Subject Separation Network for Reducing Calibration Time of MI-Based BCI
Abstract
:1. Introduction
- We propose a neural network based on domain adaptation, namely the ensemble Subject Separation Network, to reduce calibration time by leveraging other subjects’ data.
- We propose the definition of Session-ITR as the theoretical basis and interpretation tool for the performance of cross-subject EEG decoding algorithms.
- We evaluate multiple network design choices, and compare our method with several state-of-the-art EEG decoding methods. Evaluation results prove that the eSSN significantly outperforms other methods in terms of accuracy and Session-ITR.
2. Related Work
2.1. Neurophysiological Background
2.2. Domain Adaptation in EEG Decoding
3. Materials and Methods
3.1. Problem Definition
3.2. Datasets
3.3. Model Architecture
3.3.1. Shared Encoder
3.3.2. Domain Classifier
3.3.3. Private Encoder
3.3.4. Shared Decoder
3.3.5. Ensemble Learning
3.4. Loss Function
3.5. Theoretical Consideration
4. Results
4.1. Baseline Algorithms
- Filter-Bank Common Spatial Pattern (FBCSP) [40], winner of several BCI Competitions [39], which is used as the baseline algorithm for decoding motor imagery EEG signals. It can automatically find each filter bank’s CSP filter features and discriminative subset to reduce the dimension of final features and prevent overfitting. Further, Support Vector Machine (SVM) is utilized for classification. It is worth noting that the EEG data does not go through the band-pass filter preprocessing as mentioned above, because this process is embedded in FBCSP itself.
- CSSP [41] is one of the variants of the classic CSP algorithm. By utilizing a spatial filter on a delayed signal as parameterized temporal filters, CSSP can extract joint spatial-spectral discriminative features. In addition, Linear Discriminative Analysis (LDA) is used for classification.
- Shallow ConvNet is proposed in [36]. In this work, multiple network architectures and a large space of hyperparameters are searched for the construction of a robust EEG decoding network. Shallow ConvNet enjoys outstanding performance in most comparison experiments; therefore, it is chosen as baseline algorithm.
- EEGNet is proposed in [42], and uses a stacked convolution network as the feature extractor similar to Shallow ConvNet, but adopting a better variant of depth-wise convolution in its structure. This architecture offers EEGNet the ability to achieve higher representative power with fewer trainable parameters, thereby effectively preventing overfitting.
4.2. Classification Results
5. Discussion
5.1. Visualization
5.2. Simulated Calibration Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhary, U.; Birbaumer, N.; Ramos-Murguialday, A. Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 2016, 12, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, H.; He, B. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives. IEEE Trans. Biomed. Eng. 2014, 61, 1425–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pg, V.; Jacob, S.; Menon, V.; Rajesh, S.; Khosravi, M. Brain-Controlled Adaptive Lower Limb Exoskeleton for Rehabilitation of Post-Stroke Paralyzed. IEEE Access 2019, 7, 132628–132648. [Google Scholar]
- Edelman, B.J.; Meng, J.; Suma, D.; Zurn, C.; Nagarajan, E.; Baxter, B.S.; Cline, C.C.; He, B. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Sci. Robot. 2019, 4, eaaw6844. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Hinterberger, T.; Richter, J.; Mellinger, J.; Neumann, N.; Flor, H.; Kübler, A.; Birbaumer, N. Neural internet: Web surfing with brain potentials for the completely paralyzed. Neurorehabilit. Neural Repair 2006, 20, 508–515. [Google Scholar] [CrossRef]
- Bensch, M.; Karim, A.A.; Mellinger, J.; Hinterberger, T.; Tangermann, M.; Bogdan, M.; Rosenstiel, W.; Birbaumer, N. Nessi: An EEG-controlled web browser for severely paralyzed patients. Comput. Intell. Neurosci. 2007, 2007, 071863. [Google Scholar] [CrossRef] [Green Version]
- Blankertz, B.; Lemm, S.; Treder, M.S.; Haufe, S.; Müller, K. Single-trial analysis and classification of ERP components—A tutorial. NeuroImage 2010, 56, 814–825. [Google Scholar] [CrossRef]
- Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Muller, K.R. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 2007, 25, 41–56. [Google Scholar] [CrossRef]
- Morioka, H.; Kanemura, A.; Hirayama, J.I.; Shikauchi, M.; Ogawa, T.; Ikeda, S.; Kawanabe, M.; Ishii, S. Learning a common dictionary for subject-transfer decoding with resting calibration. NeuroImage 2015, 111, 167–178. [Google Scholar] [CrossRef]
- Wu, D.; Xu, Y.; Lu, B.L. Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016. IEEE Trans. Cogn. Dev. Syst. 2020, 14, 4–19. [Google Scholar] [CrossRef]
- Wang, J.; Feng, W.; Chen, Y.; Yu, H.; Huang, M.; Yu, P.S. Visual Domain Adaptation with Manifold Embedded Distribution Alignment. In Proceedings of the 26th ACM International Conference on Multimedia. Association for Computing Machinery, Seoul, Republic of Korea, 22–26 October 2018; pp. 402–410. [Google Scholar]
- Saha, S.; Ahmed, K.; Mostafa, R.; Hadjileontiadis, L.; Khandoker, A. Evidence of Variabilities in EEG Dynamics During Motor Imagery-Based Multiclass Brain-Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 26, 371–382. [Google Scholar] [CrossRef]
