Limitations in Evaluating Machine Learning Models for Imbalanced Binary Outcome Classification in Spine Surgery: A Systematic Review
Abstract
:1. Introduction
2. Inadequate Evaluation Metrics
2.1. Accuracy
2.2. The Area under the ROC Curve (AUROC)
2.3. Adequate Evaluation Metrics
2.4. Confusion Matrix
2.5. F1 Score
2.6. Matthews Correlation Coefficient (MCC)
2.7. Informedness (Youden’s J Statistic)
2.8. Markedness
2.9. The Area under the Precision-Recall Curve (AUPRC)
2.10. Brier Score (BS)
2.11. Additional Evaluation Metrics and Graphical Tools
2.11.1. Calibration Curves
2.11.2. Decision Curve
3. Materials and Methods
3.1. Data Sources and Search Strategies
3.2. Eligibility Criteria and Data Extraction
3.3. Data Synthesis and Risk of Bias Assessment
3.4. Statistical Analysis
4. Results
4.1. Characteristics of the Included Studies
4.2. Error Type I: Incomplete Reporting of Performance Metrics
4.3. Error Type IIA: Metric Optimization at the Expense of Others
4.4. Error Type IIB: High Accuracy and AUROC but Poor Sensitivity
4.5. Other Errors
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, M.; Canseco, J.A.; Nicholson, K.J.; Patel, N.; Vaccaro, A.R. The Role of Machine Learning in Spine Surgery: The Future Is Now. Front. Surg. 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- El-Hajj, V.G.; Gharios, M.; Edström, E.; Elmi-Terander, A. Artificial Intelligence in Neurosurgery: A Bibliometric Analysis. World Neurosurg. 2023, 171, 152–158.e4. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.P.; MacDonald, D.B.; Boland, L. Personalized perioperative medicine: A scoping review of personalized assessment and communication of risk before surgery. Can. J. 2019, 66, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Saravi, B.; Hassel, F.; Ülkümen, S.; Zink, A.; Shavlokhova, V.; Couillard-Despres, S.; Boeker, M.; Obid, P.; Lang, G. Artificial intelligence-driven prediction modeling and decision making in spine surgery using hybrid machine learning models. J. Pers. Med. 2022, 12, 509. [Google Scholar] [CrossRef]
- Guo, X.; Yin, Y.; Dong, C.; Yang, G.; Zhou, G. On the Class Imbalance Problem. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; pp. 192–201. [Google Scholar]
- Hong, C.S.; Oh, T.G. TPR-TNR plot for confusion matrix. Commun. Stat. Appl. Methods 2021, 28, 161–169. [Google Scholar] [CrossRef]
- Van Rijsbergen, C.J.; Van Rijsbergen, C.J.K. Information Retrieval, Butterworth-Heinemann. J. Librariansh. 1979, 11, 237. [Google Scholar]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and Optimal Cut-Point Estimated from Observations Affected by a Lower Limit of Detection. Biom. J. 2008, 50, 419–430. [Google Scholar] [CrossRef]
- Davis, J.; Goadrich, M. The Relationship Between Precision-Recall and ROC Curves. In Proceedings of the 23rd International Conference on Machine Learning, ACM, Pittsburgh, PA, USA, 25–29 June 2006. [Google Scholar] [CrossRef]
- Huang, C.; Li, S.-X.; Caraballo, C.; Masoudi, F.A.; Rumsfeld, J.S.; Spertus, J.A.; Normand, S.-L.T.; Mortazavi, B.J.; Krumholz, H.M. Performance Metrics for the Comparative Analysis of Clinical Risk Prediction Models Employing Machine Learning. Circ. Cardiovasc. Qual. Outcomes 2021, 14, 1076–1086. [Google Scholar] [CrossRef]
- Assel, M.; Sjoberg, D.D.; Vickers, A.J. The Brier score does not evaluate the clinical utility of diagnostic tests or prediction models. Diagn. Progn. Res. 2017, 1, 19. [Google Scholar] [CrossRef]
- Salazar, A.; Vergara, L.; Vidal, E. A proxy learning curve for the Bayes classifier. Pattern Recognit. 2023, 136, 109240. [Google Scholar] [CrossRef]
- Cabrera, A.; Bouterse, A.; Nelson, M.; Razzouk, J.; Ramos, O.; Chung, D.; Cheng, W.; Danisa, O. Use of random forest machine learning algorithm to predict short term outcomes following posterior cervical decompression with instrumented fusion. J. Clin. Neurosci. 2023, 107, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Azad, T.D.; Suarez, P.A.; Ratliff, J.K. A machine learning approach for predictive models of adverse events following spine surgery. Spine J. 2019, 19, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Kuris, E.O.; Veeramani, A.; McDonald, C.L.; DiSilvestro, K.J.; Zhang, A.S.; Cohen, E.M.; Daniels, A.H. Predicting Readmission After Anterior, Posterior, and Posterior Interbody Lumbar Spinal Fusion: A Neural Network Machine Learning Approach. World Neurosurg. 2021, 151, e19–e27. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Devana, S.K.; Lee, C.; Bugarin, A.; Lord, E.L.; Shamie, A.N.; Park, D.Y.; van der Schaar, M.; SooHoo, N.F. Prediction of Major Complications and Readmission After Lumbar Spinal Fusion: A Machine Learning–Driven Approach. World Neurosurg. 2021, 152, e227–e234. [Google Scholar] [CrossRef]
- Valliani, A.A.; Kim, N.C.; Martini, M.L.; Gal, J.S.; Neifert, S.N.; Feng, R.; Geng, E.A.; Kim, J.S.; Cho, S.K.; Oermann, E.K.; et al. Robust Prediction of Non-home Discharge After Thoracolumbar Spine Surgery With Ensemble Machine Learning and Valida-tion on a Nationwide Cohort. World Neurosurg. 2022, 165, e83–e91. [Google Scholar] [CrossRef]
- Gowd, A.K.; O’Neill, C.N.; Barghi, A.; O’Gara, T.J.; Carmouche, J.J. Feasibility of Machine Learning in the Prediction of Short-Term Outcomes Following Anterior Cervical Discectomy and Fusion. World Neurosurg. 2022, 168, e223–e232. [Google Scholar] [CrossRef]
- Ogink, P.T.; Karhade, A.V.; Thio, Q.C.B.S.; Hershman, S.H.; Cha, T.D.; Bono, C.M.; Schwab, J.H. Development of a machine learning algorithm predicting discharge placement after surgery for spondylolisthesis. Eur. Spine J. 2019, 28, 1775–1782. [Google Scholar] [CrossRef]
