Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Comparisons between Patients with Lower Income and Higher Income
3.2. Association between Income and Post-Stroke Cognitive Functions and MRI Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Yoshimura, S.; Nakai, M.; Koga, M.; Sasahara, Y.; Sonoda, K.; Kamiyama, K.; Yazawa, Y.; Kawada, S.; Sasaki, M.; et al. Twenty-Year Change in Severity and Outcome of Ischemic and Hemorrhagic Strokes. JAMA Neurol. 2022, 79, 61. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.W.; Crawford, J.D.; Desmond, D.W.; Godefroy, O.; Jokinen, H.; Mahinrad, S.; Bae, H.-J.; Lim, J.-S.; Köhler, S.; Douven, E.; et al. Profile of and Risk Factors for Poststroke Cognitive Impairment in Diverse Ethnoregional Groups. Neurology 2019, 93, e2257–e2271. [Google Scholar] [CrossRef] [PubMed]
- The PICASSO Investigators; Kwon, H.S.; Lee, D.; Lee, M.H.; Yu, S.; Lim, J.-S.; Yu, K.-H.; Oh, M.S.; Lee, J.-S.; Hong, K.-S.; et al. Post-Stroke Cognitive Impairment as an Independent Predictor of Ischemic Stroke Recurrence: PICASSO Sub-Study. J. Neurol. 2020, 267, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Nys, G.M.S.; van Zandvoort, M.J.E.; de Kort, P.L.M.; van der Worp, H.B.; Jansen, B.P.W.; Algra, A.; de Haan, E.H.F.; Kappelle, L.J. The Prognostic Value of Domain-Specific Cognitive Abilities in Acute First-Ever Stroke. Neurology 2005, 64, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Oksala, N.K.J.; Jokinen, H.; Melkas, S.; Oksala, A.; Pohjasvaara, T.; Hietanen, M.; Vataja, R.; Kaste, M.; Karhunen, P.J.; Erkinjuntti, T. Cognitive Impairment Predicts Poststroke Death in Long-Term Follow-Up. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef]
- Marden, J.R.; Tchetgen Tchetgen, E.J.; Kawachi, I.; Glymour, M.M. Contribution of Socioeconomic Status at 3 Life-Course Periods to Late-Life Memory Function and Decline: Early and Late Predictors of Dementia Risk. Am. J. Epidemiol. 2017, 186, 805–814. [Google Scholar] [CrossRef]
- Cadar, D.; Lassale, C.; Davies, H.; Llewellyn, D.J.; Batty, G.D.; Steptoe, A. Individual and Area-Based Socioeconomic Factors Associated with Dementia Incidence in England: Evidence From a 12-Year Follow-up in the English Longitudinal Study of Ageing. JAMA Psychiatry 2018, 75, 723. [Google Scholar] [CrossRef]
- Bettger, J.P.; Zhao, X.; Bushnell, C.; Zimmer, L.; Pan, W.; Williams, L.S.; Peterson, E.D. The Association between Socioeconomic Status and Disability after Stroke: Findings from the Adherence EValuation After Ischemic Stroke Longitudinal (AVAIL) Registry. BMC Public Health 2014, 14, 281. [Google Scholar] [CrossRef]
- Akyea, R.K.; Vinogradova, Y.; Qureshi, N.; Patel, R.S.; Kontopantelis, E.; Ntaios, G.; Asselbergs, F.W.; Kai, J.; Weng, S.F. Sex, Age, and Socioeconomic Differences in Nonfatal Stroke Incidence and Subsequent Major Adverse Outcomes. Stroke 2021, 52, 396–405. [Google Scholar] [CrossRef]
