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Abstract: Clinical prediction models for spine surgery applications are on the rise, with an increasing
reliance on machine learning (ML) and deep learning (DL). Many of the predicted outcomes are
uncommon; therefore, to ensure the models’ effectiveness in clinical practice it is crucial to properly
evaluate them. This systematic review aims to identify and evaluate current research-based ML
and DL models applied for spine surgery, specifically those predicting binary outcomes with a
focus on their evaluation metrics. Overall, 60 papers were included, and the findings were reported
according to the PRISMA guidelines. A total of 13 papers focused on lengths of stay (LOS), 12 on
readmissions, 12 on non-home discharge, 6 on mortality, and 5 on reoperations. The target outcomes
exhibited data imbalances ranging from 0.44% to 42.4%. A total of 59 papers reported the model’s
area under the receiver operating characteristic (AUROC), 28 mentioned accuracies, 33 provided
sensitivity, 29 discussed specificity, 28 addressed positive predictive value (PPV), 24 included the
negative predictive value (NPV), 25 indicated the Brier score with 10 providing a null model Brier,
and 8 detailed the F1 score. Additionally, data visualization varied among the included papers. This
review discusses the use of appropriate evaluation schemes in ML and identifies several common
errors and potential bias sources in the literature. Embracing these recommendations as the field
advances may facilitate the integration of reliable and effective ML models in clinical settings.

Keywords: machine learning; artificial intelligence; deep learning; predictive modeling; spine surgery

1. Introduction

In recent years, the integration of machine learning (ML) into spine surgery has shown
promise in enabling personalized risk predictions [1,2]. These advancements could improve
patient outcomes, streamline surgical decision-making, reduce costs, and optimize medical
management [3]. ML, a subset of artificial intelligence (AI), utilizes computer algorithms
to efficiently solve intricate tasks. A notable advantage lies in its adaptability, enabling
models to continually learn and be redesigned by incorporating new data and modifying
their underlying knowledge.

Machine learning has witnessed significant advancements, notably in the realm of
deep learning (DL)—an advanced subset that involves neural networks with multiple
layers, enabling more intricate data processing and abstraction. This structure contributes
to its capability to automatically learn and extract features from complex datasets [4]. The
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accumulation of advancements has garnered strong support from the industry, recognizing
the substantial potential of ML and DL in enhancing medical research and clinical care [5].
However, despite the developments made in prediction models, their effective application
in predicting uncommon outcomes remains limited in the literature. This brings attention
to the class imbalance challenge in ML, where certain classes of interest occur far less
frequently than others [6].

Imbalanced data essentially means that a dataset is skewed, leading to challenges with
data generalizability, inadequate training of the ML model, and false positive readings.
This issue is particularly relevant in medical ML models, where only a small proportion of
individuals may experience a certain event, such as a specific condition or complication. In
spine surgery, the outcomes of interest, such as readmission, extended length of stay, or
specific complications, are considered infrequent events. In such cases, the integration of ML
for personalized risk predictions becomes trickier, as the rarity of these specific events adds
complexity to predictive modeling. If ML models lack design considerations for tackling
class imbalance, they may become skewed towards one end of the spectrum, making
their predictions unreliable. This underscores the significance of addressing the class
imbalance challenge within ML. Hence, this review highlights the importance of refining
our understanding and application of evaluation methods to navigate the complexities of
uncommon outcome predictions more effectively.

2. Inadequate Evaluation Metrics

A classifier can only be as effective as the metric used to assess it. Selecting the wrong
metric for model evaluation can lead to suboptimal model training or even mislead the
authors into selecting a poor model instead of a better-performing one. Below are metrics
that should not be solely relied on for imbalanced classification.

2.1. Accuracy

Accuracy measures how well a model predicts the correct class. It is calculated as the
ratio of correct predictions to the total number of predictions. However, when evaluating a
binary classification model on an imbalanced dataset, accuracy can be misleading. This
is because it only considers the total number of correct predictions without weighing the
dataset’s imbalance.

In scenarios with imbalanced datasets, a model consistently predicting the majority
class can exhibit high accuracy but may struggle to accurately identify the minority class.
When accuracy closely aligns with the class imbalance rate, it suggests the model might be
predicting the majority class for all instances. In such cases, the accuracy is driven by the
class imbalance, hindering the model’s ability to distinguish between positive and negative
classes. Therefore, it is crucial to employ multiple metrics for a comprehensive evaluation
of the model’s performance.

2.2. The Area under the ROC Curve (AUROC)

AUROC is calculated as the area under the curve of the true positive rate (TPR) versus
the false positive rate (FPR). A no-skill classifier will have a score of 0.5, whereas a perfect
classifier will have a score of 1.0.

While AUROC is useful for comparing the performance of different models, it can be
misleading with class imbalance as the TPR and FPR are affected by the class distribution.

For instance, in a model predicting a specific disease on an imbalanced dataset, the
TPR may be low as the model struggles to predict sick cases, while the FPR may be high
because the model accurately predicts healthy cases. In such instances, the AUROC may
yield falsely high-performance results.
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2.3. Adequate Evaluation Metrics

In assessing a binary classification model on an imbalanced dataset, key metrics
include the confusion matrix (CM), F1 score, Matthews correlation coefficient (MCC), and
area under the precision-recall curve (AUPRC).

2.4. Confusion Matrix

The CM matrix delineates true positive, true negative, false positive, and false negative
in model predictions [7]. This matrix is particularly useful for imbalanced classes, offering
insights into the model’s performance on each class separately. It also facilitates the
calculations of various metrics such as precision, recall, and F1 score.

As mentioned earlier, relying solely on accuracy is advised against in imbalanced
cases, with the confusion matrix providing a strong rationale for that. Researchers can use
it to visualize the model’s performance, pinpoint common errors, and make the necessary
adjustments to enhance overall performance. Table 1 displays the metrics provided by
the CM.

Table 1. Metrics Provided by the Confusion Matrix.

Metrics Provided by the Confusion Matrix.

True Positive (TP) The number of predictions where the classifier correctly predicts the positive
class as positive.

True Negative (TN) The number of predictions where the classifier correctly predicts the negative
class as negative.

False Positive (FP) The number of predictions where the classifier incorrectly predicts the negative
class as positive.

False Negative (FN) The number of predictions where the classifier incorrectly predicts the positive
class as negative.

Recall/Sensitivity The proportion of true positive predictions to all actual positive cases
TP/(TP + FN).

Specificity The proportion of all negative samples that are correctly predicted as negative
by the classifier TN/(TN + FP).

