Assessing Orofacial Pain Behaviors in Animal Models: A Review
Abstract
:1. Introduction
2. Behavioral Assessment of Spontaneous Pain
2.1. Grimace Scale
2.2. Conditioned Place Preference (CPP) and Real-Time Place Preference (RTPP)
2.3. Facial Grooming
3. Behavioral Assessment of Evoked Pain
3.1. Von Frey Test
3.2. Operant Behavior Test
4. Behavioral Assessment Using Functional Testing
4.1. Dolognawmeter
4.2. Bite Force Test
4.3. Light Aversion Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ananthan, S.; Benoliel, R. Chronic orofacial pain. J. Neural. Transm. 2020, 127, 575–588. [Google Scholar] [CrossRef]
- Horst, O.V.; Cunha-Cruz, J.; Zhou, L.; Manning, W.; Mancl, L.; DeRouen, T.A. Prevalence of pain in the orofacial regions in patients visiting general dentists in the Northwest Practice-based REsearch Collaborative in Evidence-based DENTistry research network. J. Am. Dent. Assoc. 2015, 146, 721–728.e723. [Google Scholar] [CrossRef]
- He, D.; Grant, B.; Holden, R.R.; Gilron, I. Methodology for self-report of rest pain (or spontaneous pain) vs evoked pain in chronic neuropathic conditions: A prospective observational pilot study. Pain Rep. 2017, 2, e587. [Google Scholar] [CrossRef]
- Gilron, I.; Baron, R.; Jensen, T. Neuropathic pain: Principles of diagnosis and treatment. Mayo Clin. Proc. 2015, 90, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Langford, D.J.; Bailey, A.L.; Chanda, M.L.; Clarke, S.E.; Drummond, T.E.; Echols, S.; Glick, S.; Ingrao, J.; Klassen-Ross, T.; Lacroix-Fralish, M.L.; et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 2010, 7, 447–449. [Google Scholar] [CrossRef]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.; Wei, P.; Zhan, S.; Zhang, S.; et al. The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Marklund, S.; Wanman, A. Incidence and prevalence of temporomandibular joint pain and dysfunction. A one-year prospective study of university students. Acta Odontol. Scand. 2007, 65, 119–127. [Google Scholar] [CrossRef]
- Xiang, T.; Tao, Z.Y.; Liao, L.F.; Wang, S.; Cao, D.Y. Animal Models of Temporomandibular Disorder. J. Pain Res. 2021, 14, 1415–1430. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Liu, S.F.; Shu, H.; Tang, Y.Y.; George, S.; Dong, T.L.; Schmidt, B.L.; Tao, F. TNF alpha in the Trigeminal Nociceptive System Is Critical for Temporomandibular Joint Pain. Mol. Neurobiol. 2019, 56, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zou, S.; Mohammad, Z.; Wang, S.; Yang, J.; Li, H.; Dubner, R.; Wei, F.; Chung, M.K.; Ro, J.Y.; et al. Voluntary biting behavior as a functional measure of orofacial pain in mice. Physiol. Behav. 2019, 204, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Brigoli, B.; Lim, J.; Karley, A.; Chung, M.K. Roles of TRPV1 and TRPA1 in Spontaneous Pain from Inflamed Masseter Muscle. Neuroscience 2018, 384, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lim, J.; Joseph, J.; Wang, S.; Wei, F.; Ro, J.Y.; Chung, M.K. Spontaneous and Bite-Evoked Muscle Pain Are Mediated by a Common Nociceptive Pathway With Differential Contribution by TRPV1. J. Pain 2017, 18, 1333–1345. [Google Scholar] [CrossRef] [PubMed]
- Asgar, J.; Zhang, Y.; Saloman, J.L.; Wang, S.; Chung, M.K.; Ro, J.Y. The Role of Trpa1 in Muscle Pain and Mechanical Hypersensitivity under Inflammatory Conditions in Rats. Neuroscience 2015, 310, 206–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akintola, T.; Raver, C.; Studlack, P.; Uddin, O.; Masri, R.; Keller, A. The grimace scale reliably assesses chronic pain in a rodent model of trigeminal neuropathic pain. Neurobiol. Pain 2017, 2, 13–17. [Google Scholar] [CrossRef]