- Karhade, A.V.; Ogink, P.; Thio, Q.; Broekman, M.; Cha, T.; Gormley, W.B.; Hershman, S.; Peul, W.C.; Bono, C.M.; Schwab, J.H. Development of machine learning algorithms for prediction of discharge disposition after elective inpatient surgery for lumbar degenerative disc disorders. Neurosurg. Focus 2018, 45, E6. [Google Scholar] [CrossRef]
- Kalagara, S.; Eltorai, A.E.M.; Durand, W.M.; DePasse, J.M.; Daniels, A.H. Machine learning modeling for predicting hospital re-admission following lumbar laminectomy. J. Neurosurg. Spine 2018, 30, 344–352. [Google Scholar] [CrossRef]
- Hopkins, B.S.; Yamaguchi, J.T.; Garcia, R.; Kesavabhotla, K.; Weiss, H.; Hsu, W.K.; Smith, Z.A.; Dahdaleh, N.S. Using machine learning to predict 30-day readmissions after posterior lumbar fusion: An NSQIP study involving 23,264 patients. J. Neurosurg. Spine 2019, 32, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Ngufor, C.; Kerezoudis, P.; McCutcheon, B.; Storlie, C.; Bydon, M. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J. Neurosurg. Spine 2019, 31, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Stopa, B.M.; Robertson, F.C.; Karhade, A.V.; Chua, M.; Broekman, M.L.D.; Schwab, J.H.; Smith, T.R.; Gormley, W.B. Predicting nonroutine discharge after elective spine surgery: External validation of machine learning algorithms. J. Neurosurg. Spine 2019, 31, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhong, H.; Girardi, F.P.; Poeran, J.; Wilson, L.A.; Memtsoudis, S.G.; Liu, J. Machine Learning Approaches to Define Candidates for Ambulatory Single Level Laminectomy Surgery. Glob. Spine J. 2022, 12, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Veeramani, A.; Zhang, A.S.; Blackburn, A.Z.; Etzel, C.M.; DiSilvestro, K.J.; McDonald, C.L.; Daniels, A.H. An Artificial Intelligence Approach to Predicting Unplanned Intubation Following Anterior Cervical Discectomy and Fusion. Glob. Spine J. 2022, 13, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- DiSilvestro, K.J.; Veeramani, A.; McDonald, C.L.; Zhang, A.S.; Kuris, E.O.; Durand, W.M.; Cohen, E.M.; Daniels, A.H. Predicting Postoperative Mortality After Metastatic Intraspinal Neoplasm Excision: Development of a Machine-Learning Approach. World Neurosurg. 2021, 146, e917–e924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.S.; Veeramani, A.; Quinn, M.S.; Alsoof, D.; Kuris, E.O.; Daniels, A.H. Machine Learning Prediction of Length of Stay in Adult Spinal Deformity Patients Undergoing Posterior Spine Fusion Surgery. J. Clin. Med. 2021, 10, 4074. [Google Scholar] [CrossRef]
- Kim, J.S.; Merrill, R.K.; Arvind, V.; Kaji, D.; Pasik, S.D.; Nwachukwu, C.C.; Vargas, L.; Osman, N.S.; Oermann, E.K.; Caridi, J.M.; et al. Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion. Spine 2018, 43, 853–860. [Google Scholar] [CrossRef]
- Arvind, V.; Kim, J.S.; Oermann, E.K.; Kaji, D.; Cho, S.K. Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning. Neurospine 2018, 15, 329–337. [Google Scholar] [CrossRef]
- Arora, A.B.; Lituiev, D.; Jain, D.; Hadley, D.; Butte, A.J.; Berven, S.; Peterson, T.A. Predictive Models for Length of Stay and Discharge Disposition in Elective Spine Surgery: Development, Validation, and Comparison to the ACS NSQIP Risk Calculator. Spine 2023, 48, E1–E13. [Google Scholar] [CrossRef]
- Ogink, P.T.; Karhade, A.V.; Thio, Q.C.B.S.; Gormley, W.B.; Oner, F.C.; Verlaan, J.J.; Schwab, J.H. Predicting discharge placement after elective surgery for lumbar spinal stenosis using machine learning methods. Eur. Spine J. 2019, 28, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Arvind, V.; Oermann, E.K.; Kaji, D.; Ranson, W.; Ukogu, C.; Hussain, A.K.; Caridi, J.; Cho, S.K. Predicting Surgical Complications in Patients Undergoing Elective Adult Spinal Deformity Procedures Using Machine Learning. Spine Deform. 2018, 6, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wan, D.; Chen, M.; Li, Y.; Ying, H.; Yao, G.; Liu, Z.; Zhang, G. Automated machine learning-based model for the prediction of delirium in patients after surgery for degenerative spinal disease. CNS Neurosci. Ther. 2023, 29, 282–295. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gao, L.; Wang, X.; Wei, J.; Xia, B.; Liu, X.; Zheng, P. Application of supervised machine learning algorithms to predict the risk of hidden blood loss during the perioperative period in thoracolumbar burst fracture patients complicated with neurological compromise. Front. Public Health 2022, 10, 969919. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Zhao, R.; Xu, J.; Liang, H.; Zhang, C.; Zhao, Z.; Huang, T.; Luo, X. Construct and Validate a Predictive Model for Surgical Site Infection after Posterior Lumbar Interbody Fusion Based on Machine Learning Algorithm. Comput. Math. Methods Med. 2022, 2022, 2697841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lei, L.; Ji, M.; Tong, J.; Zhou, C.-M.; Yang, J.-J. Predicting postoperative delirium after microvascular decompression surgery with machine learning. J. Clin. Anesth. 2020, 66, 109896. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Y.; Ikwuezunma, I.; Puvanesarajah, V.; Babu, J.; Margalit, A.; Raad, M.; Jain, A. Using Predictive Modeling and Supervised Machine Learning to Identify Patients at Risk for Venous Thromboembolism Following Posterior Lumbar Fusion. Glob. Spine J. 2021, 13, 1097–1103. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Z.-R.; Li, W.; Fan, T.; Zhao, J.; Kang, M.; Dong, R.; Qu, Y. Prediction of the risk of C5 palsy after posterior laminectomy and fusion with cervical myelopathy using a support vector machine: An analysis of 184 consecutive patients. J. Orthop. Surg. Res. 2021, 16, 332. [Google Scholar] [CrossRef]