Precision/Positive predictive value (PPV) The proportion of true positive predictions to all positive predictions
TP/(TP + FP).

Negative predictive value (NPV) The proportion of true negative predictions to all negative predictions made by
the model TN/(TN + FN).

2.5. F1 Score

Improving the model’s performance often involves aiming for a balance between
precision and recall. However, it is essential to acknowledge that there is a trade-off
between these two metrics, where enhancement of one metric score can lead to a reduction
in the other. The correct balance is highly reliant on the model’s objective and is referred to
as the F1 score. The F1 score is particularly useful when faced with imbalanced classes as it
emphasizes the harmonic mean between precision and recall [8].

2.6. Matthews Correlation Coefficient (MCC)

The Matthews correlation coefficient (MCC) stands out as a robust metric,
especially when dealing with imbalanced class data. MCC is a balanced metric
that takes into account all four components of the CM. It is defined as
(TP × TN − FP × FN)/sqrt((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)). The
MCC tends to approach +1 in cases of perfect classification and −1 in instances of entirely
incorrect classification (inverted classes). When facing class-imbalanced data, the MCC is
considered a strong metric due to its effectiveness in capturing various aspects of classifica-
tion performance. Notably, it remains close to 0 for completely random classifications.
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2.7. Informedness (Youden’s J Statistic)

Informedness, also known as Youden’s J statistic, quantifies the difference between
the true positive rate (Recall) and the false positive rate (FPR). It is computed as
Recall + Specificity − 1, with values ranging from −1 to +1. A higher informedness
value signifies a superior classifier [9].

2.8. Markedness

Markedness gauges the difference between the PPV and NPV. The calculation involves
adding PPV and NPV, then subtracting 1, resulting in a range from −1 to +1. A higher
markedness value suggests a better overall performance in predictive values [9].

2.9. The Area under the Precision-Recall Curve (AUPRC)

AUPRC is a valuable metric when working with imbalanced datasets as it considers
precision and recall in its calculation [10]. This is important when dealing with imbalanced
datasets where the focus is on identifying positive cases and minimizing false positives.
The AUPRC is derived by plotting precision and recall values at various thresholds and
then computing the area under the resulting curve.

The resulting curve is formed by different points, and classifiers performing better
under different thresholds will be ranked higher. On the plot, a no-skill classifier manifests
as a horizontal line with precision proportional to the number of positive examples in the
dataset. Conversely, a point in the top right corner signifies a perfect classifier.

2.10. Brier Score (BS)

The Brier Score (BS) serves as a metric for assessing the accuracy of a probabilistic
classifier and is used to evaluate the performance of binary classification models [11]. It is
determined by calculating the mean squared difference between the predicted probabilities
for the positive class and the true binary outcomes. The BS ranges from 0 to 1, with a
score of 0 indicating a perfect classifier, while 1 suggests predicted probabilities completely
discordant with actual outcomes.

It is important to note that while the BS possesses desirable properties, it does have
limitations. For instance, it may favor tests with high specificity in situations where the
clinical context requires high sensitivity, especially when the prevalence is low [12].

To address these limitations, a model’s BS evaluation should consider the outcome
prevalence in the patient sample, prompting the computation of the null BS. The null BS
acts as a benchmark for evaluating a model’s performance by always predicting the most
prevalent outcome in the dataset. The model’s BS is then compared to that of the null model,
and ∆Brier is calculated by subtracting the null BS from that of the model under evaluation.
The ∆Brier is a scalar value and indicates the extent to which the model outperforms the
null model. The formula follows ∆Brier = BS of the model − BS of the null model.

2.11. Additional Evaluation Metrics and Graphical Tools
2.11.1. Calibration Curves

A calibration plot is a graphical tool used to evaluate a probabilistic model. The curve
illustrates the alignment between the model’s predicted probabilities and the observed
frequencies of the positive class in the test set. A perfect model would exhibit an intercept
value of 0 and a slope value of 1. These plots are particularly valuable for evaluating
models trained on imbalanced data, offering insights into the model’s ability to predict the
positive class.

Addressing imbalanced data involves using techniques such as undersampling and
oversampling to achieve classification balance and alleviate classifier bias. However,
determining the optimal sample size for training remains a significant challenge. An
alternative strategy is to leverage learning curves, which provide insights into reducing
error probability as the training set size increases. One example is a theoretical learning
curve for the multi-class Bayes classifier, considering general multivariate parametric
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models of class-conditional probability density [13]. This curve offers an estimate of the
reduction in the excess probability of error without relying on specific model parameters.
Learning curves contribute to an essential understanding of the model’s behavior and its
performance improvements with increased data. Table 1 outlines the metrics derived from
the confusion matrix.

2.11.2. Decision Curve

A decision curve is a graphical tool used to evaluate a classifier’s performance by
examining the trade-off between sensitivity and 1-specificity across varying thresholds for
classifying an instance as positive. The optimal threshold is the one that maximizes the
net benefit. By convention, the model’s benefit strategy at each threshold is compared to
the treat-all and treat-none strategies. The decision curve analysis stands out from other
statistical methods by its ability to evaluate the clinical value of a predictor. Figure 1A–D
depicts the AUROC, AUPRC, calibration, and decision curve figures.
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With that in mind, this systematic review of the literature aims to provide a com-
prehensive summary of the state of AI within the field of spine surgery. The focus will
be on reporting metrics, data visualization, and common errors, including inappropriate
handling of imbalanced datasets and incomplete reporting of model performance metrics.



Brain Sci. 2023, 13, 1723 6 of 26

3. Materials and Methods
3.1. Data Sources and Search Strategies

A comprehensive search of several databases was performed on 28 February 2023.
Results were limited to the English language but had no date limitations. The databases
included Ovid MEDLINE(R), Ovid Embase, Ovid Cochrane Central Register of Controlled
Trials, Ovid Cochrane Database of Systematic Reviews, Web of Science Core Collection
via Clarivate Analytics, and Scopus via Elsevier. The search strategies were designed and
conducted by a medical librarian in collaboration with the study investigators (Table S1).
Controlled vocabulary supplemented with keywords was used. The actual strategies
listing all search terms used and how they are combined are available in the Supplemental
Material. Ultimately, 3340 papers and 121 full-text articles were assessed, resulting in the
inclusion of 60 studies (Figure 2) [14–72]. This review was conducted in accordance with
the PRISMA guidelines (Table S2).
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3.2. Eligibility Criteria and Data Extraction

Inclusion criteria encompass studies focusing on ML-based prediction models per-
taining to binary surgical outcomes following spine surgery. Both intraoperative and
postoperative outcomes were eligible. Exclusion criteria comprised studies predicting
nonbinary outcomes (e.g., 3+ categorical or numeric outcomes), those predicting non-spine
surgical outcomes, studies with balanced outcomes, and those lacking predictive models.