- Akintola, T.; Tricou, C.; Raver, C.; Castro, A.; Colloca, L.; Keller, A. In search of a rodent model of placebo analgesia in chronic orofacial neuropathic pain. Neurobiol. Pain 2019, 6, 100033. [Google Scholar] [CrossRef]
- Philips, B.H.; Weisshaar, C.L.; Winkelstein, B.A. Use of the Rat Grimace Scale to Evaluate Neuropathic Pain in a Model of Cervical Radiculopathy. Comp. Med. 2017, 67, 34–42. [Google Scholar]
- Schneider, L.E.; Henley, K.Y.; Turner, O.A.; Pat, B.; Niedzielko, T.L.; Floyd, C.L. Application of the Rat Grimace Scale as a Marker of Supraspinal Pain Sensation after Cervical Spinal Cord Injury. J. Neurotraum. 2017, 34, 2982–2993. [Google Scholar] [CrossRef]
- Heinsinger, N.M.; Spagnuolo, G.; Allahyari, R.V.; Galer, S.; Fox, T.; Jaffe, D.A.; Thomas, S.J.; Iacovitti, L.; Lepore, A.C. Facial grimace testing as an assay of neuropathic pain-related behavior in a mouse model of cervical spinal cord injury. Exp. Neurol. 2020, 334, 113468. [Google Scholar] [CrossRef]
- Mucha, R.F.; Iversen, S.D. Reinforcing properties of morphine and naloxone revealed by conditioned place preferences: A procedural examination. Psychopharmacology 1984, 82, 241–247. [Google Scholar] [CrossRef]
- Mucha, R.F.; Vanderkooy, D.; Oshaughnessy, M.; Bucenieks, P. Drug Reinforcement Studied by the Use of Place Conditioning in Rat. Brain Res. 1982, 243, 91–105. [Google Scholar] [CrossRef]
- Sufka, K.J. Conditioned Place Preference Paradigm—A Novel-Approach for Analgesic Drug Assessment against Chronic Pain. Pain 1994, 58, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.H.; Wang, J.C.; Strichartz, G.R. Spontaneous Chronic Pain After Experimental Thoracotomy Revealed by Conditioned Place Preference: Morphine Differentiates Tactile Evoked Pain From Spontaneous Pain. J. Pain 2015, 16, 903–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davoody, L.; Quiton, R.L.; Lucas, J.M.; Ji, Y.; Keller, A.; Masri, R. Conditioned place preference reveals tonic pain in an animal model of central pain. J. Pain 2011, 12, 868–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Tang, Y.; Shu, H.; Tatum, D.; Bai, Q.; Crawford, J.; Xing, Y.; Lobo, M.K.; Bellinger, L.; Kramer, P.; et al. Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway-produced analgesic effect in a trigeminal neuropathic pain mouse model. Pain 2019, 160, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Araya, E.I.; Baggio, D.F.; Koren, L.O.; Andreatini, R.; Schwarting, R.K.W.; Zamponi, G.W.; Chichorro, J.G. Acute orofacial pain leads to prolonged changes in behavioral and affective pain components. Pain 2020, 161, 2830–2840. [Google Scholar] [CrossRef]
- Neisewander, J.L.; Pierce, R.C.; Bardo, M.T. Naloxone enhances the expression of morphine-induced conditioned place preference. Psychopharmacology 1990, 100, 201–205. [Google Scholar] [CrossRef]
- Kochi, T.; Nakamura, Y.; Ma, S.; Hisaoka-Nakashima, K.; Wang, D.; Liu, K.; Wake, H.; Nishibori, M.; Irifune, M.; Morioka, N. Pretreatment with High Mobility Group Box-1 Monoclonal Antibody Prevents the Onset of Trigeminal Neuropathy in Mice with a Distal Infraorbital Nerve Chronic Constriction Injury. Molecules 2021, 26, 2035. [Google Scholar] [CrossRef]