- Wang, H.; Fan, T.; Yang, B.; Lin, Q.; Li, W.; Yang, M. Development and Internal Validation of Supervised Machine Learning Algo-rithms for Predicting the Risk of Surgical Site Infection Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Front. Med. 2021, 8, 771608. [Google Scholar] [CrossRef]
- Valliani, A.A.; Feng, R.; Martini, M.L.; Neifert, S.N.; Kim, N.C.; Gal, J.S.; Oermann, E.K.; Caridi, J.M. Pragmatic Prediction of Excessive Length of Stay After Cervical Spine Surgery With Machine Learning and Validation on a National Scale. Neurosurgery 2022, 91, 322–330. [Google Scholar] [CrossRef]
- Siccoli, A.; de Wispelaere, M.P.; Schröder, M.L.; Staartjes, V.E. Machine learning–based preoperative predictive analytics for lumbar spinal stenosis. Neurosurg. Focus 2019, 46, E5. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Devana, S.K.; Lee, C.; Bugarin, A.; Lord, E.L.; Shamie, A.N.; Park, D.Y.; van der Schaar, M.; SooHoo, N.F. Machine learning-driven identification of novel patient factors for prediction of major complications after posterior cervical spinal fusion. Eur. Spine J. 2022, 31, 1952–1959. [Google Scholar] [CrossRef] [PubMed]
- Saravi, B.; Zink, A.; Ülkümen, S.; Couillard-Despres, S.; Hassel, F.; Lang, G. Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery. J. Clin. Med. 2022, 11, 4050. [Google Scholar] [CrossRef]
- Russo, G.S.; Canseco, J.A.; Chang, M.; Levy, H.A.; Nicholson, K.; Karamian, B.A.; Mangan, J.; Fang, T.; Vaccaro, A.R.; Kepler, C.K. A Novel Scoring System to Predict Length of Stay After Anterior Cervical Discectomy and Fusion. J. Am. Acad. Orthop. Surg. 2021, 29, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.J.B.; Schonfeld, E.B.; Varshneya, K.B.; Stienen, M.N.M.; Staartjes, V.E.; Jin, M.C.B.; Veeravagu, A. Comparison of Deep Learning and Classical Machine Learning Algorithms to Predict Postoperative Outcomes for Anterior Cervical Discectomy and Fusion Procedures With State-of-the-art Performance. Spine 2022, 47, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Liu, L.; Zhang, P.; Xie, Z.; Wang, P.; Zhang, W.; Wang, H.; Shen, M.; Deng, L.; Tao, Y.; et al. Machine Learning Predicts Recurrent Lumbar Disc Herniation Following Percutaneous Endoscopic Lumbar Discectomy. Glob. Spine J. 2022, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Porche, K.; Maciel, C.B.; Lucke-Wold, B.; Robicsek, S.A.; Chalouhi, N.; Brennan, M.; Busl, K.M. Preoperative prediction of postoperative urinary retention in lumbar surgery: A comparison of regression to multilayer neural network. J. Neurosurg. Spine 2022, 36, 32–41. [Google Scholar] [CrossRef]
- Pedersen, C.F.; Andersen, M.; Carreon, L.Y.; Eiskjær, S. Applied Machine Learning for Spine Surgeons: Predicting Outcome for Patients Undergoing Treatment for Lumbar Disc Herniation Using PRO Data. Glob. Spine J. 2022, 12, 866–876. [Google Scholar] [CrossRef]
- Nunes, A.A.; Pinheiro, R.P.; Costa, H.R.T.; Defino, H.L.A. Predictors of hospital readmission within 30 days after surgery for thoracolumbar fractures: A mixed approach. Int. J. Health Plan. Manag. 2022, 37, 1708–1721. [Google Scholar] [CrossRef]
- Merali, Z.G.; Witiw, C.D.; Badhiwala, J.H.; Wilson, J.R.; Fehlings, M.G. Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy. PLoS ONE 2019, 14, e0215133. [Google Scholar] [CrossRef]
- Martini, M.L.; Neifert, S.N.B.; Oermann, E.K.; Gilligan, J.T.; Rothrock, R.J.; Yuk, F.J.; Gal, J.S.; Nistal, D.A.B.; Caridi, J.M. Application of Cooperative Game Theory Principles to Interpret Machine Learning Models of Nonhome Discharge Following Spine Surgery. Spine 2021, 46, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Khan, O.; Badhiwala, J.H.; A Akbar, M.; Fehlings, M.G. Prediction of Worse Functional Status After Surgery for Degenerative Cervical Myelopathy: A Machine Learning Approach. Neurosurgery 2021, 88, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Barber, S.M.; Fridley, J.S.; Gokaslan, Z.L. Commentary: Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019, 85, E92–E93. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T.; A Shah, A.; Bono, C.M.; Oh, K.S.; Saylor, P.J.; Schoenfeld, A.J.; Shin, J.H.; Harris, M.B.; et al. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019, 85, E83–E91. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Ogink, P.T.; Thio, Q.C.; Cha, T.D.; Gormley, W.B.; Hershman, S.H.; Smith, T.R.; Mao, J.; Schoenfeld, A.J.; Bono, C.M.; et al. Development of machine learning algorithms for prediction of prolonged opioid prescription after surgery for lumbar disc herniation. Spine J. 2019, 19, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Ogink, P.T.; Thio, Q.C.; Broekman, M.L.; Cha, T.D.; Hershman, S.H.; Mao, J.; Peul, W.C.; Schoenfeld, A.J.; Bono, C.M.; et al. Machine learning for prediction of sustained opioid prescription after anterior cervical discectomy and fusion. Spine J. 2019, 19, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Fenn, B.; Groot, O.Q.; Shah, A.A.; Yen, H.-K.; Bilsky, M.H.; Hu, M.-H.; Laufer, I.; Park, D.Y.; Sciubba, D.M.; et al. Development and external validation of predictive algorithms for six-week mortality in spinal metastasis using 4,304 patients from five institutions. Spine J. 2022, 22, 2033–2041. [Google Scholar] [CrossRef]
- Karhade, A.V.; Cha, T.D.; Fogel, H.A.; Hershman, S.H.; Tobert, D.G.; Schoenfeld, A.J.; Bono, C.M.; Schwab, J.H. Predicting prolonged opioid prescriptions in opioid-naïve lumbar spine surgery patients. Spine J. 2020, 20, 888–895. [Google Scholar] [CrossRef]
- Karhade, A.V.; Bongers, M.E.; Groot, O.Q.; Cha, T.D.; Doorly, T.P.; Fogel, H.A.; Hershman, S.H.; Tobert, D.G.; Srivastava, S.D.; Bono, C.M.; et al. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery. Spine J. 2021, 21, 1635–1642. [Google Scholar] [CrossRef]
