New Insights into Potential Biomarkers in Patients with Mild Cognitive Impairment Occurring in the Prodromal Stage of Dementia with Lewy Bodies
Abstract
:1. Prodromal Dementia with Lewy Bodies with MCI
2. Methods
3. Clinical Assessment Strategies
3.1. Autonomic Symptom-Assessment Strategies
3.2. Neuropsychological Assessment Strategies
3.3. Speech Assessment Strategies
3.4. Olfactory Function Assessment
3.5. Inference of Clinical Assessment Strategies
4. Biofluid Biomarker
5. Electroencephalography
6. Neuroimaging Biomarkers
6.1. 18F Fluorodesoxyglucose Positron Emission Tomography
6.2. Magnetic Resonance Imaging
7. Discussion
7.1. Limitations
7.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnaoutoglou, N.A.; O’Brien, J.T.; Underwood, B.R. Dementia with Lewy bodies—From scientific knowledge to clinical insights. Nat. Rev. Neurol. 2019, 15, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.-P.; McKeith, I.G.; Burn, D.J.; Boeve, B.F.; Weintraub, D.; Bamford, C.; Allan, L.M.; Thomas, A.J.; O’Brien, J.T. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020, 19, 157–169. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.G.; Ferman, T.J.; Thomas, A.J.; Blanc, F.; Boeve, B.F.; Fujishiro, H.; Kantarci, K.; Muscio, C.; O’Brien, J.T.; Postuma, R.B.; et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 2020, 94, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.; Müller, S.J.; Khadhraoui, E.; Riedel, C.H.; Langer, P.; Wiltfang, J.; Timäus, C.-A.; Bouter, C.; Ernst, M.; Lange, C. Metric magnetic resonance imaging analysis reveals pronounced substantia-innominata atrophy in dementia with Lewy bodies with a psychiatric onset. Front. Aging Neurosci. 2022, 14, 815813. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.; Lange, C.; Timäus, C.; Wiltfang, J.; Bouter, C. Assessing Nigrostriatal Dopaminergic Pathways via 123I-FP-CIT SPECT in Dementia with Lewy Bodies in a Psychiatric Patient Cohort. Front. Aging Neurosci. 2021, 13, 672956. [Google Scholar] [CrossRef]
- Richardson, S.; Lawson, R.A.; Price, A.; Taylor, J.P. Challenges in diagnosis and management of delirium in Lewy body disease. Acta Psychiatr. Scand. 2022. ahead of print. [Google Scholar] [CrossRef]
- Fujishiro, H.; Kawakami, I.; Oshima, K.; Niizato, K.; Iritani, S. Delirium prior to dementia as a clinical phenotype of Lewy body disease: An autopsied case report. Int. Psychogeriatr. 2017, 29, 687–689. [Google Scholar] [CrossRef]
- O’Dowd, S.; Schumacher, J.; Burn, D.J.; Bonanni, L.; Onofrj, M.; Thomas, A.; Taylor, J.P. Fluctuating cognition in the Lewy body dementias. Brain 2019, 142, 3338–3350. [Google Scholar] [CrossRef]
- Ciafone, J.; Little, B.; Thomas, A.J.; Gallagher, P. The neuropsychological profile of mild cognitive impairment in Lewy body dementias. J. Int. Neuropsychol. Soc. 2020, 26, 210–225. [Google Scholar] [CrossRef]
- Thomas, A.J.; Donaghy, P.; Roberts, G.; Colloby, S.J.; Barnett, N.A.; Petrides, G.; Lloyd, J.; Olsen, K.; Taylor, J.P.; McKeith, I.; et al. Diagnostic accuracy of dopaminergic imaging in prodromal dementia with Lewy bodies. Psychol. Med. 2019, 49, 396–402. [Google Scholar] [CrossRef]