- Nones, C.F.M.; Claudino, R.F.; Ferreira, L.E.N.; Dos Reis, R.C.; King, T.; Chichorro, J.G. Descending facilitatory pain pathways mediate ongoing pain and tactile hypersensitivity in a rat model of trigeminal neuropathic pain. Neurosci. Lett. 2017, 644, 18–23. [Google Scholar] [CrossRef]
- Pineda-Farias, J.B.; Loeza-Alcocer, E.; Nagarajan, V.; Gold, M.S.; Sekula, R.F., Jr. Mechanisms Underlying the Selective Therapeutic Efficacy of Carbamazepine for Attenuation of Trigeminal Nerve Injury Pain. J. Neurosci. 2021, 41, 8991–9007. [Google Scholar] [CrossRef]
- Westlund, K.N.; Montera, M.A.; Goins, A.E.; Alles, S.R.A.; Afaghpour-Becklund, M.; Bartel, R.; Durvasula, R.; Kunamneni, A. Single-chain Fragment variable antibody targeting cholecystokinin-B receptor for pain reduction. Neurobiol. Pain 2021, 10, 100067. [Google Scholar] [CrossRef]
- Liu, S.; Shu, H.; Crawford, J.; Ma, Y.; Li, C.; Tao, F. Optogenetic Activation of Dopamine Receptor D1 and D2 Neurons in Anterior Cingulate Cortex Differentially Modulates Trigeminal Neuropathic Pain. Mol. Neurobiol. 2020, 57, 4060–4068. [Google Scholar] [CrossRef]
- Napier, T.C.; Herrold, A.A.; de Wit, H. Using conditioned place preference to identify relapse prevention medications. Neurosci. Biobehav. Rev. 2013, 37, 2081–2086. [Google Scholar] [CrossRef] [Green Version]
- Bardo, M.T.; Bevins, R.A. Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology 2000, 153, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Romero-Reyes, M.; Akerman, S.; Nguyen, E.; Vijjeswarapu, A.; Hom, B.; Dong, H.W.; Charles, A.C. Spontaneous behavioral responses in the orofacial region: A model of trigeminal pain in mouse. Headache 2013, 53, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Clavelou, P.; Dallel, R.; Orliaguet, T.; Woda, A.; Raboisson, P. The orofacial formalin test in rats: Effects of different formalin concentrations. Pain 1995, 62, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Vos, B.P.; Strassman, A.M.; Maciewicz, R.J. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J. Neurosci. 1994, 14, 2708–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, B.P.; Hans, G.; Adriaensen, H. Behavioral assessment of facial pain in rats: Face grooming patterns after painful and non-painful sensory disturbances in the territory of the rat’s infraorbital nerve. Pain 1998, 76, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Luccarini, P.; Childeric, A.; Gaydier, A.M.; Voisin, D.; Dallel, R. The orofacial formalin test in the mouse: A behavioral model for studying physiology and modulation of trigeminal nociception. J. Pain 2006, 7, 908–914. [Google Scholar] [CrossRef]
- Oliver, V.L.; Thurston, S.E.; Lofgren, J.L. Using Cageside Measures to Evaluate Analgesic Efficacy in Mice (Mus musculus) after Surgery. J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 186–201. [Google Scholar] [PubMed]
- Turner, P.V.; Pang, D.S.; Lofgren, J.L. A Review of Pain Assessment Methods in Laboratory Rodents. Comp. Med. 2019, 69, 451–467. [Google Scholar] [CrossRef]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Mogil, J.S. Animal models of pain: Progress and challenges. Nat. Rev. Neurosci. 2009, 10, 283–294. [Google Scholar] [CrossRef]