- Karhade, A.V.; Shin, D.; Florissi, I.; Schwab, J.H. Development of predictive algorithms for length of stay greater than one day after one- or two-level anterior cervical discectomy and fusion. Semin. Spine Surg. 2021, 33, 100874. [Google Scholar] [CrossRef]
- Karabacak, M.; Margetis, K. A Machine Learning-Based Online Prediction Tool for Predicting Short-Term Postoperative Outcomes Following Spinal Tumor Resections. Cancers 2023, 15, 812. [Google Scholar] [CrossRef]
- Jin, M.C.; Ho, A.L.; Feng, A.Y.; Medress, Z.A.; Pendharkar, A.V.; Rezaii, P.; Ratliff, J.K.; Desai, A.M. Prediction of Discharge Status and Readmissions after Resection of Intradural Spinal Tumors. Neurospine 2022, 19, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Durand, W.B.; Burch, S.; Daniels, A.; Berven, S. Machine Learning for Predictive Modeling of 90-day Readmission, Major Medical Complication, and Discharge to a Facility in Patients Undergoing Long Segment Posterior Lumbar Spine Fusion. Spine 2020, 45, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.S.; Mazmudar, A.; Driscoll, C.; Svet, M.; Goergen, J.; Kelsten, M.; Shlobin, N.A.; Kesavabhotla, K.; A Smith, Z.; Dahdaleh, N.S. Using artificial intelligence (AI) to predict postoperative surgical site infection: A retrospective cohort of 4046 posterior spinal fusions. Clin. Neurol. Neurosurg. 2020, 192, 105718. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Zheng, H.; Massaad, E.; Hadzipasic, M.; Shankar, G.M.; Shin, J.H. Development and Validation of Machine Learning Algorithms for Predicting Adverse Events After Surgery for Lumbar Degenerative Spondylolisthesis. World Neurosurg. 2020, 140, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Etzel, C.M.; Veeramani, A.; Zhang, A.S.; McDonald, C.L.; DiSilvestro, K.J.; Cohen, E.M.; Daniels, A.H. Supervised Machine Learning for Predicting Length of Stay After Lumbar Arthrodesis: A Comprehensive Artificial Intelligence Approach. J. Am. Acad. Orthop. Surg. 2022, 30, 125–132. [Google Scholar] [CrossRef]
- Elsamadicy, A.A.; Koo, A.B.; Reeves, B.C.; Cross, J.L.; Hersh, A.; Hengartner, A.C.; Karhade, A.V.; Pennington, Z.; Akinduro, O.O.; Lo, S.-F.L.; et al. Utilization of Machine Learning to Model Important Features of 30-day Readmissions following Surgery for Metastatic Spinal Column Tumors: The Influence of Frailty. Glob. Spine J. 2022, 2022. 190, 13. [Google Scholar] [CrossRef]
- Dong, S.-T.; Zhu, J.; Yang, H.; Huang, G.; Zhao, C.; Yuan, B. Development and Internal Validation of Supervised Machine Learning Algorithm for Predicting the Risk of Recollapse Following Minimally Invasive Kyphoplasty in Osteoporotic Vertebral Com-pression Fractures. Front. Public Health 2022, 10, 874672. [Google Scholar] [CrossRef]
- Dong, S.; Zhu, Y.; Yang, H.; Tang, N.; Huang, G.; Li, J.; Tian, K. Evaluation of the Predictors for Unfavorable Clinical Outcomes of Degenerative Lumbar Spondylolisthesis After Lumbar Interbody Fusion Using Machine Learning. Front. Public Health 2022, 10, 835938. [Google Scholar] [CrossRef]
- Yen, H.-K.; Ogink, P.T.; Huang, C.-C.; Groot, O.Q.; Su, C.-C.; Chen, S.-F.; Chen, C.-W.; Karhade, A.V.; Peng, K.-P.; Lin, W.-H.; et al. A machine learning algorithm for predicting prolonged postoperative opioid prescription after lumbar disc herniation surgery. An external validation study using 1316 patients from a Taiwanese cohort. Spine J. 2022, 22, 1119–1130. [Google Scholar] [CrossRef]
- Weiss, P. Rare Events. Sci. News 2003, 163, 227. [Google Scholar] [CrossRef]
- Reis, R.C.; de Oliveira, M.F.; Rotta, J.M.; Botelho, R.V. Risk of Complications in Spine Surgery: A Prospective Study. Open Orthop. J. 2015, 9, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Licina, A.; Silvers, A.; Laughlin, H.; Russell, J.; Wan, C. Pathway for enhanced recovery after spinal surgery-a systematic review of evidence for use of individual components. BMC Anesthesiol. 2021, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, Y.; Shang, J.; Gu, M.; Huang, Y.; Gong, B. Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 2017, 73, 220–239. [Google Scholar] [CrossRef]
- Tanimoto, A.; Yamada, S.; Takenouchi, T.; Sugiyama, M.; Kashima, H. Improving imbalanced classification using near-miss instances. Expert Syst. Appl. 2022, 201, 117130. [Google Scholar] [CrossRef]
- Zeng, M.; Zou, B.; Wei, F.; Liu, X.; Wang, L. Effective prediction of three common diseases by combining SMOTE with Tomek links technique for imbalanced medical data. In Proceedings of the 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS), Chongqing, China, 28–29 May 2016; pp. 225–228. [Google Scholar]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef]
- Figueira, A.; Vaz, B. Survey on Synthetic Data Generation, Evaluation Methods and GANs. Mathematics 2022, 10, 2733. [Google Scholar] [CrossRef]
- de Giorgio, A.; Cola, G.; Wang, L. Systematic review of class imbalance problems in manufacturing. J. Manuf. Syst. 2023, 71, 620–644. [Google Scholar] [CrossRef]
- Salazar, A.; Vergara, L.; Safont, G. Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets. Expert Syst. Appl. 2020, 163, 113819. [Google Scholar] [CrossRef]
- Yogi, A.; Dey, R. Class Imbalance Problem in Data Science: Review. Int. Res. J. Comput. Sci. 2022, 9, 56–60. [Google Scholar] [CrossRef]
Metrics Provided by the Confusion Matrix. | |
---|---|
True Positive (TP) | The number of predictions where the classifier correctly predicts the positive class as positive. |
True Negative (TN) | The number of predictions where the classifier correctly predicts the negative class as negative. |
