Z. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 2021, 17, 299–318. [Google Scholar] [CrossRef] [PubMed]
- Golpich, M.; Amini, E.; Mohamed, Z.; Azman Ali, R.; Mohamed Ibrahim, N.; Ahmadiani, A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. 2017, 23, 5–22. [Google Scholar] [CrossRef]
- Miller, L.M.; Rifkin, D.; Lee, A.K.; Kurella Tamura, M.; Pajewski, N.M.; Weiner, D.E.; Al-Rousan, T.; Shlipak, M.; Ix, J.H. Association of urine biomarkers of kidney tubule injury and dysfunction with frailty index and cognitive function in persons with ckd in sprint. Am. J. Kidney Dis. 2021, 78, 530–540.e1. [Google Scholar] [CrossRef]
- Malik, A.N.; Czajka, A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2013, 13, 481–492. [Google Scholar] [CrossRef]
- Grimm, A.; Eckert, A. Brain aging and neurodegeneration: From a mitochondrial point of view. J. Neurochem. 2017, 143, 418–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inczedy-Farkas, G.; Trampush, J.W.; Perczel Forintos, D.; Beech, D.; Andrejkovics, M.; Varga, Z.; Remenyi, V.; Bereznai, B.; Gal, A.; Molnar, M.J. Mitochondrial DNA mutations and cognition: A case-series report. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2014, 29, 315–321. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, K.D.; Im, J.A.; Kim, M.Y.; Lee, D.C. Mitochondrial DNA copy number in peripheral blood is associated with cognitive function in apparently healthy elderly women. Clin. Chim. Acta Int. J. Clin. Chem. 2010, 411, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, J.H.; Lee, D.C. Combined impact of telomere length and mitochondrial DNA copy number on cognitive function in community-dwelling very old adults. Dement. Geriatr. Cogn. Disord. 2017, 44, 232–243. [Google Scholar] [CrossRef] [PubMed]
- García-de la Cruz, D.D.; Juárez-Rojop, I.E.; Tovilla-Zárate, C.A.; Martínez-Magaña, J.J.; Genis-Mendoza, A.D.; Nicolini, H.; González-Castro, T.B.; Guzmán-Priego, C.G.; López-Martínez, N.A.; Hernández-Cisneros, J.A.; et al. Association between mitochondrial DNA and cognitive impairment in schizophrenia: Study protocol for a mexican population. Neuropsychiatr. Dis. Treat. 2019, 15, 1717–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Control Group | Cognitive Impairment Group | p |
---|---|---|---|
Sex (male) ‡ | 33 (66%) | 38 (76%) | 0.40 |
Age(years) § | 76 (7.2) | 74 (7.9) | >0.90 |
BMI (kg/m2) † | 24.52 (23.22, 25.82) | 24.52 (23.22, 25.82) | 0.50 |
Education (years)† | 6.00 (4.00, 7.00) | 4.00 (3.00, 5.75) | <0.001 |
Smoking ‡ | 16 (32%) | 37 (74%) | <0.001 |
Drinking ‡ | 14 (28%) | 22 (44%) | 0.14 |
Hypertension ‡ | 30 (60%) | 28 (56%) | 0.80 |
Diabetes ‡ | 19 (38%) | 16 (32%) | 0.70 |
Coronary Heart Disease ‡ | 16 (32%) | 14 (28%) | 0.80 |
LDL (mmol/L) † | 2.95 (2.77, 3.08) | 2.84 (2.67, 3.06) | 0.10 |
eGFR (mL/min/1.73 m2) † | 46 (42, 52) | 44 (40, 49) | 0.051 |
MoCA (points) † | 28.0 (28.0, 29.0) | 19.0 (15.0, 20.0) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hu, L.; Zhou, D.; Chen, X.; Zhou, L. Association of Urinary Biomarkers of Renal Tubular Injury with Cognitive Dysfunction in Older Patients with Chronic Kidney Disease: A Cross-Sectional Observational Study. Brain Sci. 2023, 13, 551. https://doi.org/10.3390/brainsci13040551
Wang Y, Hu L, Zhou D, Chen X, Zhou L. Association of Urinary Biomarkers of Renal Tubular Injury with Cognitive Dysfunction in Older Patients with Chronic Kidney Disease: A Cross-Sectional Observational Study. Brain Sciences. 2023; 13(4):551. https://doi.org/10.3390/brainsci13040551
Chicago/Turabian StyleWang, Yiwei, Ling Hu, Difei Zhou, Xiaolei Chen, and Leting Zhou. 2023. "Association of Urinary Biomarkers of Renal Tubular Injury with Cognitive Dysfunction in Older Patients with Chronic Kidney Disease: A Cross-Sectional Observational Study" Brain Sciences 13, no. 4: 551. https://doi.org/10.3390/brainsci13040551
APA StyleWang, Y., Hu, L., Zhou, D., Chen, X., & Zhou, L. (2023). Association of Urinary Biomarkers of Renal Tubular Injury with Cognitive Dysfunction in Older Patients with Chronic Kidney Disease: A Cross-Sectional Observational Study. Brain Sciences, 13(4), 551. https://doi.org/10.3390/brainsci13040551