- Phillips, J.R.; Matar, E.; Ehgoetz Martens, K.A.; Moustafa, A.A.; Halliday, G.M.; Lewis, S.J.G. Exploring the Sensitivity of Prodromal Dementia with Lewy Bodies Research Criteria. Brain Sci. 2022, 12, 1594. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Chau, S.W.H.; Man Yu, M.W.; Chan, N.Y.; Chan, J.W.Y.; Li, S.X.; Huang, B.; Wang, J.; Feng, H.; et al. Evolution of Prodromal REM Sleep Behavior Disorder to Neurodegeneration: A Retrospective Longitudinal Case-Control Study. Neurology 2022, 99, e627–e637. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Kameyama, M.; Tanaka, N.; Sengoku, R.; Orita, M.; Furuta, K.; Iwata, A.; Arai, T.; Maruyama, H.; Saito, Y.; et al. Autopsy Validation of the Diagnostic Accuracy of 123I-Metaiodobenzylguanidine Myocardial Scintigraphy for Lewy Body Disease. Neurology 2022, 98, e1648–e1659. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, C.A.; Frith, J.; Donaghy, P.C.; Barker, S.A.H.; Durcan, R.; Lawley, S.; Barnett, N.; Firbank, M.; Roberts, G.; Taylor, J.; et al. Assessment of autonomic symptoms may assist with early identification of mild cognitive impairment with Lewy bodies. Int. J. Geriatr. Psychiatry 2022, 37, 1–8. [Google Scholar] [CrossRef]
- Hamilton, C.A.; Frith, J.; Donaghy, P.C.; Barker, S.A.H.; Durcan, R.; Lawley, S.; Barnett, N.; Firbank, M.; Roberts, G.; Taylor, J.; et al. Blood pressure and heart rate responses to orthostatic challenge and Valsalva manoeuvre in mild cognitive impairment with Lewy bodies. Int. J. Geriatr. Psychiatry 2022, 37. ahead of print. [Google Scholar] [CrossRef]
- Waters, A.B.; Williamson, J.B.; Kiselica, A.M. Psychometric properties of the Autonomic Symptoms Checklist in the Lewy body disease module of the uniform dataset. Int. J. Geriatr. Psychiatry 2022, 37, 12. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Hu, W.; Ji, Y. Frequency, Severity, and Duration of Autonomic Symptoms in Patients of Prodromal Dementia with Lewy Bodies. J. Alzheimers Dis. 2022, 89, 923–929. [Google Scholar] [CrossRef]
- Hu, W.; Liu, S.; Wang, F.; Zhu, H.; Du, X.; Ma, L.; Gan, J.; Wu, H.; Wang, X.; Ji, Y. Autonomic symptoms are predictive of dementia with Lewy bodies. Parkinsonism Relat. Disord. 2022, 95, 1–4. [Google Scholar] [CrossRef]
- Hemminghyth, M.S.; Chwiszczuk, L.J.; Rongve, A.; Breitve, M.H. The Cognitive Profile of Mild Cognitive Impairment Due to Dementia with Lewy Bodies—An Updated Review. Front. Aging Neurosci. 2020, 12, 597579. [Google Scholar] [CrossRef]
- Ciafone, J.; Thomas, A.; Durcan, R.; Donaghy, P.C.; Hamilton, C.A.; Lawley, S.; Roberts, G.; Colloby, S.; Firbank, M.J.; Allan, L.; et al. Neuropsychological Impairments and Their Cognitive Architecture in Mild Cognitive Impairment (MCI) with Lewy Bodies and MCI-Alzheimer’s Disease. J. Int. Neuropsychol. Soc. 2022, 28, 963–973. [Google Scholar] [CrossRef]
- Yamada, Y.; Shinkawa, K.; Nemoto, M.; Ota, M.; Nemoto, K.; Arai, T. Speech and language characteristics differentiate Alzheimer’s disease and dementia with Lewy bodies. Alzheimers Dement. 2022, 14, e12364. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.J.; Hamilton, C.A.; Barker, S.; Durcan, R.; Lawley, S.; Barnett, N.; Firbank, M.; Roberts, G.; Allan, L.M.; O’Brien, J.; et al. Olfactory impairment in mild cognitive impairment with Lewy bodies and Alzheimer’s disease. Int. Psychogeriatr. 2022, 34, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Payne, S.; Shofer, J.B.; Shutes-David, A.; Li, G.; Jankowski, A.; Dean, P.; Tsuang, D. Correlates of Conversion from Mild Cognitive Impairment to Dementia with Lewy Bodies: Data from the National Alzheimer’s Coordinating Center. J. Alzheimers Dis. 2022, 86, 1643–1654. [Google Scholar] [CrossRef]