The extracted data from all studies included the first author, paper title, year of
publication, spinal pathology and surgery type, sample size, outcome variable (the primary
result being measured), imbalance percentage, accuracy, AUROC (area under the receiver
operating characteristic curve), sensitivity, specificity, PPV (positive predictive value), NPV
(negative predictive value), Brier score (BS), other metrics, dataset, performance, journal,
and error type (Table 2).
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Table 2. Performance Metrics, Datasets, and Outcome Variables in Reviewed ML Studies on Imbalanced Binary Classification in Spine Surgery.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Cabrera 2022

Posterior Cervical
Decompression

with Instrumented
Fusion

29,949

>4 days LOS 18.21% (5454) 0.781 0.781 0.4978 0.842

- -

-

- NSQIP
2008–2018

AUROC
Calibration

plot

Journal of
Clinical
Neuro-
science

I and II

Readmission 4.4% (1318) 0.9512 0.791 0.4615 0.9718 -

Reoperation 2.51% (752) 0.9559 0.781 0.4333 0.9683 -

Infection 4.4% (1318) 0.9311 0.724 0.1695 0.9676 -

Transfusion 2.6% (779) 0.7577 0.902 0.8864 0.7532 -

Han 2019 Spine Surgery 345,510 *
760,724 **

Pulmonary
complications

4.7% (16,138) *
5.3%

(40,046) **
- 0.75 0.82 0.52 - - 0.044

- MKS
*/CMS **

AUROC
Calibration

plot

The Spine
Journal I and II

Congestive
heart failure

1.0% (3538) *
3.6%

(26,989) **
- 0.75 0.84 0.51 - - 0.026

Pneumonia
1.9% (6629) *

2.9%
(21,861) **

- 0.74 0.81 0.51 - - 0.024

Urinary tract
infections

3.3% (11,410) *
6.2%

(46,786) **
- 0.71 0.78 0.52 - - 0.075

Neurologic
complications

2.1% (7317) *
4.0%

(29,462) **
- 0.69 0.76 0.51 - - 0.032

Cardiac
dysrhythmia

4.3% (14,689) *
10.6%

(80,822) **
- 0.72 0.78 0.53 - - 0.53

Overall
adverse
events

18.0%
(60,958) *

27.6%
(209,646) **

- 0.7 0.71 0.57 - - 0.166

Overall
medical

complications
- - 0.7 - - - - -

Overall
surgical

complications
- - 0.69 - - - - -

Kuris 2021

Anterior, Posterior,
and Posterior

Interbody Lumbar
Spinal Fusion

63,533
ALIF:
12,915
PLIF:

27,212
PSF:23,406

Readmission

ALIF: 4.92%
(635)

PLIF: 4.41%
(1200)

PSF: 4.49%
(1051)

0.94–
0.95 0.64–0.65 - - - - 0.048–

0.052 - NSQIP
2009–2018

Visualization
of BS

Calibration
plot

World Neu-
rosurgery I
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Shah 2021 Lumbar Spinal
Fusion 38,788

Readmission
or

Major
Complication

11.5% (4470) - 0.686 - - - - 0.094 AUPRC:
0.283

All
California
hospitals

2015–2017

AUROC
PR-curve

World Neu-
rosurgery I

Valliani 2022
Thoracolumbar
Spine Surgery

SCDW:
5224

Non-home
discharge

SCDW:
23.28% (1216) - 0.81 - - 0.64 0.83 - -

Algorithm
develop-

ment:
SCDW ***
2008–2019 AUROC

Calibration
plot

World Neu-
rosurgery I

NIS:492,312 NIS: 20.64%
(101,613) - 0.77 - - 0.6 0.82 - -

Out-of-
sample

validation:
National
Inpatient
Sample

2009–2017

Gowd 2022
Anterior Cervical
Discectomy and

Fusion
42,194

Any adverse
event 3.14% (1327) - 0.73 0.029 0.9994 0.615 0.966 - -

NSQIP
2011–2017

AUROC
Confusion

matrix

World Neu-
rosurgery II

Extended
length of stay 16.36% (6905) - 0.73 0.1821 0.9793 0.65 0.85 - -

Transfusion 0.44% (184) - 0.9 0.0294 0.9998 0.4 0.996 - -

Surgical site
infection 058% (243) - 0.63 0 1 0 0.993 - -

Return to OR 1.58% (667) - 0.64 0 1 0 0.982 - -

Pneumonia 0.76% (3210) - 0.8 0.0102 0.9989 0.067 0.992 - -

Ogink 2019 Spondylolisthesis
Surgery 9338 Non-home

discharge 18.6% (1737) - 0.753 - - - -
0.132
Null:
0.152

- NSQIP
2009–2016

AUROC
Calibration

plot

European
Spine

Journal
I

Karhade 2018

Lumbar
Degenerative Disc
Disorders Elective

Surgery

26,364 Non-routine
discharge 9.28% (2447) - 0.823 - - 0.33 0.54

0.0713
Null:
0.086

- NSQIP
2011–2016

AUROC
Calibration

plot
Decision

curve

Neurosurgical
Focus I

Kalagara 2019 Lumbar
Laminectomy 26,869 Unplanned

readmission 5.59% (1502) 0.950/
0.796

0.801/
0.690

0.496/
0.405 - - - - - NSQIP

2011–2014 - J Neurosurg
Spine I and II

Hopkins 2020 Posterior Lumbar
Fusion 23,264 Readmission 5.15% (1198) 0.962 0.812 0.355 0.995 0.785 0.97 - - NSQIP

2011–2016 AUROC J Neurosurg
Spine II
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Goyal 2019 Spinal Fusion 59,145