False Positive (FP) | The number of predictions where the classifier incorrectly predicts the negative class as positive. |
False Negative (FN) | The number of predictions where the classifier incorrectly predicts the positive class as negative. |
Recall/Sensitivity | The proportion of true positive predictions to all actual positive cases TP/(TP + FN). |
Specificity | The proportion of all negative samples that are correctly predicted as negative by the classifier TN/(TN + FP). |
Precision/Positive predictive value (PPV) | The proportion of true positive predictions to all positive predictions TP/(TP + FP). |
Negative predictive value (NPV) | The proportion of true negative predictions to all negative predictions made by the model TN/(TN + FN). |
Author | Year | Primary Pathology and Surgery Type | Sample Size | Outcome Variable | Imbalance | Accuracy | AUROC | Sensitivity | Specificity | PPV | NPV | Brier | Other Metric | Dataset | Performance Related Figures | Journal | Error Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cabrera | 2022 | Posterior Cervical Decompression with Instrumented Fusion | 29,949 | >4 days LOS | 18.21% (5454) | 0.781 | 0.781 | 0.4978 | 0.842 | - | - | - | - | NSQIP 2008–2018 | AUROC Calibration plot | Journal of Clinical Neuroscience | I and II |
Readmission | 4.4% (1318) | 0.9512 | 0.791 | 0.4615 | 0.9718 | - | |||||||||||
Reoperation | 2.51% (752) | 0.9559 | 0.781 | 0.4333 | 0.9683 | - | |||||||||||
Infection | 4.4% (1318) | 0.9311 | 0.724 | 0.1695 | 0.9676 | - | |||||||||||
Transfusion | 2.6% (779) | 0.7577 | 0.902 | 0.8864 | 0.7532 | - | |||||||||||
Han | 2019 | Spine Surgery | 345,510 * 760,724 ** | Pulmonary complications | 4.7% (16,138) * 5.3% (40,046) ** | - | 0.75 | 0.82 | 0.52 | - | - | 0.044 | - | MKS */CMS ** | AUROC Calibration plot | The Spine Journal | I and II |
Congestive heart failure | 1.0% (3538) * 3.6% (26,989) ** | - | 0.75 | 0.84 | 0.51 | - | - | 0.026 | |||||||||
Pneumonia | 1.9% (6629) * 2.9% (21,861) ** | - | 0.74 | 0.81 | 0.51 | - | - | 0.024 | |||||||||
Urinary tract infections | 3.3% (11,410) * 6.2% (46,786) ** | - | 0.71 | 0.78 | 0.52 | - | - | 0.075 | |||||||||
Neurologic complications | 2.1% (7317) * 4.0% (29,462) ** | - | 0.69 | 0.76 | 0.51 | - | - | 0.032 | |||||||||
Cardiac dysrhythmia | 4.3% (14,689) * 10.6% (80,822) ** | - | 0.72 | 0.78 | 0.53 | - | - | 0.53 | |||||||||
Overall adverse events | 18.0% (60,958) * 27.6% (209,646) ** | - | 0.7 | 0.71 | 0.57 | - | - | 0.166 | |||||||||
Overall medical complications | - | - | 0.7 | - | - | - | - | - | |||||||||
Overall surgical complications | - | - | 0.69 | - | - | - | - | - | |||||||||
Kuris | 2021 | Anterior, Posterior, and Posterior Interbody Lumbar Spinal Fusion | 63,533 ALIF: 12,915 PLIF: 27,212 PSF:23,406 | Readmission | ALIF: 4.92% (635) PLIF: 4.41% (1200) PSF: 4.49% (1051) | 0.94–0.95 | 0.64–0.65 | - | - | - | - | 0.048–0.052 | - | NSQIP 2009–2018 | Visualization of BS Calibration plot | World Neurosurgery | I |
Shah | 2021 | Lumbar Spinal Fusion | 38,788 | Readmission or Major Complication | 11.5% (4470) | - | 0.686 | - | - | - | - | 0.094 | AUPRC: 0.283 | All California hospitals 2015–2017 | AUROC PR-curve | World Neurosurgery | I |
Valliani | 2022 | Thoracolumbar Spine Surgery | SCDW: 5224 | Non-home discharge | SCDW: 23.28% (1216) | - | 0.81 | - | - | 0.64 | 0.83 | - | - | Algorithm development: SCDW *** 2008–2019 | AUROC Calibration plot | World Neurosurgery | I |
NIS:492,312 | NIS: 20.64% (101,613) | - | 0.77 | - | - | 0.6 | 0.82 | - | - | Out-of-sample validation: National Inpatient Sample 2009–2017 | |||||||
Gowd | 2022 | Anterior Cervical Discectomy and Fusion | 42,194 | Any adverse event | 3.14% (1327) | - | 0.73 | 0.029 | 0.9994 | 0.615 | 0.966 | - | - | NSQIP 2011–2017 | AUROC Confusion matrix | World Neurosurgery | II |
Extended length of stay | 16.36% (6905) | - | 0.73 | 0.1821 | 0.9793 | 0.65 | 0.85 | - | - | ||||||||
Transfusion | 0.44% (184) | - | 0.9 | 0.0294 | 0.9998 | 0.4 | 0.996 | - | - | ||||||||
Surgical site infection | 058% (243) | - | 0.63 | 0 | 1 | 0 | 0.993 | - | - | ||||||||
Return to OR | 1.58% (667) | - | 0.64 | 0 | 1 | 0 | 0.982 | - | - | ||||||||
Pneumonia | 0.76% (3210) | - | 0.8 | 0.0102 | 0.9989 | 0.067 | 0.992 | - | - | ||||||||
Ogink | 2019 | Spondylolisthesis Surgery | 9338 | Non-home discharge | 18.6% (1737) | - | 0.753 | - | - | - | - | 0.132 Null: 0.152 | - | NSQIP 2009–2016 | AUROC Calibration plot | European Spine Journal | I |
Karhade | 2018 | Lumbar Degenerative Disc Disorders Elective Surgery | 26,364 | Non-routine discharge | 9.28% (2447) | - | 0.823 | - | - | 0.33 | 0.54 | 0.0713 Null: 0.086 | - | NSQIP 2011–2016 | AUROC Calibration plot Decision curve | Neurosurgical Focus | I |
Kalagara | 2019 | Lumbar Laminectomy | 26,869 | Unplanned readmission | 5.59% (1502) | 0.950/0.796 | 0.801/0.690 | 0.496/0.405 | - | - | - | - | - | NSQIP 2011–2014 | - | J Neurosurg Spine | I and II |
Hopkins | 2020 | Posterior Lumbar Fusion | 23,264 | Readmission | 5.15% (1198) | 0.962 | 0.812 | 0.355 | 0.995 | 0.785 | 0.97 | - | - | NSQIP 2011–2016 | AUROC | J Neurosurg Spine | II |
Goyal | 2019 | Spinal Fusion | 59,145 | Discharge to non-home facility | 12.6% (7452) | 0.77–0.79 | 0.85–0.87 | 0.77–0.80 | 0.77–0.79 | 0.32–0.35 | 0.96 | - | - | NSQIP 2012–2013 | - | J Neurosurg Spine | II |
30-day unplanned readmission | 4.5% (2662) | 0.59–0.71 | 0.63–0.66 | 0.46–0.63 | 0.59–0.72 | 0.07 | 0.97 | - | - | ||||||||
Stopa | 2019 | Elective Spine Surgery | 144 | Non-routine discharge | 6.9% (10) | - | 0.89 | 0.6 | 0.95 | 0.5 | 0.97 | 0.049 | - | **** 2013–2015 | AUROC Calibration plot Decision curve Confusion matrix | J Neurosurg Spine | II |