- Duncan, G.J.; Magnuson, K. Socioeconomic Status and Cognitive Functioning: Moving from Correlation to Causation: Socioeconomic Status and Cognitive Functioning. WIREs Cogn. Sci. 2012, 3, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.J.; Daly, M.C.; McDonough, P.; Williams, D.R. Optimal Indicators of Socioeconomic Status for Health Research. Am. J. Public Health 2002, 92, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Miu, J.; Negin, J.; Salinas-Rodriguez, A.; Manrique-Espinoza, B.; Sosa-Ortiz, A.L.; Cumming, R.; Kowal, P. Factors Associated with Cognitive Function in Older Adults in Mexico. Glob. Health Action 2016, 9, 30747. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cao, Q. Poverty Increases the Risk of Incident Cognitive Impairment among Older Adults: A Longitudinal Study in China. Aging Ment. Health 2020, 24, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Zeki Al Hazzouri, A.; Elfassy, T.; Sidney, S.; Jacobs, D.; Pérez Stable, E.J.; Yaffe, K. Sustained Economic Hardship and Cognitive Function: The Coronary Artery Risk Development in Young Adults Study. Am. J. Prev. Med. 2017, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, W.; Kobayashi, L.C. Duration of Poverty and Subsequent Cognitive Function and Decline Among Older Adults in China, 2005–2018. Neurology 2021, 97, e739–e746. [Google Scholar] [CrossRef] [PubMed]
- Katzan, I.L.; Thompson, N.R.; Uchino, K.; Lapin, B. The Most Affected Health Domains after Ischemic Stroke. Neurology 2018, 90, e1364–e1371. [Google Scholar] [CrossRef] [PubMed]
- Gianaros, P.J.; Kuan, D.C.-H.; Marsland, A.L.; Sheu, L.K.; Hackman, D.A.; Miller, K.G.; Manuck, S.B. Community Socioeconomic Disadvantage in Midlife Relates to Cortical Morphology via Neuroendocrine and Cardiometabolic Pathways. Cereb. Cortex 2015, 27, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Noble, K.G.; Grieve, S.M.; Korgaonkar, M.S.; Engelhardt, L.E.; Griffith, E.Y.; Williams, L.M.; Brickman, A.M. Hippocampal Volume Varies with Educational Attainment across the Life-Span. Front. Hum. Neurosci. 2012, 6, 307. [Google Scholar] [CrossRef]
- Elbejjani, M.; Fuhrer, R.; Abrahamowicz, M.; Mazoyer, B.; Crivello, F.; Tzourio, C.; Dufouil, C. Life-Course Socioeconomic Position and Hippocampal Atrophy in a Prospective Cohort of Older Adults. Psychosom. Med. 2017, 79, 14–23. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Gianaros, P.J. Central Role of the Brain in Stress and Adaptation: Links to Socioeconomic Status, Health, and Disease: Central Links between Stress and SES. Ann. N. Y. Acad. Sci. 2010, 1186, 190–222. [Google Scholar] [CrossRef] [PubMed]
- Casolla, B.; Caparros, F.; Cordonnier, C.; Bombois, S.; Hénon, H.; Bordet, R.; Orzi, F.; Leys, D. Biological and Imaging Predictors of Cognitive Impairment after Stroke: A Systematic Review. J. Neurol. 2019, 266, 2593–2604. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.L.; Ramirez, J.; Berezuk, C.; Duchesne, S.; Black, S.E.; for the Alzheimer’s Disease Neuroimaging Initiative. Predicting Alzheimer’s Disease Development: A Comparison of Cognitive Criteria and Associated Neuroimaging Biomarkers. Alz. Res. Ther. 2015, 7, 68. [Google Scholar] [CrossRef]
- Bigler, E.D.; Neeley, E.S.; Miller, M.J.; Tate, D.F.; Rice, S.A.; Cleavinger, H.; Wolfson, L.; Tschanz, J.; Welsh-Bohmer, K. Cerebral Volume Loss, Cognitive Deficit and Neuropsychological Performance: Comparative Measures of Brain Atrophy: I. Dementia. J. Int. Neuropsychol. Soc. 2004, 10, 442–452. [Google Scholar] [CrossRef]
- Bigler, E.D.; Tate, D.F. Brain Volume, Intracranial Volume, and Dementia. Investig. Radiol. 2001, 36, 539–546. [Google Scholar] [CrossRef]