Discharge to
non-home

facility
12.6% (7452) 0.77–

0.79 0.85–0.87 0.77–
0.80

0.77–
0.79

0.32–
0.35 0.96 - -

NSQIP
2012–2013

- J Neurosurg
Spine II30-day

unplanned
readmission

4.5% (2662) 0.59–
0.71 0.63–0.66 0.46–

0.63
0.59–
0.72 0.07 0.97 - -

Stopa 2019 Elective Spine
Surgery 144 Non-routine

discharge 6.9% (10) - 0.89 0.6 0.95 0.5 0.97 0.049 - ****
2013–2015

AUROC
Calibration

plot
Decision

curve
Confusion

matrix

J Neurosurg
Spine II

Li 2022
Single-Level

Laminectomy
Surgery

35,644 Discharged on
day of surgery 37.1% (13,230) 0.69/0.70 0.77/0.77 0.83/

0.58
0.55/
0.80

0.77/
0.69

0.64/
0.70 - - NSQIP

2017–2018 -
Global
Spine

Journal
II

Veeramani 2022
Anterior Cervical
Discectomy and

Fusion
54,502 Unplanned

re-intubation 0.51% (278) 72–99.6 0.52–0.77 - - - - 0.04–
0.18 - NSQIP

2010–2018

AUROC
Calibration

plot

Global
Spine

Journal
I

DiSilvestro 2020
Metastatic
Intraspinal

Neoplasm Excision
2094 Mortality 5.16% (108) - 0.898 - - - - - - NSQIP

2006–2018 AUROC World Neu-
rosurgery I

Zhang 2021 Posterior Spine
Fusion Surgery 1281 Short LOS 20.5% (262) 0.68–

0.83
0.566–
0.821 - - - - 0.13–

0.29 - NSQIP
2006–2018

AUROC
Calibration

plot

Journal of
Clinical

Medicine
I

Kim 2018
Posterior Lumbar

Spine Fusion 22,629

Cardiac
complications 0.44% (100) - 0.71 0 0.9997 0 0.9985 - -

NSQIP
2010–2014

AUROC
Confusion

matrix

Spine (Phila
Pa 1976) I and II

VTE
complications 1.06% (242) - 0.588 - - - - - -

Wound
complications 1.86% (420) - 0.613 0 0.9999 0 0.9785 - -

Mortality 0.15% (34 ) - 0.703 - - - - - -

Arvind 2018
Anterior Cervical

Discectomy 20,879

Mortality 0.1% (21) - 0.979 0.1667 0.9943 0.0278 0.9992 - -

Multicenter
data set &

NSQIP
2010–2014

AUROC
Confusion

matrix

Spine
Deformity I and II

Wound
complications 0.5% (105) - 0.518 0.5429 0.4458 0.0055 0.9943 - -

VTE
complications 0.3% (63) - 0.656 - - - - - -

Cardiac
complications 0.2% (42) - 0.772 - - - - - -
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Arora 2022 Elective Spine
Surgery 3678 Discharged to

rehabilitation 22% (809) - 0.79 0.8 0.64 - - - -
Single

academic
institution

AUROC Spine Epi-
demiology I

Ogink 2019 Lumbar spinal
stenosis 28,600 Non-home

discharge 18.2% (5205) - 0.751 - - - -
0.131
Null:
0.15

- NSQIP
2009–2016

AUROC
Calibration

plot

European
Spine

Journal
I

Kim 2018 Spinal Deformity
Procedures 4073

Mortality 0.5% (29) - 0.844 0 1 0 0.9937 - -

NSQIP
2010–2014

AUROC
Confusion

matrix

Spine
Deformity I & II

Wound
complications 2.4% (139) - 0.606 0.6579 0.5871 0.0343 0.9872 - -

VTE
complications 1.8% (105) - 0.547 - - - - - -

Cardiac
complications 0.7% (39) - 0.768 - - - - - -

Zhang 2022
Degenerative
spinal disease

surgery
663 Postop

Delerium 27.45% (182) 0.77 0.87 0.861 0.773 - - -

F1:
0.673

Youden:
0.34

Single
academic
institution

Calibration
plots

Decision
curve

CNS Neuro-
science &
Therapeu-

tics

I

Yang 2022 Thoracolumbar
burst fracture 161 Perioperative

blood loss 38.5% (62) 0.783 0.864 0.867 0.814 0.741 0.826 - F1:
0.793

Single
academic
institution

AUROC
Frontiers in

Public
Health

None

Xiong 2022 Posterior Lumbar
Interbody Fusion 584 Surgical site

infection 5.65% (33) 0.9107 0.8726 0.3333 0.974 0.625 0.9184 - F3:
0.5747

Single
academic
institution

AUROC
Confusion

matrix

Computational
& Mathe-
matical

Methods in
Medicine

II

Wang 2020 Microvascular
decompression 912 Postop

Delerium 24.2% (221) 0.923 0.962 0.788 - 0.881 - - F1:
0.832

Single
academic
institution

AUROC
Journal of
Clinical

Anesthesia
I

Wang 2021 Posterior Lumbar
Fusion 13,500 Venous throm-

boembolism 0.95% (1283) - 0.709 - - - - - - NSQIP
2010–2017 -

Global
Spine

Journal
I

Wang 2021

Posterior
laminectomy and

fusion
with cervical
myelopathy

184 C5 palsy 14.13% (26) 0.918 0.923 0.6667 0.9677 0.8 0.9375 - -
Single

academic
institution

AUROC
Confusion

matrix

Journal of
Or-

thopaedic
Surgery and

Research

None
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Wang 2021

Minimally
Invasive

Transforaminal
Lumbar Interbody

Fusion

705 Surgical site
infections 4.68% (33) 0.9 0.78 - - - - - -

Single
academic
institution

AUROC Frontiers in
Medicine I

Zhang 2021 Posterior Spine
Fusion Surgery 1281 Short length

of stay 20.5% (262) 0.831 0.814 - - - - 0.13 - NSQIP
2006–2018

AUROC
Calibration

plots

Journal of
neuro-

surgery
I

Valliani 2022 Cervical Spine
Surgery

SAI: 4342
NIS:

311,582

Extended
length of stay

25%
(1086/77,896) - 0.87/0.84 0.70/0.57 0.89/0.92 0.75/0.750.86/0.83 - -

Single
academic
institution
National
Inpatient
Sample

AUROC Neurosurgery None

Stopa 2019 Elective Spine
Surgery 144 Non-routine

discharge 6.9% (10) - 0.89 - - 0.5 0.97 - - ****
2013–2015

AUROC
Calibration

plot
Neurosurgery I

Siccoli 2019 Lumbar spinal
stenosis

635 Reoperation
Overall 9.5% (60) 0.69 0.66 0.32 0.69 0.1 0.9 0.09 F1: 0.15

Single
academic
institution

AUROC Neurosurgical
Focus II

635 Reoperation at
Index 4.3% (27) 0.63 0.61 0.5 0.64 0.07 0.96 0.05 F1: 0.12

451 Prolonged
Operation 15% (68) 0.78 0.54 0.85 0.23 0.91 0.14 0.13 F1: 0.88

633 Extended
Hospital Stay 15% (95) 0.77 0.58 0.27 0.87 0.28 0.86 0.13 F1: 0.27

Shah 2022 Posterior cervical
spinal fusion 6822

Major
complication

or
30-day

readmission

18.8% (1279) 0.7214 0.679 0.5117 0.7699 0.3394 0.8722 0.4081 AUPRC:
0.377

California
hospitals

2015- 2017

AUROC
PR-curve

Confusion
matrix

European
Spine

Journal
II

Saravi 2022
Lumbar

Decompression
Surgery

236 Extended
length of stay 25% (59) 0.814 0.814 - - - - - -

Single
academic
institution

AUROC
Journal of
Clinical

Medicine
I

Russo 2021
Anterior Cervical
Discectomy and

Fusion
1516 Extended

length of stay 42.4% (643) 0.66/0.69 0.68/0.68 0.52/0.49 0.72/0.78 0.44/0.480.78/0.78 - -
Single