- Mills, C.; LeBlond, D.; Joshi, S.; Zhu, C.; Hsieh, G.; Jacobson, P.; Meyer, M.; Decker, M. Estimating Efficacy and Drug ED50’s Using von Frey Thresholds: Impact of Weber’s Law and Log Transformation. J. Pain 2012, 13, 519–523. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Miguelanez-Medran, B.C.; Goicoechea, C. Animal models in the study and treatment of orofacial pain. J. Clin. Exp. Dent. 2019, 11, e382–e390. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Shu, H.; Crawford, J.; Xing, Y.; Tao, F. Resveratrol alleviates temporomandibular joint inflammatory pain by recovering disturbed gut microbiota. Brain Behav. Immun. 2020, 87, 455–464. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Liu, S.F.; Shu, H.; Yanagisawa, L.; Tao, F. Gut Microbiota Dysbiosis Enhances Migraine-Like Pain Via TNF alpha Upregulation. Mol. Neurobiol. 2020, 57, 461–468. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Liu, S.F.; Shu, H.; Xing, Y.; Tao, F. AMPA receptor GluA1 Ser831 phosphorylation is critical for nitroglycerin-induced migraine-like pain. Neuropharmacology 2018, 133, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Liu, S.; Tang, Y.; Schmidt, B.L.; Dolan, J.C.; Bellinger, L.L.; Kramer, P.R.; Bender, S.D.; Tao, F. A Pre-Existing Myogenic Temporomandibular Disorder Increases Trigeminal Calcitonin Gene-Related Peptide and Enhances Nitroglycerin-Induced Hypersensitivity in Mice. Int. J. Mol. Sci. 2020, 21, 4049. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xie, Q.F.; Li, K.; Light, A.R.; Fu, K.Y. Experimental occlusal interference induces long-term masticatory muscle hyperalgesia in rats. Pain 2009, 144, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Chu, Y.X.; Imai, S.; Yang, J.L.; Zou, S.P.; Mohammad, Z.; Wei, F.; Dubner, R.; Ren, K. Further observations on the behavioral and neural effects of bone marrow stromal cells in rodent pain models. Mol. Pain 2016, 12, 744806916658043. [Google Scholar] [CrossRef] [Green Version]
- Ren, K. An improved method for assessing mechanical allodynia in the rat. Physiol. Behav. 1999, 67, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Seino, H.; Seo, K.; Maeda, T.; Someya, G. Behavioural and histological observations of sensory impairment caused by tight ligation of the trigeminal nerve in mice. J. Neurosci. Methods 2009, 181, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bian, C.; Yang, J.; Arora, V.; Gao, Y.; Wei, F.; Chung, M.K. Ablation of TRPV1+ Afferent Terminals by Capsaicin Mediates Long-Lasting Analgesia for Trigeminal Neuropathic Pain. eNeuro 2020, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Guo, W.; Zou, S.; Ren, K.; Dubner, R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J. Neurosci. 2008, 28, 10482–10495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, H.L.; See, L.P.; Foster, W.; Pitake, S.; Gibbs, J.; Schmidt, B.; Mitchell, C.H.; Abdus-Saboor, I. Evoked and spontaneous pain assessment during tooth pulp injury. Sci. Rep. 2020, 10, 2759. [Google Scholar] [CrossRef] [Green Version]
- Krzyzanowska, A.; Pittolo, S.; Cabrerizo, M.; Sanchez-Lopez, J.; Krishnasamy, S.; Venero, C.; Avendano, C. Assessing nociceptive sensitivity in mouse models of inflammatory and neuropathic trigeminal pain. J. Neurosci. Methods 2011, 201, 46–54. [Google Scholar] [CrossRef]
- Aita, M.; Byers, M.R.; Chavkin, C.; Xu, M. Trigeminal injury causes kappa opioid-dependent allodynic, glial and immune cell responses in mice. Mol. Pain 2010, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Vuralli, D.; Wattiez, A.S.; Russo, A.F.; Bolay, H. Behavioral and cognitive animal models in headache research. J. Headache Pain 2019, 20, 11. [Google Scholar] [CrossRef] [Green Version]