Li | 2022 | Single-Level Laminectomy Surgery | 35,644 | Discharged on day of surgery | 37.1% (13,230) | 0.69/0.70 | 0.77/0.77 | 0.83/0.58 | 0.55/0.80 | 0.77/0.69 | 0.64/0.70 | - | - | NSQIP 2017–2018 | - | Global Spine Journal | II |
Veeramani | 2022 | Anterior Cervical Discectomy and Fusion | 54,502 | Unplanned re-intubation | 0.51% (278) | 72–99.6 | 0.52–0.77 | - | - | - | - | 0.04–0.18 | - | NSQIP 2010–2018 | AUROC Calibration plot | Global Spine Journal | I |
DiSilvestro | 2020 | Metastatic Intraspinal Neoplasm Excision | 2094 | Mortality | 5.16% (108) | - | 0.898 | - | - | - | - | - | - | NSQIP 2006–2018 | AUROC | World Neurosurgery | I |
Zhang | 2021 | Posterior Spine Fusion Surgery | 1281 | Short LOS | 20.5% (262) | 0.68–0.83 | 0.566–0.821 | - | - | - | - | 0.13–0.29 | - | NSQIP 2006–2018 | AUROC Calibration plot | Journal of Clinical Medicine | I |
Kim | 2018 | Posterior Lumbar Spine Fusion | 22,629 | Cardiac complications | 0.44% (100) | - | 0.71 | 0 | 0.9997 | 0 | 0.9985 | - | - | NSQIP 2010–2014 | AUROC Confusion matrix | Spine (Phila Pa 1976) | I and II |
VTE complications | 1.06% (242) | - | 0.588 | - | - | - | - | - | - | ||||||||
Wound complications | 1.86% (420) | - | 0.613 | 0 | 0.9999 | 0 | 0.9785 | - | - | ||||||||
Mortality | 0.15% (34 ) | - | 0.703 | - | - | - | - | - | - | ||||||||
Arvind | 2018 | Anterior Cervical Discectomy | 20,879 | Mortality | 0.1% (21) | - | 0.979 | 0.1667 | 0.9943 | 0.0278 | 0.9992 | - | - | Multicenter data set & NSQIP 2010–2014 | AUROC Confusion matrix | Spine Deformity | I and II |
Wound complications | 0.5% (105) | - | 0.518 | 0.5429 | 0.4458 | 0.0055 | 0.9943 | - | - | ||||||||
VTE complications | 0.3% (63) | - | 0.656 | - | - | - | - | - | - | ||||||||
Cardiac complications | 0.2% (42) | - | 0.772 | - | - | - | - | - | - | ||||||||
Arora | 2022 | Elective Spine Surgery | 3678 | Discharged to rehabilitation | 22% (809) | - | 0.79 | 0.8 | 0.64 | - | - | - | - | Single academic institution | AUROC | Spine Epidemiology | I |
Ogink | 2019 | Lumbar spinal stenosis | 28,600 | Non-home discharge | 18.2% (5205) | - | 0.751 | - | - | - | - | 0.131 Null: 0.15 | - | NSQIP 2009–2016 | AUROC Calibration plot | European Spine Journal | I |
Kim | 2018 | Spinal Deformity Procedures | 4073 | Mortality | 0.5% (29) | - | 0.844 | 0 | 1 | 0 | 0.9937 | - | - | NSQIP 2010–2014 | AUROC Confusion matrix | Spine Deformity | I & II |
Wound complications | 2.4% (139) | - | 0.606 | 0.6579 | 0.5871 | 0.0343 | 0.9872 | - | - | ||||||||
VTE complications | 1.8% (105) | - | 0.547 | - | - | - | - | - | - | ||||||||
Cardiac complications | 0.7% (39) | - | 0.768 | - | - | - | - | - | - | ||||||||
Zhang | 2022 | Degenerative spinal disease surgery | 663 | Postop Delerium | 27.45% (182) | 0.77 | 0.87 | 0.861 | 0.773 | - | - | - | F1: 0.673 Youden: 0.34 | Single academic institution | Calibration plots Decision curve | CNS Neuroscience & Therapeutics | I |
Yang | 2022 | Thoracolumbar burst fracture | 161 | Perioperative blood loss | 38.5% (62) | 0.783 | 0.864 | 0.867 | 0.814 | 0.741 | 0.826 | - | F1: 0.793 | Single academic institution | AUROC | Frontiers in Public Health | None |
Xiong | 2022 | Posterior Lumbar Interbody Fusion | 584 | Surgical site infection | 5.65% (33) | 0.9107 | 0.8726 | 0.3333 | 0.974 | 0.625 | 0.9184 | - | F3: 0.5747 | Single academic institution | AUROC Confusion matrix | Computational & Mathematical Methods in Medicine | II |
Wang | 2020 | Microvascular decompression | 912 | Postop Delerium | 24.2% (221) | 0.923 | 0.962 | 0.788 | - | 0.881 | - | - | F1: 0.832 | Single academic institution | AUROC | Journal of Clinical Anesthesia | I |
Wang | 2021 | Posterior Lumbar Fusion | 13,500 | Venous thromboembolism | 0.95% (1283) | - | 0.709 | - | - | - | - | - | - | NSQIP 2010–2017 | - | Global Spine Journal | I |
Wang | 2021 | Posterior laminectomy and fusion with cervical myelopathy | 184 | C5 palsy | 14.13% (26) | 0.918 | 0.923 | 0.6667 | 0.9677 | 0.8 | 0.9375 | - | - | Single academic institution | AUROC Confusion matrix | Journal of Orthopaedic Surgery and Research | None |
Wang | 2021 | Minimally Invasive Transforaminal Lumbar Interbody Fusion | 705 | Surgical site infections | 4.68% (33) | 0.9 | 0.78 | - | - | - | - | - | - | Single academic institution | AUROC | Frontiers in Medicine | I |
Zhang | 2021 | Posterior Spine Fusion Surgery | 1281 | Short length of stay | 20.5% (262) | 0.831 | 0.814 | - | - | - | - | 0.13 | - | NSQIP 2006–2018 | AUROC Calibration plots | Journal of neurosurgery | I |
Valliani | 2022 | Cervical Spine Surgery | SAI: 4342 NIS: 311,582 | Extended length of stay | 25% (1086/77,896) | - | 0.87/0.84 | 0.70/0.57 | 0.89/0.92 | 0.75/0.75 | 0.86/0.83 | - | - | Single academic institution National Inpatient Sample | AUROC | Neurosurgery | None |
Stopa | 2019 | Elective Spine Surgery | 144 | Non-routine discharge | 6.9% (10) | - | 0.89 | - | - | 0.5 | 0.97 | - | - | **** 2013–2015 | AUROC Calibration plot | Neurosurgery | I |
Siccoli | 2019 | Lumbar spinal stenosis | 635 | Reoperation Overall | 9.5% (60) | 0.69 | 0.66 | 0.32 | 0.69 | 0.1 | 0.9 | 0.09 | F1: 0.15 | Single academic institution | AUROC | Neurosurgical Focus | II |
635 | Reoperation at Index | 4.3% (27) | 0.63 | 0.61 | 0.5 | 0.64 | 0.07 | 0.96 | 0.05 | F1: 0.12 | |||||||
451 | Prolonged Operation | 15% (68) | 0.78 | 0.54 | 0.85 | 0.23 | 0.91 | 0.14 | 0.13 | F1: 0.88 | |||||||
633 | Extended Hospital Stay | 15% (95) | 0.77 | 0.58 | 0.27 | 0.87 | 0.28 | 0.86 | 0.13 | F1: 0.27 | |||||||
Shah | 2022 | Posterior cervical spinal fusion | 6822 | Major complication or 30-day readmission | 18.8% (1279) | 0.7214 | 0.679 | 0.5117 | 0.7699 | 0.3394 | 0.8722 | 0.4081 | AUPRC: 0.377 | California hospitals 2015- 2017 | AUROC PR-curve Confusion matrix | European Spine Journal | II |