academic
institution

AUROC
Confusion

matrix
Decision

curve

Journal of
the

American
Academy

of Or-
thopaedic
Surgeons

II
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Rodrigues 2022
Anterior Cervical
Discectomy and

Fusion
176,816

2-yr
reoperation 5.6% (9956))

-

0.671

- - - - - - ˆ 2007 to
2016

AUROC
Calibration

plot
Spine I90-day

complication 7.5% (13,254) 0.823

90-day
readmission 6.3% (11,192) 0.713

Ren 2022 Lumbar
Discectomy 1159

Recurrent
lumbar disc
herniation

11.22% (130) 0.8641 - 0.8269 - 0.8958 - - F1: 0.86
Single

academic
institution

AUROC
Global
Spine

Journal
I

Porche 2022 Lumbar surgery 231 Urinary
retention 25.9% (60) - 0.737 0.954 0.254 0.6 0.79 - -

Single
academic
institution

AUROC
Confusion

matrix
Calibration

plot

Journal of
Neuro-
surgery
Spine

I

Pedersen 2022 Lumbar Disc
Herniation 1988

EuroQol 36.5% (726) 0.79 0.84 0.7 0.84 0.83 0.71 -
MCC

ˆˆ: 0.54
F1: 0.83

Danish
national
registry

for spine
surgery

-
Global
Spine

Journal
None

Oswestry
Disability

Index
36.3% (721) 0.69 0.74 0.67 0.7 0.71 0.65 -

MCC
ˆˆ: 0.37
F1: 0.71

Visual Analog
Scale Leg 32.3% (643) 0.64 0.65 0.43 0.8 0.66 0.6 -

MCC
ˆˆ: 0.25
F1: 0.57

Visual Analog
Scale Back 32.3% (643) 0.72 0.78 0.64 0.77 0.79 0.61 -

MCC
ˆˆ: 0.41
F1: 0.78

Ability to
return to work

(1 year)
14.2% (282) 0.86 0.81 0.61 0.92 0.91 0.63 -

MCC
ˆˆ: 0.53
F1: 0.91

Nunes 2022 Thoracolumbar
fractures surgery 215,999 30-day

readmission 8.8% (19,148) 0.575 0.743 0.776 0.556 0.145 0.962 - F1:
0.245

HCUP and
SID in 187
hospitals
in Florida

2014 to 2018

-

International
Journal of

Health
Planning &

Manage-
ment

II
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Merali 2019
Degenerative

cervical
myelopathy

605

6 Month:
SF-6D

-

0.718 0.71 0.75 0.5 0.9 0.25

- -
Multicenter

AOSpine
CSM North

America

AUROC
Confusion

matrix
PLoS ONE II

12 Month:
SF-6D 0.77 0.7 0.78 0.63 0.98 0.12

24 Month:
SF-6D 0.708 0.73 0.74 0.47 0.92 0.17

6 Month:
mJOA 0.667 0.73 0,7 0.59 0.82 0.43

12 Month:
mJOA 0.713 0.73 0.7 0.59 0.82 0.43

24 Month:
mJOA 0.649 0.67 0.63 0.8 0.96 0.23

Martini 2021 Spine Surgery 11,150 Non-home
discharge 15.8% (1764) - 0.91 - - - - - -

Single
academic
institution

AUROC Spine I

Khan 2020
Degenerative

Cervical
Myelopathy

702
Worsening
functional

status
12.1% (85) 0.714 0.788 0.779 0.704 - - - - Multicenter

AUROC
Calibration

plot
Neurosurgery I

Karhade 2019 Spinal metastasis 1790 30-day
mortality 8.49% (152) - 0.769 - - - -

0.0706
Null:
0.079

-
NSQIP 2009

through
2016

AUROC
Calibration

plot
Decision

curve

Neurosurgery I

Karhade 2019 Lumbar disc
herniation 5413

Sustained
postoperative

opioid
prescription

7.7% (416) - 0.79 - - - -
0.065
Null:
0.071

- Multicenter

AUROC
Calibration

plot
Decision

curve

The Spine
Journal I

Karhade 2019
Anterior cervical
discectomy and

fusion
2737

Sustained
postoperative

opioid
prescription

9.9% (270) - 0.8 - - - -
0.075
Null:
0.089

- Multicenter

AUROC
Calibration

plot
Decision

curve

The Spine
Journal I

Karhade 2022 Spinal metastasis 4303 6-week
mortality 14.17% (610) - 0.84 - - - -

0.1
Null:
0.12

- Multicenter

AUROC
Calibration

plot
Decision

curve

The Spine
Journal I
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Karhade 2019 Lumbar spine
surgery 8435

Sustained
postoperative

opioid
prescription

2.5% (82) - 0.7 - - - -
0.039
Null:
0.041

- Multicenter

AUROC
Calibration

plot
Decision

curve

The Spine
Journal I

Karhade 2021
Anterior lumbar

spine surgery 1035
Intraoperative

vascular
injury

7.2% (75)

- 0.92 0.86 0.93 0.52 0.99
0.04
Null:
0.077

F1: 0.44
AUPRC:

0.74
Multicenter

AUROC
Calibration

plot
Decision

curve

The Spine
Journal

II

0.75 - - - -
0.072
Null:
0.077

- I

Karhadea 2021
Anterior cervical
discectomy and

fusion
2917

Length of stay
greater than

one day
35.2% (1027) - 0.68 - - - - 0.21 - -

AUROC
Calibration

plot

Seminars in
Spine

Surgery
I

Karabacak 2023 Spinal Tumor
Resections 3073

Prolonged
length of stay 25% (769) 0.804 0.745 0.618 - 0.478 - -

F1:
0.538
MCC:
0.422

AUPRC:
0.602

NSQIP 2015
through

2020

AUROC
PR-curve Cancers

II

Non-home
discharge 23.4% (718) 0.75 0.701 0.442 - 0.375 - -

F1:
0.405
MCC:
0.250

AUPRC:
0.408

II

Major
complications 12.33% (379) 0.856 0.73 0.383 - 0.221 - -

F1:
0.279
MCC:
0.216

AUPRC:
0.309

II

Jin 2022 Intradural Spinal
Tumors 4488

Readmission 11.7% (524) -
0.693/
0.525/
0.643

- - - -
0.093/
0.093/
0.099 -

IBM
MarketScan

Claims
Database
2007–2016

AUROC
Calibration

plots
Neurospine I

Non-home
discharge 18.9% (956) - 0.786 - - - - 0.155
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Jain 2020
Long Segment

Posterior Lumbar
Spine Fusion

37,852

Discharge-to-
facility 35.4% (13,400) - 0.77 - - - - - -

State
Inpatient
Database
2005–2010

AUROC
The Spine

Journal I
90-day

readmission 19.0% (7192) - 0.65 - - - - - -

90-day major
medical

complications
13.0% (4921) - 0.7 - - - - - -

Hopkins 2020 Posterior spinal
fusions 4046 Surgical Site

Infection 1.5% (61) - 0.775 0.4955 0.9988 0.9256 0.985 - -
Single

academic
institution

AUROC

Clinical
Neurology
& Neuro-
surgery

II

Fatima 2020
Lumbar

Degenerative
Spondylolisthesis

80,610

Overall
adverse
events

4.9% (3965) - 0.7 - - - - - -

NSQIP
2005–2016

AUROC
Calibration

plot
Decision

curve

World Neu-
rosurgery I & II

Medical
adverse
events

10.1% (8165) - 0.7 - - - - 0.02 -

Surgical
adverse
events

1.9% (1518) - 0.69 - - - - 0.07 -

Pneumonia 0.6% (450) - 0.71 0.95 0.91 0.26 - 0.04 -

Bleeding
transfusion 5.3% (4268) - 0.7 0.98 0.95 0.24 - 0.05 -

Urinary tract
infection 1.3% (1074) - 0.7 - - - - 0.01 -

Superficial
wound

infection
0.9% (750) - 0.62 0.97 0.95 0.23 - - -

Sepsis 0.6% (473) - 0.63 - - - - - -

Etzel 2022 Lumbar
Arthrodesis

ALIF:12,915
PLIF/TLIF:

27,212
PSF:

23,406

Prolonged
length of stay -

0.799/
0.813/
0.804

0.752/
0.723/
0.753

- - - -
0.15/
0.15
0.14

- NSQIP
2009–2018

AUROC
Calibration

plots

Journal of
the

American
Academy

of Or-
thopaedic
Surgeons

I
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Table 2. Cont.

Author Year Primary Pathology
and Surgery Type

Sample
Size

Outcome
Variable Imbalance Accuracy AUROC Sensitivity Specificity PPV NPV Brier Other

Metric Dataset
Performance

Related
Figures

Journal Error
Type

Elsamadicy 2022 Metastatic Spinal
Column Tumors 4346 Readmission 22.8% (991) - 0.59 - - - - - -

Nationwide
Readmis-

sion
Database
2016–2018

AUROC
Global
Spine

Journal
I

Dong 2022

Minimally
Invasive

Kyphoplasty in
Osteoporotic

Vertebral
Compression

Fractures

346 Risk of
Recollapse 11.56% (40) 0.8844 0.81 0.875 0.8856 0.5 0.9819 - -

Single
academic
institution

AUROC
Confusion

matrix

Frontiers in
Public
Health

II

Dong 2022 Lumbar Interbody
Fusion 157

Short Term
Unfavorable

Clinical
Outcomes

16.56% (26) 0.9367 0.88 0.7667 0.9766 0.8846 0.947 - -

Single
academic
institution

AUROC
Confusion

matrix

BMC Mus-
culoskeletal
Disorders

NoneLong Term
Unfavorable

Clinical
Outcomes

5.7% (9) 0.9459 0.78 0.9291 0.9776 0.9874 0.8792 - -

Yen 2022 Lumbar disc
herniation 1316

Sustained
postoperative

opioid
prescription

3.1% (41) - 0.76 - - - - 0.028 AUPRC:
0.33

Single
academic
institution

AUROC
AUPRC

Calibration
plot

Decision
curve

The Spine
Journal I

* Truven MarketScan (MKS) and MarketScan Medicaid Databases; ** Centers for Medicare and Medicaid Services (CMS) Medicare database. *** Single-center data warehouse; ****
Transitional Care Program at Brigham and Women’s Hospital. ˆ IBM MarketScan Commercial Claims and Encounters Database and Medicare Supplement; ˆˆ Matthews’s correlation
coefficient. HCUP: Healthcare Cost and Utilization Project; PR: Precision-Recall; SID: State Inpatient Database; AUROC: Area under the ROC curve; AUPRC: Area under the PR curve;
BS: Brier Score.
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3.3. Data Synthesis and Risk of Bias Assessment

Our aim was to investigate the methodologies employed by the included studies,
emphasizing the process rather than the outcomes or findings themselves. Accordingly, we
refrained from engaging in narrative synthesis, data pooling, risk of bias assessment, or
evidence certainty determination. Instead, our review specifically addressed methodologies
related to models handling class imbalance.

3.4. Statistical Analysis

Given the considerable heterogeneity between studies, we did not perform a meta-
analysis and opted for a qualitative and comprehensive analysis instead. Study character-
istics are presented using frequencies and percentages for categorical variables. In cases
where studies reported multiple results within a single outcome (e.g., different AUCs per
type of complication), the top scores were taken. Metrics were computed for studies that
provided a confusion matrix.

4. Results
4.1. Characteristics of the Included Studies

The selected papers cover a variety of outcomes, some focusing on a single target
while others address multiple targets. Table 2 outlines the metrics derived from the con-
fusion matrix. Among the 60 papers, 12 focused on readmissions, 13 predicted lengths of
stay (LOS), 12 addressed non-home discharge, 6 estimated mortality, and 5 anticipated
reoperations. The models also forecasted a variety of medical and surgical outcomes, as
detailed in Table 3. The target outcomes exhibited data imbalances ranging from 0.44% to
42.4%. Figure 3 illustrates the growing number of papers in the field over time.
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Included in the Review.