- Rossi, M.; Baiardi, S.; Teunissen, C.E.; Quadalti, C.; van de Beek, M.; Mammana, A.; Stanzani-Maserati, M.; Van der Flier, W.M.; Sambati, L.; Zenesini, C.; et al. Diagnostic Value of the CSF α-Synuclein Real-Time Quaking-Induced Conversion Assay at the Prodromal MCI Stage of Dementia with Lewy Bodies. Neurology 2021, 97, e930–e940. [Google Scholar] [CrossRef]
- Younas, N.; Fernandez Flores, L.C.; Hopfner, F.; Höglinger, G.U.; Zerr, I. A new paradigm for diagnosis of neurodegenerative diseases: Peripheral exosomes of brain origin. Transl. Neurodegener. 2022, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Zerr, I. Laboratory Diagnosis of Creutzfeldt–Jakob Disease. N. Engl. J. Med. 2022, 386, 1345–1350. [Google Scholar] [CrossRef]
- Yoo, D.; Bang, J.-I.; Ahn, C.; Nyaga, V.N.; Kim, Y.-E.; Kang, M.J.; Ahn, T.-B. Diagnostic value of α-synuclein seeding amplification assays in α-synucleinopathies: A systematic review and meta-analysis. Parkinsonism Relat. Disord. 2022, 104, 99–109. [Google Scholar] [CrossRef]
- Jiang, C.; Hopfner, F.; Katsikoudi, A.; Hein, R.; Catli, C.; Evetts, S.; Huang, Y.; Wang, H.; Ryder, J.W.; Kuhlenbaeumer, G.; et al. Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J. Neurol. Neurosurg. Psychiatry 2020, 91, 720–729. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Hopfner, F.; Berg, D.; Hu, M.T.; Pilotto, A.; Borroni, B.; Davis, J.J.; Tofaris, G.K. Validation of alpha-synuclein in L1CAM-immunocaptured exosomes as a biomarker for the stratification of Parkinsonian syndromes. Mov. Disord. 2021, 36, 2663–2669. [Google Scholar] [CrossRef]
- Hall, S.; Orrù, C.D.; Serrano, G.E.; Galasko, D.; Hughson, A.G.; Groveman, B.R.; Adler, C.H.; Beach, T.G.; Caughey, B.; Hansson, O. Performance of αSynuclein RT-QuIC in relation to neuropathological staging of Lewy body disease. Acta Neuropathol. Commun. 2022, 10, 90. [Google Scholar] [CrossRef]
- Baik, K.; Jung, J.H.; Jeong, S.H.; Chung, S.J.; Yoo, H.S.; Lee, P.H.; Sohn, Y.H.; Kang, S.W.; Ye, B.S. Implication of EEG theta/alpha and theta/beta ratio in Alzheimer’s and Lewy body disease. Sci. Rep. 2022, 12, 18706. [Google Scholar] [CrossRef] [PubMed]
- van der Zande, J.J.; Gouw, A.A.; van Steenoven, I.; van de Beek, M.; Scheltens, P.; Stam, C.J.; Lemstra, A.W. Diagnostic and prognostic value of EEG in prodromal dementia with Lewy bodies. Neurology 2020, 95, e662–e670. [Google Scholar] [CrossRef]
- Schumacher, J.; Taylor, J.P.; Hamilton, C.A.; Firbank, M.; Cromarty, R.A.; Donaghy, P.C.; Roberts, G.; Allan, L.; Lloyd, J.; Durcan, R.; et al. Quantitative EEG as a biomarker in mild cognitive impairment with Lewy bodies. Alzheimers Res. Ther. 2020, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Kantarci, K.; Boeve, B.F.; Przybelski, S.A.; Lesnick, T.G.; Chen, Q.; Fields, J.; Schwarz, C.G.; Senjem, M.L.; Gunte, J.L.; Jack, C.R.; et al. FDG PET metabolic signatures distinguishing prodromal DLB and prodromal AD. Neuroimage Clin. 2021, 31, 102754. [Google Scholar] [CrossRef]