- Dougherty, R.J.; Moonen, J.; Yaffe, K.; Sidney, S.; Davatzikos, C.; Habes, M.; Launer, L.J. Smoking Mediates the Relationship between SES and Brain Volume: The CARDIA Study. PLoS ONE 2020, 15, e0239548. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, L.; Min, G.; Wang, Q.; Zhao, Y.; Li, Y. Overview of the Complex Figure Test and Its Clinical Application in Neuropsychiatric Disorders, Including Copying and Recall. Front. Neurol. 2021, 12, 1304. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef]
- Oosterman, J.M.; Vogels, R.L.C.; van Harten, B.; Gouw, A.A.; Poggesi, A.; Scheltens, P.; Kessels, R.P.C.; Scherder, E.J.A. Assessing Mental Flexibility: Neuroanatomical and Neuropsychological Correlates of the Trail Making Test in Elderly People. Clin. Neuropsychol. 2010, 24, 203–219. [Google Scholar] [CrossRef]
- Sheridan, L.; Fitzgerald, H.; Adams, K.; Nigg, J.; Martel, M.; Puttler, L.; Wong, M.; Zucker, R. Normative Symbol Digit Modalities Test Performance in a Community-Based Sample. Arch. Clin. Neuropsychol. 2006, 21, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, T.; Hill, J.L.; Mellow, A.M.; Lawlor, B.A.; Gundersheimer, J.; Newhouse, P.A.; Grafman, J.H. Clock Drawing in Alzheimer’s Disease: A Novel Measure of Dementia Severity. J. Am. Geriatr. Soc. 1989, 37, 725–729. [Google Scholar] [CrossRef]
- Puy, L.; Barbay, M.; Roussel, M.; Canaple, S.; Lamy, C.; Arnoux, A.; Leclercq, C.; Mas, J.-L.; Tasseel-Ponche, S.; Constans, J.-M.; et al. Neuroimaging Determinants of Poststroke Cognitive Performance: The GRECogVASC Study. Stroke 2018, 49, 2666–2673. [Google Scholar] [CrossRef] [PubMed]
- Marshall, I.J.; Wang, Y.; Crichton, S.; McKevitt, C.; Rudd, A.G.; Wolfe, C.D.A. The Effects of Socioeconomic Status on Stroke Risk and Outcomes. Lancet Neurol. 2015, 14, 1206–1218. [Google Scholar] [CrossRef]
- Douiri, A.; Rudd, A.G.; Wolfe, C.D.A. Prevalence of Poststroke Cognitive Impairment: South London Stroke Register 1995–2010. Stroke 2013, 44, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.S.; Chong, M.S.; Sahadevan, S. Utility of the Clinical Dementia Rating in Asian Populations. Clin. Med. Res. 2007, 5, 61–70. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Emory, E. Executive Function and the Frontal Lobes: A Meta-Analytic Review. Neuropsychol. Rev. 2006, 16, 17–42. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Hannay, H.J.; Fischer, J.S. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004; ISBN 978-0-19-511121-7. [Google Scholar]
- Moorhouse, P.; Rockwood, K. Vascular Cognitive Impairment: Current Concepts and Clinical Developments. Lancet Neurol. 2008, 7, 246–255. [Google Scholar] [CrossRef]
- Grasset, L.; Glymour, M.M.; Elfassy, T.; Swift, S.L.; Yaffe, K.; Singh-Manoux, A.; Zeki Al Hazzouri, A. Relation between 20-Year Income Volatility and Brain Health in Midlife: The CARDIA Study. Neurology 2019, 93, e1890–e1899. [Google Scholar] [CrossRef]
- Hunt, J.F.V.; Buckingham, W.; Kim, A.J.; Oh, J.; Vogt, N.M.; Jonaitis, E.M.; Hunt, T.K.; Zuelsdorff, M.; Powell, R.; Norton, D.; et al. Association of Neighborhood-Level Disadvantage with Cerebral and Hippocampal Volume. JAMA Neurol. 2020, 77, 451. [Google Scholar] [CrossRef]