- Kostas, D.; Rudzicz, F. Thinker invariance: Enabling deep neural networks for BCI across more people. J. Neural Eng. 2020, 17, 056008. [Google Scholar] [CrossRef] [PubMed]
- Alzahab, N.A.; Apollonio, L.; Iorio, A.D.; Alshalak, M.; Iarlori, S.; Ferracuti, F.; Monteriù, A.; Porcaro, C. Hybrid Deep Learning (hDL)-Based Brain-Computer Interface (BCI) Systems: A Systematic Review. Brain Sci. 2021, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces: A 10-year Update. J. Neural Eng. 2018, 15, 031005.1–031005.28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Songa, W.; Wangb, Z.; Liub, L.; Zhangc, F.; Xued, J. Representation Learning with Deconvolution for Multivariate Time Series Classification and Visualization. ICPCSEE 2020, 1257, 310–326. [Google Scholar]
- Ramoser, H.; Muller-Gerking, J. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Sannelli, C.; Vidaurre, C.; Müller, K.R.; Blankertz, B.; Ayaz, H. A large scale screening study with a SMR-based BCI: Categorization of BCI users and differences in their SMR activity. PLoS ONE 2019, 14, e0207351. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, K.; Dasalla, C.S.; Honda, M.; Hanakawa, T. Neuroanatomical correlates of brain-computer interface performance. Neuroimage 2015, 110, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N. Prediction of brain-computer interface aptitude from individual brain structure. Front. Hum. Neurosci. 2013, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Agorastos, D.; Veit, R.; Hammer, E.M.; Lee, S.; Varkuti, B.; Bogdan, M.; Rosenstiel, W.; Birbaumer, N.; Kübler, A. Neural mechanisms of brain-computer interface control. Neuroimage 2011, 55, 1779–1790. [Google Scholar] [CrossRef]
- Darvishi, S.; Gharabaghi, A.; Ridding, M.C.; Abbott, D.; Baumert, M. Reaction Time Predicts Brain-Computer Interface Aptitude. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Neuper, C.; Scherer, R.; Reiner, M.; Pfurtscheller, G. Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 2005, 25, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Faller, J.; Cummings, J.; Saproo, S.; Sajda, P. Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proc. Natl. Acad. Sci. USA 2019, 116, 6482–6490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hari, R.; Salmelin, R. Human cortical oscillations: A neuromagnetic view through the skull. Trends Neurosci. 1997, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Tonoyan, Y.; Looney, D.; Mandic, D.P.; Hulle, M.V. Predicting subject performance level from EEG signal complexity when engaged in BCI paradigm. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, Reims, France, 21–24 September 2014; pp. 1–5. [Google Scholar]
- Samek, W.; Kawanabe, M.; Muller, K.R. Divergence-Based Framework for Common Spatial Patterns Algorithms. Biomed. Eng. 2014, 7, 50–72. [Google Scholar] [CrossRef]
- Samek, W.; Meinecke, F.C.; Muller, K.-R. Transferring Subspaces Between Subjects in Brain-Computer Interfacing. IEEE Trans. Biomed. Eng. 2013, 60, 2289–2298. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kambara, H.; Koike, Y.; Sugiyama, M. Application of Covariate Shift Adaptation Techniques in Brain-Computer Interfaces. IEEE Trans. -Bio-Med. Eng. 2010, 57, 1318. [Google Scholar]
- Alamgir, M.; Grosse-Wentrup, M.; Altun, Y.; Teh, Y.W.; Titterington, M. Multitask Learning for Brain-Computer Interfaces. wentrup 2010, 9, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Abid, F.; Hassan, A.; Abid, A.; Jochumsen, M.; Niazi, I.K. Transfer learning for electroencephalogram signals. In Proceedings of the International Conference on Computer and Electrical Engineering, Palembang, Indonesia, 22–23 August 2017; p. 42. [Google Scholar]
- Hossain, I.; Khosravi, A.; Nahavandhi, S. Active transfer learning and selective instance transfer with active learning for motor imagery based BCI. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; p. 42. [Google Scholar]
- Lotte, F.; Guan, C. Learning from Other Subjects Helps Reducing Brain-Computer Interface Calibration Time. In Proceedings of the Acoustics Speech and Signal Processing (ICASSP), Dallas, TX, USA, 14–19 March 2010; p. 42. [Google Scholar]
- Devlaminck, D.; Wyns, B.; Grosse-Wentrup, M.; Otte, G.; Santens, P. Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI. Comput. Intell. Neurosci. 2011, 2011, 217987. [Google Scholar] [CrossRef]
- Bousmalis, K.; Trigeorgis, G.; Silberman, N.; Krishnan, D.; Erhan, D. Domain Separation Networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 343–351. [Google Scholar]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [Green Version]
- Wolpaw, J.; Birbaumer, N.; Heetderks, W.; McFarland, D.; Peckham, P.; Schalk, G.; Donchin, E.; Quatrano, L.; Robinson, C.; Vaughan, T. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Shai, B.-D.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J.W. A theory of learning from different domains. Mach. Learn. 2010, 79, 151–175. [Google Scholar]
- Coyle, D.; Satti, A.; Mcginnity, M. BCI-competition IV—Data set IIa and IIb Algorithm Description. 2008. Available online: https://www.researchgate.net/publication/251170280_BCI-competition_IV_-_Data_set_IIa_and_IIb_Algorithm_Description (accessed on 19 January 2023).