- Massa, F.; Chincarini, A.; Bauckneht, M.; Raffa, S.; Peira, E.; Arnaldi, D.; Pardini, M.; Pagani, M.; Orso, B.; Donegani, M.I.; et al. Added value of semiquantitative analysis of brain FDG-PET for the differentiation between MCI-Lewy bodies and MCI due to Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Kantarci, K.; Nedelska, Z.; Chen, Q.; Senjem, M.L.; Schwarz, C.G.; Gunter, J.L.; Przybelski, S.A.; Lesnick, T.G.; Kremers, W.K.; Fields, J.A.; et al. Longitudinal atrophy in prodromal dementia with Lewy bodies points to cholinergic degeneration. Brain Commun. 2022, 4, fcac013. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, A.; Takeda, A.; Okamura, N.; Tashiro, M.; Hasegawa, T.; Furumoto, S.; Kobayashi, M.; Sugeno, N.; Baba, T.; Miki, Y.; et al. In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain 2010, 133, 1772–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, W.; Zhou, D.; Gaba, V.; Liu, J.; Li, S.; Peng, X.; Xu, J.; Dhavale, D.; Bagchi, D.P.; D’Avignon, A.; et al. Design, Synthesis, and Characterization of 3-(Benzylidene)indolin-2-one Derivatives as Ligands for α-Synuclein Fibrils. J. Med. Chem. 2015, 58, 6002–6017. [Google Scholar] [CrossRef] [Green Version]
- Mak, E.; Donaghy, P.; McKiernan, E.; Firbank, M.J.; Lloyd, J.; Petrides, G.S.; Thomas, A.; O‘Brien, J.T. Beta amyloid deposition maps onto hippocampal and subiculum atrophy in dementia with Lewy bodies. Neurobiol. Aging 2019, 73, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Surendranathan, A.; Su, L.; Mak, E.; Passamonti, L.; Hong, Y.T.; Arnold, R.; Rodríguez, P.V.; Bevan-Jones, W.; Brain, S.; Fryer, T.; et al. Early microglial activation and peripheral inflammation in dementia with Lewy bodies. Brain 2018, 141, 3415–3427. [Google Scholar] [CrossRef]
Biomarker | Advantage | Disadvantage | References |
---|---|---|---|
Autonomic symptoms | |||
|
|
| [14] |
|
|
| [14] |
|
|
| [14] |
|
|
| [15] |
Neuropsychological testing | |||
Executive, visuospatial and attentional deficits | Confirm research criteria |
| [17] |
Amnestic vs. Non-amnestic profile | Extends knowledge that exists for DLB vs. AD | Not novel biomarker | [20] |
Multidomain vs. single domain | Helpful for prognosis prediction | Not helpful for prognosis per se | [23] |
Speech assessment | |||
Reduction of speech and reduction of smoothness of speech | Easy tool |
| [21] |
Olfaction | |||
Reduction in olfaction | Easy tool |
| [22] |
Biofluid measurement | |||
CSF RT-QuIC of alpha synuclein | High sensitivity and specificity | Method is complex and highly sophisticated | [24,27,30] |
EEG | |||
Theta/beta rhythym ratio |
|
| [31] |
Peak frequency and wave activity |
|
| [32] |
Alpha or beta power | Easy tool if EEG available | Additional evaluation is needed | [33] |
Neuroimaging | |||
FDG-PET | |||
Metabolic signature (preserved medial and posterior cingulate metabolism) | Available tool in tertiary care centers | Investigation with rays | [34] |
Hypermetabolic cluster differentiation |
| Additional strategy for evaluation is required | [35] |
MRI | |||