- Waldstein, S.R.; Dore, G.A.; Davatzikos, C.; Katzel, L.I.; Gullapalli, R.; Seliger, S.L.; Kouo, T.; Rosenberger, W.F.; Erus, G.; Evans, M.K.; et al. Differential Associations of Socioeconomic Status with Global Brain Volumes and White Matter Lesions in African American and White Adults: The HANDLS SCAN Study. Psychosom. Med. 2017, 79, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Conner, S.C.; Himali, J.J.; Maillard, P.; DeCarli, C.S.; Beiser, A.S.; Vasan, R.S.; Seshadri, S. Circulating Cortisol and Cognitive and Structural Brain Measures: The Framingham Heart Study. Neurology 2018, 91, e1961–e1970. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, T.; Meyerhoff, D.; Murray, D. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults. IJERPH 2015, 12, 8198–8213. [Google Scholar] [CrossRef] [PubMed]
- Gow, A.J.; Bastin, M.E.; Munoz Maniega, S.; Valdes Hernandez, M.C.; Morris, Z.; Murray, C.; Royle, N.A.; Starr, J.M.; Deary, I.J.; Wardlaw, J.M. Neuroprotective Lifestyles and the Aging Brain: Activity, Atrophy, and White Matter Integrity. Neurology 2012, 79, 1802–1808. [Google Scholar] [CrossRef]
- Ho, A.J.; Raji, C.A.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Dinov, I.D.; Stein, J.L.; Rosano, C.; Toga, A.W.; et al. The Effects of Physical Activity, Education, and Body Mass Index on the Aging Brain. Hum. Brain Mapp. 2011, 32, 1371–1382. [Google Scholar] [CrossRef]
- Muller, M.; Appelman, A.P.; van der Graaf, Y.; Vincken, K.L.; Willem, P.T.M.; Geerlings, M.I. Brain Atrophy and Cognition: Interaction with Cerebrovascular Pathology? Neurobiol. Aging 2011, 32, 885–893. [Google Scholar] [CrossRef]
- Xu, X.; Phua, A.; Collinson, S.L.; Hilal, S.; Ikram, M.K.; Wong, T.Y.; Cheng, C.Y.; Venketasubramanian, N.; Chen, C. Additive Effect of Cerebral Atrophy on Cognition in Dementia-Free Elderly with Cerebrovascular Disease. Stroke Vasc. Neurol. 2019, 4, 135–140. [Google Scholar] [CrossRef]
- Yatawara, C.; Ng, K.P.; Chander, R.; Kandiah, N. Associations between Lesions and Domain-Specific Cognitive Decline in Poststroke Dementia. Neurology 2018, 91, e45–e54. [Google Scholar] [CrossRef]
- Satz, P. Brain Reserve Capacity on Symptom Onset After Brain Injury: A Formulation and Review of Evidence for Threshold Theory. Neuropsychology 1993, 7, 273. [Google Scholar] [CrossRef]
- Shaked, D.; Katzel, L.I.; Seliger, S.L.; Gullapalli, R.P.; Davatzikos, C.; Erus, G.; Evans, M.K.; Zonderman, A.B.; Waldstein, S.R. Dorsolateral Prefrontal Cortex Volume as a Mediator between Socioeconomic Status and Executive Function. Neuropsychology 2018, 32, 985–995. [Google Scholar] [CrossRef]
- Yuan, P.; Raz, N. Prefrontal Cortex and Executive Functions in Healthy Adults: A Meta-Analysis of Structural Neuroimaging Studies. Neurosci. Biobehav. Rev. 2014, 42, 180–192. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 294) | Income ≤ 5000 (n = 178) | Income > 5000 (n = 116) | p Value |
---|---|---|---|---|
Age, mean (SD), y | 58.3 (9.2) | 57.8 (9.1) | 59.0 (9.4) | 0.269 |
Gender, male, n (%) | 226 (76.9%) | 134 (75.3%) | 92 (79.3%) | 0.423 |
Education, mean (SD), y | 10.7 (3.3) | 9.9 (2.9) | 12.0 (3.5) | <0.001 |
Diabetes, n (%) | 93 (31.6%) | 51 (28.7%) | 42 (36.2%) | 0.173 |
Hypertension, n (%) | 167 (56.8%) | 98 (55.1%) | 69 (59.5%) | 0.454 |
Hyperlipidemia, n (%) | 64 (21.8%) | 40 (22.5%) | 24 (20.7%) | 0.717 |
Smoking, n (%) | 132 (44.9%) | 80 (44.9%) | 52 (44.8%) | 0.984 |
Drinking, n (%) | 107 (36.4%) | 63 (35.4%) | 44 (37.9%) | 0.658 |
Neuropsychological Tests a | Income ≤ 5000 | Income > 5000 | p Value |
---|---|---|---|