- Avona, A.; Burgos-Vega, C.; Burton, M.D.; Akopian, A.N.; Price, T.J.; Dussor, G. Dural Calcitonin Gene-Related Peptide Produces Female-Specific Responses in Rodent Migraine Models. J. Neurosci. 2019, 39, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Chu, Y.; Han, L.; Li, M.; Li, Z.; LaVinka, P.C.; Sun, S.; Tang, Z.; Park, K.; Caterina, M.J.; et al. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron 2014, 81, 873–887. [Google Scholar] [CrossRef] [Green Version]
- Dixon, W. The up-and-down method for small samples. J. Am. Stat. Assoc. 1965, 60, 967–978. [Google Scholar] [CrossRef]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.A.; Hettlich, B.F.; Waln, A. The use of an electronic von Frey device for evaluation of sensory threshold in neurologically normal dogs and those with acute spinal cord injury. Vet. J. 2013, 197, 216–219. [Google Scholar] [CrossRef]
- Haranishi, Y.; Hara, K.; Terada, T. Analgesic potency of intrathecally administered punicalagin in rat neuropathic and inflammatory pain models. J. Nat. Med. 2022, 76, 314–320. [Google Scholar] [CrossRef]
- Liu, X.; Xie, Z.; Li, S.; He, J.; Cao, S.; Xiao, Z. PRG-1 relieves pain and depressive-like behaviors in rats of bone cancer pain by regulation of dendritic spine in hippocampus. Int. J. Biol. Sci. 2021, 17, 4005–4020. [Google Scholar] [CrossRef]
- Orock, A.; Louwies, T.; Ligon, C.O.; Mohammadi, E.; Greenwood-Van Meerveld, B. Environmental enrichment prevents stress-induced epigenetic changes in the expression of glucocorticoid receptor and corticotrophin releasing hormone in the central nucleus of the amygdala to inhibit visceral hypersensitivity. Exp. Neurol. 2021, 345, 113841. [Google Scholar] [CrossRef]
- Goto, T.; Nakagami, G.; Minematsu, T.; Shinoda, M.; Sanada, H. Measurement of mechanical withdrawal threshold on full-thickness cutaneous wounds in rats using the von Frey test. J. Wound Care 2019, 28, 762–772. [Google Scholar] [CrossRef]
- Diogenes, A.K.L.; Fechine, F.V.; Costa, B.A.; Soares, M.; Rocha, M.B.S.; Moraes Filho, M.O.; Lima Junior, E.M.; Vale, M.L. Concurrent validity of electronic von Frey as an assessment tool for burn associated pain. Burns 2020, 46, 1328–1336. [Google Scholar] [CrossRef]
- Pei, L.; Lin, C.Y.; Dai, J.P.; Yin, G.F. Facial pain induces the alteration of transient receptor potential vanilloid receptor 1 expression in rat trigeminal ganglion. Neurosci. Bull. 2007, 23, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Rossi, H.L.; Jenkins, A.C.; Kaufman, J.; Bhattacharyya, I.; Caudle, R.M.; Neubert, J.K. Characterization of Bilateral Trigeminal Constriction Injury Using an Operant Facial Pain Assay. Neuroscience 2012, 224, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Neubert, J.K.; Widmer, C.G.; Malphurs, W.; Rossi, H.L.; Vierck, C.J.; Caudle, R.M. Use of a novel thermal operant behavioral assay for characterization of orofacial pain sensitivity. Pain 2005, 116, 386–395. [Google Scholar] [CrossRef]
- Neubert, J.K.; King, C.; Malphurs, W.; Wong, F.; Weaver, J.P.; Jenkins, A.C.; Rossi, H.L.; Caudle, R.M. Characterization of mouse orofacial pain and the effects of lesioning TRPV1-expressing neurons on operant behavior. Mol. Pain 2008, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.M.; Jenkins, A.C.; Caudle, R.M.; Neubert, J.K. The effects of a co-application of menthol and capsaicin on nociceptive behaviors of the rat on the operant orofacial pain assessment device. PLoS ONE 2014, 9, e89137. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.M.; Mills, R.; Nolan, T.A.; Jenkins, A.C.; Mustafa, G.; Lloyd, C.; Caudle, R.M.; Neubert, J.K. Use of the Operant Orofacial Pain Assessment Device (OPAD) to Measure Changes in Nociceptive Behavior. Jove-J. Vis. Exp. 2013, 76, e50336. [Google Scholar]