Saravi | 2022 | Lumbar Decompression Surgery | 236 | Extended length of stay | 25% (59) | 0.814 | 0.814 | - | - | - | - | - | - | Single academic institution | AUROC | Journal of Clinical Medicine | I |
Russo | 2021 | Anterior Cervical Discectomy and Fusion | 1516 | Extended length of stay | 42.4% (643) | 0.66/0.69 | 0.68/0.68 | 0.52/0.49 | 0.72/0.78 | 0.44/0.48 | 0.78/0.78 | - | - | Single academic institution | AUROC Confusion matrix Decision curve | Journal of the American Academy of Orthopaedic Surgeons | II |
Rodrigues | 2022 | Anterior Cervical Discectomy and Fusion | 176,816 | 2-yr reoperation | 5.6% (9956)) | - | 0.671 | - | - | - | - | - | - | ^ 2007 to 2016 | AUROC Calibration plot | Spine | I |
90-day complication | 7.5% (13,254) | 0.823 | |||||||||||||||
90-day readmission | 6.3% (11,192) | 0.713 | |||||||||||||||
Ren | 2022 | Lumbar Discectomy | 1159 | Recurrent lumbar disc herniation | 11.22% (130) | 0.8641 | - | 0.8269 | - | 0.8958 | - | - | F1: 0.86 | Single academic institution | AUROC | Global Spine Journal | I |
Porche | 2022 | Lumbar surgery | 231 | Urinary retention | 25.9% (60) | - | 0.737 | 0.954 | 0.254 | 0.6 | 0.79 | - | - | Single academic institution | AUROC Confusion matrix Calibration plot | Journal of Neurosurgery Spine | I |
Pedersen | 2022 | Lumbar Disc Herniation | 1988 | EuroQol | 36.5% (726) | 0.79 | 0.84 | 0.7 | 0.84 | 0.83 | 0.71 | - | MCC ^^: 0.54 F1: 0.83 | Danish national registry for spine surgery | - | Global Spine Journal | None |
Oswestry Disability Index | 36.3% (721) | 0.69 | 0.74 | 0.67 | 0.7 | 0.71 | 0.65 | - | MCC ^^: 0.37 F1: 0.71 | ||||||||
Visual Analog Scale Leg | 32.3% (643) | 0.64 | 0.65 | 0.43 | 0.8 | 0.66 | 0.6 | - | MCC ^^: 0.25 F1: 0.57 | ||||||||
Visual Analog Scale Back | 32.3% (643) | 0.72 | 0.78 | 0.64 | 0.77 | 0.79 | 0.61 | - | MCC ^^: 0.41 F1: 0.78 | ||||||||
Ability to return to work (1 year) | 14.2% (282) | 0.86 | 0.81 | 0.61 | 0.92 | 0.91 | 0.63 | - | MCC ^^: 0.53 F1: 0.91 | ||||||||
Nunes | 2022 | Thoracolumbar fractures surgery | 215,999 | 30-day readmission | 8.8% (19,148) | 0.575 | 0.743 | 0.776 | 0.556 | 0.145 | 0.962 | - | F1: 0.245 | HCUP and SID in 187 hospitals in Florida 2014 to 2018 | - | International Journal of Health Planning & Management | II |
Merali | 2019 | Degenerative cervical myelopathy | 605 | 6 Month: SF-6D | - | 0.718 | 0.71 | 0.75 | 0.5 | 0.9 | 0.25 | - | - | Multicenter AOSpine CSM North America | AUROC Confusion matrix | PLoS ONE | II |
12 Month: SF-6D | 0.77 | 0.7 | 0.78 | 0.63 | 0.98 | 0.12 | |||||||||||
24 Month: SF-6D | 0.708 | 0.73 | 0.74 | 0.47 | 0.92 | 0.17 | |||||||||||
6 Month: mJOA | 0.667 | 0.73 | 0,7 | 0.59 | 0.82 | 0.43 | |||||||||||
12 Month: mJOA | 0.713 | 0.73 | 0.7 | 0.59 | 0.82 | 0.43 | |||||||||||
24 Month: mJOA | 0.649 | 0.67 | 0.63 | 0.8 | 0.96 | 0.23 | |||||||||||
Martini | 2021 | Spine Surgery | 11,150 | Non-home discharge | 15.8% (1764) | - | 0.91 | - | - | - | - | - | - | Single academic institution | AUROC | Spine | I |
Khan | 2020 | Degenerative Cervical Myelopathy | 702 | Worsening functional status | 12.1% (85) | 0.714 | 0.788 | 0.779 | 0.704 | - | - | - | - | Multicenter | AUROC Calibration plot | Neurosurgery | I |
Karhade | 2019 | Spinal metastasis | 1790 | 30-day mortality | 8.49% (152) | - | 0.769 | - | - | - | - | 0.0706 Null: 0.079 | - | NSQIP 2009 through 2016 | AUROC Calibration plot Decision curve | Neurosurgery | I |
Karhade | 2019 | Lumbar disc herniation | 5413 | Sustained postoperative opioid prescription | 7.7% (416) | - | 0.79 | - | - | - | - | 0.065 Null: 0.071 | - | Multicenter | AUROC Calibration plot Decision curve | The Spine Journal | I |
Karhade | 2019 | Anterior cervical discectomy and fusion | 2737 | Sustained postoperative opioid prescription | 9.9% (270) | - | 0.8 | - | - | - | - | 0.075 Null: 0.089 | - | Multicenter | AUROC Calibration plot Decision curve | The Spine Journal | I |
Karhade | 2022 | Spinal metastasis | 4303 | 6-week mortality | 14.17% (610) | - | 0.84 | - | - | - | - | 0.1 Null: 0.12 | - | Multicenter | AUROC Calibration plot Decision curve | The Spine Journal | I |
Karhade | 2019 | Lumbar spine surgery | 8435 | Sustained postoperative opioid prescription | 2.5% (82) | - | 0.7 | - | - | - | - | 0.039 Null: 0.041 | - | Multicenter | AUROC Calibration plot Decision curve | The Spine Journal | I |
Karhade | 2021 | Anterior lumbar spine surgery | 1035 | Intraoperative vascular injury | 7.2% (75) | - | 0.92 | 0.86 | 0.93 | 0.52 | 0.99 | 0.04 Null: 0.077 | F1: 0.44 AUPRC: 0.74 | Multicenter | AUROC Calibration plot Decision curve | The Spine Journal | II |
0.75 | - | - | - | - | 0.072 Null: 0.077 | - | I | ||||||||||
Karhadea | 2021 | Anterior cervical discectomy and fusion | 2917 | Length of stay greater than one day | 35.2% (1027) | - | 0.68 | - | - | - | - | 0.21 | - | - | AUROC Calibration plot | Seminars in Spine Surgery | I |
Karabacak | 2023 | Spinal Tumor Resections | 3073 | Prolonged length of stay | 25% (769) | 0.804 | 0.745 | 0.618 | - | 0.478 | - | - | F1: 0.538 MCC: 0.422 AUPRC: 0.602 | NSQIP 2015 through 2020 | AUROC PR-curve | Cancers | II |
Non-home discharge | 23.4% (718) | 0.75 | 0.701 | 0.442 | - | 0.375 | - | - | F1: 0.405 MCC: 0.250 AUPRC: 0.408 | II | |||||||
Major complications | 12.33% (379) | 0.856 | 0.73 | 0.383 | - | 0.221 | - | - | F1: 0.279 MCC: 0.216 AUPRC: 0.309 | II | |||||||
Jin | 2022 | Intradural Spinal Tumors | 4488 | Readmission | 11.7% (524) | - | 0.693/ 0.525/ 0.643 | - | - | - | - | 0.093/ 0.093/ 0.099 | - | IBM MarketScan Claims Database 2007–2016 | AUROC Calibration plots | Neurospine | I |