In the analysis of the 60 included papers, 59 reported the model’s AUROC, 28 men-
tioned accuracies, 33 provided sensitivity, 29 discussed specificity, 28 addressed PPV,
24 considered NPV, 25 indicated BS (with 10 providing null model Brier), and 8 detailed
the F1 score. Additionally, a variety of representations and visualizations were presented in
these papers: 52 included an AUROC figure, 27 featured a calibration curve, 13 displayed
a confusion matrix, 12 showcased decision curves, 3 incorporated PR curves, and only
1 offered a precision-recall curve. Moreover, to train their models, 23 studies utilized NSQIP
data, and 19 used single-center data, while the rest used multicenter data or other national
datasets. In the following sections, we explore prevalent errors observed in the reviewed
articles, highlighting key areas for improvement in the evaluation and reporting of machine
learning models in spine surgery applications.
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Table 3. Outcome variables predicted by ML models in reviewed studies.

Topic Complication Number

Infection

Surgical site infection 5

Wound complications 3

Infection 1

Sepsis 1

General Adverse Events

Surgical adverse events 2

Any adverse event 4

Major complications 1

Medical adverse events 5

Mortality 6

Readmission 12

Reoperation 5

Quality of Life/Pain

Visual Analog Scale Back 1

Visual Analog Scale Leg 1

6 Month: mJOA 1

6 Month: SF-6D 1

12 Month: mJOA 1

12 Month: SF-6D 1

Sustained postoperative opioid prescription 4

24 Month: mJOA 1

24 Month: SF-6D 1

EuroQol 1

Ability to return to work (1 year) 1

Worsening functional status 1

Oswestry Disability Index 1

Surgical

Risk of Recollapse 1

Prolonged Operation 1

Recurrent lumbar disc herniation 1

Intraoperative vascular injury 1

Cardiac

Cardiac complications 3

Cardiac dysrhythmia 1

Congestive heart failure 1

Pulmonary
Pulmonary complications 1

Unplanned re-intubation 1

Pneumonia 3

Length of Stay
Extended length of stay 10

Short length of stay 3

Neurology

C5 palsy 1

Neurologic complications 1

Postop delerium 2
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Table 3. Cont.

Topic Complication Number

Other

VTE complications 4

Transfusion 3

Perioperative blood loss 1

Urinary retention 1

4.2. Error Type I: Incomplete Reporting of Performance Metrics

Han et al. presented models predicting various medical and surgical complications,
demonstrating strong performance metrics such as AUROCs, BS, sensitivity, and acceptable
specificity [15]. Similarly, Arora et al. developed a well-performing model that predicts
patient discharge to rehabilitation, achieving high AUROC, sensitivity, and specificity with
an adjusted threshold of 0.16 [32]. Both studies also demonstrated well-calibrated models
through calibration plots.

Shah et al. developed models predicting readmission or major complications, achiev-
ing satisfactory AUROC, AUPRC, and BS while outperforming the baseline AUPRC,
indicating its effectiveness in predicting true positives well [17]. Valliani et al. predicted
non-home discharge with remarkable AUROCs, PPV, and NPV. The study also presented
a well-calibrated model through a calibration plot, although the plot did not display true
probability and predicted risks greater than 0.8 [18]. Despite these models’ solid perfor-
mance on the metrics reported, studies in this category failed to report other metrics crucial
for model evaluation. While some omitted the PPV and NPV, others failed to mention
baseline AUPRC, sensitivity, specificity, and the null model BS. Without the inclusion of all
the necessary evaluation metrics, the assessment lacks validity, even when reported metrics
show high performance.

4.3. Error Type IIA: Metric Optimization at the Expense of Others

Li et al. developed artificial neural networks (ANN) and random forest (RF) models for
predicting day-of-surgery patient discharge. The ANN model exhibited high sensitivity but
low specificity, while the RF model showed the opposite [26]. Kim et al. and Arvind et al.
presented models predicting mortality, wound complications, venous thromboembolism,
and cardiac complications [30,31,34]. The Linear regression (LR) models exhibited high
specificities at the expense of extremely low sensitivities. In contrast, ANN displayed high
sensitivities and specificities but low PPVs. Goyal et al. developed models predicting
non-home discharge and 30-day unplanned readmission [24]. The models predicting non-
home discharge achieved high AUROCs, accuracies, sensitivity, specificity, and NPV but
low PPV, leading to many false positives. This training method is advised only when the
target is critically important and should not be missed, even if it means encountering many
false positives.

Stopa et al. and Karhade et al. trained models to predict non-routine discharge,
presenting high AUROC, BS, specificity, and NPV but low sensitivity and PPV [21,25].
Although both models demonstrated well-calibrated performance via calibration plots,
they struggled to detect positive cases correctly, facing low sensitivity scores and PPVs.
Moreover, both papers presented a decision curve demonstrating that their models are
better than the treat-all or the treat-non approach.

4.4. Error Type IIB: High Accuracy and AUROC but Poor Sensitivity

Cabrera et al. developed models that predict extended LOS, readmission, reopera-
tion, infection, and transfusion. Although these models achieved high accuracies, their
sensitivities were generally low, except for the model predicting transfusion [14]. Gowd
et al. predicted multiple surgical outcomes with high AUROCs and NPV but low PPV and
extremely low sensitivity scores [19]. Kalagara et al. trained models to predict unplanned
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readmission, reporting high accuracies but low sensitivities, while specificity, PPV, and
NPV were not provided [22]. Hopkins et al. developed a readmission prediction model
with high accuracy, AUROC, specificity, PPV, and NPV but low sensitivity, indicating an
inability to identify a significant proportion of true positive instances [23].

4.5. Other Errors

In addition to the previously mentioned errors, some papers provided poor calibration
plots and omitted essential metrics. Kuris et al., Veeramani et al., and Zhang et al. presented
models predicting readmission, unplanned re-intubation, and short LOS, respectively, with
acceptable AUROCs, accuracies, and BSs [16,27,29]. However, all three studies provided cal-
ibration plots indicating poor calibration, as the calibration curves were not in proximity to
the near-perfect prediction diagonal. Moreover, the null model BS was not reported. Ogink
et al. developed models predicting non-home discharge displaying adequate AUROCs
and BSs [33]. Nevertheless, the calibration plots in both studies revealed that the models
were not well-calibrated for larger observed proportions and predicted probabilities, as the
calibration curves drifted away from the near-perfect prediction diagonal. Furthermore,
these five papers failed to report sensitivities, specificities, PPVs, and NPVs.