- Thut, P.D.; Hermanstyne, T.O.; Flake, N.M.; Gold, M.S. An operant conditioning model to assess changes in feeding behavior associated with temporomandibular joint inflammation in the rat. J. Orofac. Pain 2007, 21, 7–18. [Google Scholar]
- Harte, S.E.; Meyers, J.B.; Donahue, R.R.; Taylor, B.K.; Morrow, T.J. Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior. PLoS ONE 2016, 11, e0150164. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Rainville, P.; Lautenbacher, S. Operant conditioning of facial displays of pain. Psychosom. Med. 2011, 73, 422–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, J.C.; Lam, D.K.; Achdjian, S.H.; Schmidt, B.L. The dolognawmeter: A novel instrument and assay to quantify nociception in rodent models of orofacial pain. J. Neurosci. Methods 2010, 187, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Naik, K.; Janal, M.N.; Chen, J.; Bandary, D.; Brar, B.; Zhang, S.; Dolan, J.C.; Schmidt, B.L.; Albertson, D.G.; Bhattacharya, A. The Histopathology of Oral Cancer Pain in a Mouse Model and a Human Cohort. J. Dent. Res. 2021, 100, 194–200. [Google Scholar] [CrossRef]
- Hall, B.E.; Zhang, L.; Sun, Z.J.; Utreras, E.; Prochazkova, M.; Cho, A.; Terse, A.; Arany, P.; Dolan, J.C.; Schmidt, B.L.; et al. Conditional TNF-alpha Overexpression in the Tooth and Alveolar Bone Results in Painful Pulpitis and Osteitis. J. Dent. Res. 2016, 95, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Daunton, N.G. Differentiation of bite force response in the rat. J. Comp. Physiol. Psychol. 1973, 85, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, K.; Yi, D.; Oh, C.D.; Chen, D. Nociceptive behavioural assessments in mouse models of temporomandibular joint disorders. Int. J. Oral Sci. 2020, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Benoliel, R.; Herzberg, U.; Mannes, A.J.; Caudle, R.M.; Young, A.; Eliav, E. Bite force and pattern measurements for dental pain assessment in the rat. Neurosci. Lett. 2008, 447, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Ro, J.Y. Bite force measurement in awake rats: A behavioral model for persistent orofacial muscle pain and hyperalgesia. J. Orofac. Pain 2005, 19, 159–167. [Google Scholar] [PubMed]
- Kim, S.H.; Son, C.N.; Lee, H.J.; Cho, H.C.; Jung, S.W.; Hur, J.A.; Baek, W.K.; Jung, H.R.; Hong, J.H. Infliximab partially alleviates the bite force reduction in a mouse model of temporomandibular joint pain. J. Korean Med. Sci. 2015, 30, 552–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, P.; Strassman, A.; Maciewicz, R. Is the jaw-opening reflex a valid model of pain? Brain Res. 1985, 357, 137–146. [Google Scholar] [CrossRef]
- Choi, J.Y.; Oh, K.; Kim, B.J.; Chung, C.S.; Koh, S.B.; Park, K.W. Usefulness of a photophobia questionnaire in patients with migraine. Cephalalgia 2009, 29, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Sufka, K.J.; Staszko, S.M.; Johnson, A.P.; Davis, M.E.; Davis, R.E.; Smitherman, T.A. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J. Headache Pain 2016, 17, 40. [Google Scholar] [CrossRef] [Green Version]