Non-home discharge | 18.9% (956) | - | 0.786 | - | - | - | - | 0.155 | |||||||||
Jain | 2020 | Long Segment Posterior Lumbar Spine Fusion | 37,852 | Discharge-to-facility | 35.4% (13,400) | - | 0.77 | - | - | - | - | - | - | State Inpatient Database 2005–2010 | AUROC | The Spine Journal | I |
90-day readmission | 19.0% (7192) | - | 0.65 | - | - | - | - | - | - | ||||||||
90-day major medical complications | 13.0% (4921) | - | 0.7 | - | - | - | - | - | - | ||||||||
Hopkins | 2020 | Posterior spinal fusions | 4046 | Surgical Site Infection | 1.5% (61) | - | 0.775 | 0.4955 | 0.9988 | 0.9256 | 0.985 | - | - | Single academic institution | AUROC | Clinical Neurology & Neurosurgery | II |
Fatima | 2020 | Lumbar Degenerative Spondylolisthesis | 80,610 | Overall adverse events | 4.9% (3965) | - | 0.7 | - | - | - | - | - | - | NSQIP 2005–2016 | AUROC Calibration plot Decision curve | World Neurosurgery | I & II |
Medical adverse events | 10.1% (8165) | - | 0.7 | - | - | - | - | 0.02 | - | ||||||||
Surgical adverse events | 1.9% (1518) | - | 0.69 | - | - | - | - | 0.07 | - | ||||||||
Pneumonia | 0.6% (450) | - | 0.71 | 0.95 | 0.91 | 0.26 | - | 0.04 | - | ||||||||
Bleeding transfusion | 5.3% (4268) | - | 0.7 | 0.98 | 0.95 | 0.24 | - | 0.05 | - | ||||||||
Urinary tract infection | 1.3% (1074) | - | 0.7 | - | - | - | - | 0.01 | - | ||||||||
Superficial wound infection | 0.9% (750) | - | 0.62 | 0.97 | 0.95 | 0.23 | - | - | - | ||||||||
Sepsis | 0.6% (473) | - | 0.63 | - | - | - | - | - | - | ||||||||
Etzel | 2022 | Lumbar Arthrodesis | ALIF:12,915 PLIF/TLIF: 27,212 PSF: 23,406 | Prolonged length of stay | - | 0.799/ 0.813/ 0.804 | 0.752/ 0.723/ 0.753 | - | - | - | - | 0.15/ 0.15 0.14 | - | NSQIP 2009–2018 | AUROC Calibration plots | Journal of the American Academy of Orthopaedic Surgeons | I |
Elsamadicy | 2022 | Metastatic Spinal Column Tumors | 4346 | Readmission | 22.8% (991) | - | 0.59 | - | - | - | - | - | - | Nationwide Readmission Database 2016–2018 | AUROC | Global Spine Journal | I |
Dong | 2022 | Minimally Invasive Kyphoplasty in Osteoporotic Vertebral Compression Fractures | 346 | Risk of Recollapse | 11.56% (40) | 0.8844 | 0.81 | 0.875 | 0.8856 | 0.5 | 0.9819 | - | - | Single academic institution | AUROC Confusion matrix | Frontiers in Public Health | II |
Dong | 2022 | Lumbar Interbody Fusion | 157 | Short Term Unfavorable Clinical Outcomes | 16.56% (26) | 0.9367 | 0.88 | 0.7667 | 0.9766 | 0.8846 | 0.947 | - | - | Single academic institution | AUROC Confusion matrix | BMC Musculoskeletal Disorders | None |
Long Term Unfavorable Clinical Outcomes | 5.7% (9) | 0.9459 | 0.78 | 0.9291 | 0.9776 | 0.9874 | 0.8792 | - | - | ||||||||
Yen | 2022 | Lumbar disc herniation | 1316 | Sustained postoperative opioid prescription | 3.1% (41) | - | 0.76 | - | - | - | - | 0.028 | AUPRC: 0.33 | Single academic institution | AUROC AUPRC Calibration plot Decision curve | The Spine Journal | I |
Topic | Complication | Number |
---|---|---|
Infection | Surgical site infection | 5 |
Wound complications | 3 | |
Infection | 1 | |
Sepsis | 1 | |
General Adverse Events | Surgical adverse events | 2 |
Any adverse event | 4 | |
Major complications | 1 | |
Medical adverse events | 5 | |
Mortality | 6 | |
Readmission | 12 | |
Reoperation | 5 | |
Quality of Life/Pain | Visual Analog Scale Back | 1 |
Visual Analog Scale Leg | 1 | |
6 Month: mJOA | 1 | |
6 Month: SF-6D | 1 | |
12 Month: mJOA | 1 | |
12 Month: SF-6D | 1 | |
Sustained postoperative opioid prescription | 4 | |
24 Month: mJOA | 1 | |
24 Month: SF-6D | 1 | |
EuroQol | 1 | |
Ability to return to work (1 year) | 1 | |
Worsening functional status | 1 | |
Oswestry Disability Index | 1 | |
Surgical | Risk of Recollapse | 1 |
Prolonged Operation | 1 | |
Recurrent lumbar disc herniation | 1 | |
Intraoperative vascular injury | 1 | |
Cardiac | Cardiac complications | 3 |
Cardiac dysrhythmia | 1 | |
Congestive heart failure | 1 | |
Pulmonary | Pulmonary complications | 1 |
Unplanned re-intubation | 1 | |
Pneumonia | 3 | |
Length of Stay | Extended length of stay | 10 |
Short length of stay | 3 | |
Neurology | C5 palsy | 1 |
Neurologic complications | 1 | |
Postop delerium | 2 | |
Other | VTE complications | 4 |
Transfusion | 3 | |
Perioperative blood loss | 1 | |
Urinary retention | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanem, M.; Ghaith, A.K.; El-Hajj, V.G.; Bhandarkar, A.; de Giorgio, A.; Elmi-Terander, A.; Bydon, M. Limitations in Evaluating Machine Learning Models for Imbalanced Binary Outcome Classification in Spine Surgery: A Systematic Review. Brain Sci. 2023, 13, 1723. https://doi.org/10.3390/brainsci13121723
Ghanem M, Ghaith AK, El-Hajj VG, Bhandarkar A, de Giorgio A, Elmi-Terander A, Bydon M. Limitations in Evaluating Machine Learning Models for Imbalanced Binary Outcome Classification in Spine Surgery: A Systematic Review. Brain Sciences. 2023; 13(12):1723. https://doi.org/10.3390/brainsci13121723
Chicago/Turabian StyleGhanem, Marc, Abdul Karim Ghaith, Victor Gabriel El-Hajj, Archis Bhandarkar, Andrea de Giorgio, Adrian Elmi-Terander, and Mohamad Bydon. 2023. "Limitations in Evaluating Machine Learning Models for Imbalanced Binary Outcome Classification in Spine Surgery: A Systematic Review" Brain Sciences 13, no. 12: 1723. https://doi.org/10.3390/brainsci13121723
APA StyleGhanem, M., Ghaith, A. K., El-Hajj, V. G., Bhandarkar, A., de Giorgio, A., Elmi-Terander, A., & Bydon, M. (2023). Limitations in Evaluating Machine Learning Models for Imbalanced Binary Outcome Classification in Spine Surgery: A Systematic Review. Brain Sciences, 13(12), 1723. https://doi.org/10.3390/brainsci13121723