MMSE | 23.9 (4.6) | 25.5 (2.8) | <0.001 |
MoCA | 19.8 (5.3) | 21.6 (4.5) | 0.003 |
Global CDR score | 0.3 (0.4) | 0.2 (0.2) | <0.001 |
Total CDR score | 1.0 (1.5) | 0.5 (0.8) | <0.001 |
DST total | 10.8 (2.8) | 11.7 (2.8) | 0.004 |
RAVLT total learning | 32.1 (11.4) | 35.8 (12.0) | 0.008 |
RAVLT long-delayed recall | 5.4 (3.7) | 6.0 (4.0) | 0.149 |
RAVLT recognition | 7.7 (7.3) | 7.7 (8.5) | 0.928 |
ROCF copy | 28.6 (32.0) | 24.6 (11.9) | 0.395 |
ROCF immediate recall | 13.0 (10.3) | 11.7 (10.4) | 0.475 |
ROCF long-delayed recall | 11.9 (10.0) | 11.1 (10.3) | 0.669 |
ROCF recognition | 17.7 (3.1) | 17.9 (3.3) | 0.441 |
Stroop D time | 25.7 (11.4) | 21.5 (7.7) | <0.001 |
Stroop W time | 34.9 (23.6) | 27.9 (10.2) | 0.001 |
Stroop C time | 41.0 (19.7) | 35.0 (12.2) | 0.002 |
TMT A | 62.5 (31.0) | 54.8 (34.4) | 0.173 |
TMT B | 139.5 (98.3) | 125.0 (82.2) | 0.363 |
SDMT | 27.5 (13.6) | 31.5 (14.6) | 0.082 |
VFT | 14.1 (4.8) | 16.4 (5.2) | <0.001 |
BNT | 21.0 (4.2) | 22.8 (3.5) | <0.001 |
CDT | 8.0 (2.5) | 8.3 (2.1) | 0.210 |
NPI | 2.0 (5.9) | 1.3 (2.9) | 0.261 |
GDS | 3.0 (2.7) | 3.1 (2.7) | 0.808 |
MRI Outcomes | Income ≤ 5000 | Income > 5000 | p Value |
---|---|---|---|
Left cortex volume a | 224,321.8 (21,002.0) | 221,565.4 (20,003.6) | 0.263 |
Right cortex volume a | 223,867.0 (21,842.3) | 221,201.2 (19,530.9) | 0.287 |
White matter volume a | 457,446.2 (54,594.2) | 453,105.5 (51,407.8) | 0.496 |
Gray matter volume a | 604,332.8 (53,542.4) | 597,600.6 (50,852.4) | 0.283 |
TBV a | 1,117,680.1 (105,441.6) | 1,108,126.8 (101,394.5) | 0.441 |
TBV/TICV ratio b | 74.4 (3.8) | 75.5 (4.6) | 0.022 |
Left hippocampus volume a | 3523.2 (363.1) | 3483.8 (408.4) | 0.387 |
Right hippocampus volume a | 3652.4 (401.9) | 3573.4 (370.8) | 0.091 |
Left mean cortical thickness c | 2.4 (0.1) | 2.4 (0.1) | 0.352 |
Right mean cortical thickness c | 2.4 (0.1) | 2.4 (0.1) | 0.399 |
Dependent Variables a | Standardized β Coefficient | 95%CI | p Value |
---|---|---|---|
MMSE | 0.094 | (−1.108 to 1.653) | 0.085 |
MoCA | 0.061 | (−0.413 to 1.663) | 0.237 |
Global CDR score | −0.120 | (−0.163 to −0.005) | 0.038 |
Total CDR score | −0.147 | (−0.689 to −0.088) | 0.011 |
DST total | 0.110 | (−0.026 to 1.277) | 0.060 |
RAVLT total learning | 0.086 | (−0.490 to 4.604) | 0.113 |
Stroop D time | −0.163 | (−5.837 to −0.951) | 0.007 |
Stroop W time | −0.158 | (−11.153 to −1.517) | 0.010 |
Stroop C time | −0.144 | (−9.181 to −0.946) | 0.016 |
VFT | 0.142 | (0.308 to 2.630) | 0.013 |
BNT | 0.113 | (0.060 to 1.811) | 0.036 |
TBV/TICV ratio | 0.166 | (0.004 to 0.024) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Wang, Y.; Guo, L.; Li, S. Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism. Brain Sci. 2023, 13, 363. https://doi.org/10.3390/brainsci13020363
Tian J, Wang Y, Guo L, Li S. Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism. Brain Sciences. 2023; 13(2):363. https://doi.org/10.3390/brainsci13020363
Chicago/Turabian StyleTian, Jingyuan, Yue Wang, Li Guo, and Shiping Li. 2023. "Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism" Brain Sciences 13, no. 2: 363. https://doi.org/10.3390/brainsci13020363
APA StyleTian, J., Wang, Y., Guo, L., & Li, S. (2023). Association of Income with Post-Stroke Cognition and the Underlying Neuroanatomical Mechanism. Brain Sciences, 13(2), 363. https://doi.org/10.3390/brainsci13020363