Manual segmentation strategy | Good discrimination of subgroups of prodromal DLB with their atrophy profile | Unspecific for all prodromal DLB subtypes, time consuming and not good for discrimination of MCI due to DLB vs. AD | [4] |
Standard Biomarkers | Potential Findings/Mechanisms in DLB and MCI-LB |
---|---|
123I-FP-CIT SPECT | Reduced nigrostriatal dopaminergic uptake due to nigrostriatal degeneration |
Polysomnography | REM sleep behavior disorder as core clinical DLB feature |
[123I] MIBG cardiac scintigraphy | Cardiac MIBG uptake reduced—cardiac noradrenergic loss of innervation and/or function |
EEG | Dominant frequency variability, slowing of occipital basic rhythm activity—anomalies in neural synchronization, marker of cholinergic system integrity |
MRI | Intact temporal lobe structures, cortical insular thinning, gray matter volume loss in anterior cingulum and medial frontal structures |
FDG-PET | Occipital hypometabolism, relative preservation of the posterior cingulate mechanism (cingulate island sign) |
Potential biomarkers | |
Autonomic symptom assessment | Autonomic dysfunction |
Neuropsychological assessment | MCI, attentional-executive dysfunction, impaired visuoconstruction as clinical DLB features related to dysfunctional regional and interregional brain networks |
Speech assessment | Speech abnormalities |
Olfactory function | Olfactory dysfunction caused by neurodegeneration in olfactory pathways |
RT-QiC | α- synucleinopathy |
Neuronal exosomes | α-synucleinopathy |
FDG-PET | Higher medial temporalis to substantia nigra ratio |
MRI | Atrophic substantia inominata, Nucleus basalis Meynert due to neurodegeneration in these structures |
EEG | Peak frequencies of brain waves, regional or general continuous or discontinuously decelerated brain waves cause by brain-function impairments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, N.; Bouter, C.; Müller, S.J.; van Riesen, C.; Khadhraoui, E.; Ernst, M.; Riedel, C.H.; Wiltfang, J.; Lange, C. New Insights into Potential Biomarkers in Patients with Mild Cognitive Impairment Occurring in the Prodromal Stage of Dementia with Lewy Bodies. Brain Sci. 2023, 13, 242. https://doi.org/10.3390/brainsci13020242
Hansen N, Bouter C, Müller SJ, van Riesen C, Khadhraoui E, Ernst M, Riedel CH, Wiltfang J, Lange C. New Insights into Potential Biomarkers in Patients with Mild Cognitive Impairment Occurring in the Prodromal Stage of Dementia with Lewy Bodies. Brain Sciences. 2023; 13(2):242. https://doi.org/10.3390/brainsci13020242
Chicago/Turabian StyleHansen, Niels, Caroline Bouter, Sebastian Johannes Müller, Christoph van Riesen, Eya Khadhraoui, Marielle Ernst, Christian Heiner Riedel, Jens Wiltfang, and Claudia Lange. 2023. "New Insights into Potential Biomarkers in Patients with Mild Cognitive Impairment Occurring in the Prodromal Stage of Dementia with Lewy Bodies" Brain Sciences 13, no. 2: 242. https://doi.org/10.3390/brainsci13020242
APA StyleHansen, N., Bouter, C., Müller, S. J., van Riesen, C., Khadhraoui, E., Ernst, M., Riedel, C. H., Wiltfang, J., & Lange, C. (2023). New Insights into Potential Biomarkers in Patients with Mild Cognitive Impairment Occurring in the Prodromal Stage of Dementia with Lewy Bodies. Brain Sciences, 13(2), 242. https://doi.org/10.3390/brainsci13020242