- Kai, K.A.; Zhang, Y.C.; Zhang, H.; Guan, C. Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface. In Proceedings of the IEEE International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008. [Google Scholar]
- Lemm, S.; Blankertz, B.; Curio, G.; Muller, K.R. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans.-Bio-Med Eng. 2005, 52, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces. J. Neural Eng. 2018, 15, 056013.1–056013.17. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, X. Conditional Adversarial Domain Adaptation Neural Network for Motor Imagery EEG Decoding. Entropy 2020, 22, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankertz, B.; Sannelli, C.; Halder, S.; Hammer, E.M.; Kübler, A.; Müller, K.; Curio, G.; Dickhaus, T. Neurophysiological predictor of SMR-based BCI performance. Neuroimage 2010, 51, 1303–1309. [Google Scholar] [CrossRef]
Subject | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
FBCSP | 82.64 ± 4.47 | 60.23 ± 4.66 | 84.01 ± 5.64 | 63.56 ± 12.38 | 68.24 ± 6.84 | 77.61 ± 3.9 | 43.74 ± 3.73 | 87.32 ± 3.53 | 61.98 ± 10.4 |
ShallowConv | 77.61 ± 3.9 | 43.74 ± 3.73 | 87.32 ± 3.53 | 61.98 ± 10.4 | 50.69 ± 3.19 | 50.53 ± 6.55 | 82.63 ± 5.62 | 80.89 ± 2.58 | 79.35 ± 5.82 |
CSSP | 69.61 ± 4.12 | 50.16 ± 5.06 | 69.78 ± 5.56 | 50.88 ± 10.18 | 35.07 ± 4.03 | 35.6 ± 7.15 | 64.42 ± 5.69 | 71 ± 6.48 | 58.49 ± 9.82 |
Subject | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean |
---|---|---|---|---|---|---|---|---|---|---|
CSSP | 41.39 | 22.41 | 27.58 | 29.31 | 24.13 | 20.69 | 27.58 | 36.21 | 27.59 | 28.54 |
FBCSP | 55.17 | 39.66 | 48.27 | 43.1 | 25.86 | 12.06 | 39.66 | 34.48 | 25.86 | 36.01 |
EEGNet | 25.86 | 27.58 | 32.76 | 34.48 | 24.13 | 27.58 | 27.58 | 25.86 | 13.79 | 26.62 |
ShallowConv | 25.86 | 27.58 | 32.75 | 34.48 | 24.14 | 20.69 | 27.58 | 32.76 | 29.31 | 28.35 |
CDAN | 67.24 | 48.27 | 60.34 | 44.82 | 44.82 | 50 | 53.45 | 62.07 | 63.79 | 54.97 |
eSSN | 75.86 | 56.89 | 60.34 | 56.89 | 41.37 | 43.1 | 60.34 | 56.89 | 67.24 | 57.65 |
Subject | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean |
---|---|---|---|---|---|---|---|---|---|---|
DeepConv | 32.65 | 25.34 | 31.56 | 35.21 | 22.01 | 18.56 | 24.26 | 30.24 | 18.59 | 26.49 |
proposed structure | 75.86 | 56.89 | 60.34 | 56.89 | 41.37 | 43.1 | 60.34 | 56.9 | 56.9 | 67.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Yue, K.; Guo, M.; Lu, K.; Liu, Y. Subject Separation Network for Reducing Calibration Time of MI-Based BCI. Brain Sci. 2023, 13, 221. https://doi.org/10.3390/brainsci13020221
Hu H, Yue K, Guo M, Lu K, Liu Y. Subject Separation Network for Reducing Calibration Time of MI-Based BCI. Brain Sciences. 2023; 13(2):221. https://doi.org/10.3390/brainsci13020221
Chicago/Turabian StyleHu, Haochen, Kang Yue, Mei Guo, Kai Lu, and Yue Liu. 2023. "Subject Separation Network for Reducing Calibration Time of MI-Based BCI" Brain Sciences 13, no. 2: 221. https://doi.org/10.3390/brainsci13020221
APA StyleHu, H., Yue, K., Guo, M., Lu, K., & Liu, Y. (2023). Subject Separation Network for Reducing Calibration Time of MI-Based BCI. Brain Sciences, 13(2), 221. https://doi.org/10.3390/brainsci13020221