5. Discussion

ML’s ability to predict future events by training on vast healthcare data has attracted
substantial interest [73]. Nevertheless, predicting rare events poses significant challenges
attributed to the skewed data distribution. To address this issue, techniques for imbalanced
class learning have been designed. This paper focuses on showcasing the application of
ML in predicting uncommon patterns or events within the realm of spinal surgeries. These
surgeries encompass various risks and require a thorough assessment of potential outcomes,
such as readmission, reoperation, ELOS, and discharges to non-home settings [74,75].

We reviewed 60 papers addressing post-spinal surgery outcome predictions, examin-
ing specific elements of spinal surgeries such as pathologies, surgical procedures, and spinal
levels. However, a limited number of these studies adequately evaluated their models
using suitable metrics for imbalanced data binary classification tasks. This observation
highlights the need for more rigorous model evaluation methods to ensure their clinical
reliability and effectiveness in rare-event predictions. In a study by Haixiang et al., it was
revealed that 38% of the 517 papers addressing imbalanced classification across various
domains used accuracy as an evaluation metric despite the authors’ awareness of dealing
with an imbalanced problem [76]. In some instances, the accuracy of a proposed method
might be lower than the class imbalance ratio, implying that a dummy classifier solely
predicting the majority class would yield better performance.

The importance of appropriate evaluation metrics for imbalanced classification prob-
lems in machine learning cannot be overstated. Our analysis revealed that many papers
relied on inadequate evaluation metrics. Moreover, our review identified instances where
models optimized one metric at the expense of others. These practices can lead to misinter-
pretation of model performance and hinder clinical applicability. Therefore, it is crucial to
conduct a comprehensive evaluation of classifier performance, addressing all relevant met-
rics rather than focusing on only one or two. Additionally, striking a balance between the
various performance metrics is essential to ensure that models can be effectively employed
in clinical decision-making. By emphasizing the need for a holistic approach to classifier
evaluation, our study encourages the development of more robust and reliable ML models
for predicting rare outcomes in spinal surgery and other healthcare applications.

Training a binary classification model on an imbalanced dataset, where one class
significantly outnumbers the other, poses challenges as the model may be biased towards
the more prevalent class. Most strategies addressing this issue can be applied in the prepro-
cessing stage prior to model training. These strategies include undersampling the majority
class, oversampling the minority class, modifying weights, and optimizing thresholds.
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Undersampling involves reducing instances of the majority class in the training sample
to equalize the classes. Various undersampling techniques, such as random undersampling,
NearMiss, cluster-based undersampling, and Tomek links, can balance a dataset. Random
undersampling selects a subset of majority class examples randomly, while NearMiss
retains examples from the majority class closest to the minority class [77]. Cluster-based
undersampling sorts majority class examples into clusters and selects a representative
subset from each cluster. Tomek links remove examples from the majority class closely
related to minority class examples, increasing the space between classes and facilitating
classification [78].

Another method for balancing classes is oversampling, which entails adding more
minority class examples to the training dataset. For binary classification, strategies such
as random oversampling, the synthetic minority over-sampling technique (SMOTE), and
adaptive synthetic sampling (ADASYN) can be employed. Random oversampling adds
random minority class samples to the training set until classes are equal, potentially leading
to overfitting if the oversampled data does not represent the original minority class distri-
bution. SMOTE, a more advanced technique, creates synthetic samples using the k-nearest
neighbors algorithm to ensure new samples resemble original minority class samples [79].
ADASYN is similar to SMOTE but generates synthetic samples more representative of
the feature space region where the minority class is under-represented. While oversam-
pling techniques appear more promising than undersampling ones, especially with small
datasets, it is important to note that oversampling involves the addition of synthetic data
that might not correspond to the real data. Given this constraint, advanced generative
deep-learning algorithms were developed [80,81]. One such advancement is generative ad-
versarial network synthesis for oversampling (GANSO), which has demonstrated superior
performance compared to the synthetic minority oversampling technique (SMOTE) [82].

In addition to the sampling methods discussed, threshold optimization can enhance
classification model performance by adjusting the decision threshold for identifying pos-
itive category cases [83]. This involves calculating the model’s performance at various
thresholds and selecting the one with the best performance. It is essential to conduct this
optimization on a separate validation set to avoid overfitting. Once the optimal threshold
is determined, it can be applied to a model’s predictions on new data.

It is good practice to systematically test various suitable algorithms for the task at
hand. Decision tree algorithms, such as random forest (RF), classification and regression
tree (CART), and C4, perform well with imbalanced datasets. Additionally, classifiers’ per-
formance can be enhanced by assigning weights based on the inverse of class frequencies or
using advanced techniques like cost-sensitive learning. In place of traditional classification
models, anomaly detection models can also be used. Ensemble methods, such as bagging
and boosting, are also effective in handling imbalanced data. Finally, it is crucial to evaluate
using appropriate metrics for imbalanced classification tasks, such as MCC, CM, precision,
recall, F1 score, and AUPRC. By employing a diverse set of metrics and considering the
unique characteristics of each dataset, researchers can avoid being misled by metrics like
accuracy and AUROC.

6. Conclusions

This systematic review summarizes the current literature on ML and DL in spine
surgery outcome prediction. Evaluating these models is crucial for their successful in-
tegration into clinical practice, especially given the imbalanced nature of spine surgery
predicted outcomes. The 60 papers reviewed focused on binary outcomes such as ELOS,
readmissions, non-home discharge, mortality, and reoperations. The review highlights the
prevalent use of the AUROC metric in 59 papers. Other metrics like sensitivity, specificity,
PPV, NPV, Brier score, and F1 score were inconsistently reported.

Based on the findings of this review, our recommendations for future research in ML
applications for spine surgery are threefold. First, we advocate for the comprehensive
use and reporting of all appropriate evaluation metrics to ensure a holistic assessment of
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model performance. Second, developing strategies to optimize classifier performance on
imbalanced data is crucial. Third, we stress the necessity of increasing awareness among
researchers, reviewers, and editors about the pitfalls associated with inadequate model
evaluation. To improve peer review quality, we suggest including at least one ML specialist
in the review process of medical AI papers, as a high level of model design scrutiny is not a
realistic demand from clinician reviewers.

The significance of proper evaluation schemes in applied ML cannot be overstated.
Embracing these recommendations as the field advances will undoubtedly facilitate the
integration of reliable and effective ML models in clinical settings. Ultimately, integrating
such models in the clinical setting will contribute to improved patient outcomes, surgical
decision-making, and medical management in spine surgery.
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