- Rossi, H.L.; Broadhurst, K.A.; Luu, A.S.K.; Lara, O.; Kothari, S.D.; Mohapatra, D.P.; Recober, A. Abnormal trigeminal sensory processing in obese mice. Pain 2016, 157, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Mason, B.N.; Kaiser, E.A.; Kuburas, A.; Loomis, M.M.; Latham, J.A.; Garcia-Martinez, L.F.; Russo, A.F. Induction of Migraine-Like Photophobic Behavior in Mice by Both Peripheral and Central CGRP Mechanisms. J. Neurosci. 2017, 37, 204–216. [Google Scholar] [CrossRef] [Green Version]
- Bourin, M.; Hascoet, M. The mouse light/dark box test. Eur. J. Pharmacol. 2003, 463, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Tashiro, A.; Chang, Z.; Bereiter, D.A. Bright light activates a trigeminal nociceptive pathway. Pain 2010, 149, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.M.; Piasecki, C.C.; Lonstein, J.S. Use of the light-dark box to compare the anxiety-related behavior of virgin and postpartum female rats. Pharmacol. Biochem. Behav. 2011, 100, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, L.B.; Burke, J.F.; Fu, A.H.; McCabe, J.T. Neuropsychiatric Symptom Modeling in Male and Female C57BL/6J Mice after Experimental Traumatic Brain Injury. J. Neurotrauma 2017, 34, 890–905. [Google Scholar] [CrossRef] [Green Version]
- Eltokhi, A.; Kurpiers, B.; Pitzer, C. Behavioral tests assessing neuropsychiatric phenotypes in adolescent mice reveal strain- and sex-specific effects. Sci. Rep. 2020, 10, 11263. [Google Scholar] [CrossRef] [PubMed]
- Noseda, R.; Bernstein, C.A.; Nir, R.R.; Lee, A.J.; Fulton, A.B.; Bertisch, S.M.; Hovaguimian, A.; Cestari, D.M.; Saavedra-Walker, R.; Borsook, D.; et al. Migraine photophobia originating in cone-driven retinal pathways. Brain 2016, 139, 1971–1986. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.M.; Digre, K.; Uddin, D.; Hung, M.; Blitzer, A.; Bounsanga, J.; Voss, M.W.; Katz, B.J. Validation of a photophobia symptom impact scale. Cephalalgia 2019, 39, 1445–1454. [Google Scholar] [CrossRef]
Preconditioning Phase (without Optogenetic Stimulation) | Conditioning Phase (Paring with Optogenetic Stimulation) | Testing Phase (without Optogenetic Stimulation) | ||||
---|---|---|---|---|---|---|
Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 |
Orofacial Pain | Animal Models | Pain Assessment Methods |
---|---|---|
Myofascial pain | CFA injection into masseter muscle | Facial grooming, operant behavior test, bite force test |
TMJ pain | CFA injection into TMJ | Grimace scale, von Frey test, dolognawmeter |
Orofacial neuropathic pain | CCI-ION | Facial grooming, von Frey test, CPP or RTPP |
Migraine-like pain | Systemic injection of NTG; Dural injection of inflammatory soup | Grimace scale, von Frey test, light aversion test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Crawford, J.; Tao, F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sci. 2023, 13, 390. https://doi.org/10.3390/brainsci13030390
Liu S, Crawford J, Tao F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sciences. 2023; 13(3):390. https://doi.org/10.3390/brainsci13030390
Chicago/Turabian StyleLiu, Sufang, Joshua Crawford, and Feng Tao. 2023. "Assessing Orofacial Pain Behaviors in Animal Models: A Review" Brain Sciences 13, no. 3: 390. https://doi.org/10.3390/brainsci13030390
APA StyleLiu, S., Crawford, J., & Tao, F. (2023). Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sciences, 13(3), 390. https://doi.org/10.3390/brainsci13030390