Bilateral Deficits in Dynamic Postural Stability in Females Persist Years after Unilateral ACL Injury and Are Modulated by the Match between Injury Side and Leg Dominance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Data Collection and Analysis
2.4. Statistical Analysis
3. Results
ACL Group (n = 23 Females) | Control Group (n = 20 Females) | p-Value * | |
---|---|---|---|
Age (years) | 24.3 ± 3.2 | 24.8 ± 2.1 | 0.237 |
Height (m) | 1.7 ± 0.1 | 1.7 ± 0.0 | 0.566 |
Weight (kg) | 59.2 ± 5.0 | 61.0 ± 5.7 | 0.451 |
BMI (kg/m2) | 21.0 ± 2.4 | 21.9 ± 1.6 | 0.295 |
ACLR | Yes: 21 No: 2 | ||
Leg dominance | Right: 23 | Right: 19; left: 1 | |
Injury side | Dominant leg: 8 Non-dominant leg: 15 | n/a | |
Time since injury (year) | 5.0 ± 2.6 | n/a | |
Reinjury on ipsilateral side | 3/23 | n/a | |
Graft type | BPTB: 2 ST: 16 QT: 5 | n/a | |
Physical activity (day/week) | 4.4 ± 1.5 | 4.9 ± 1.2 | 0.207 |
Physical activity (minutes/session) | 91.3 ± 36.7 | 99.5 ± 39.4 | 0.532 |
IKDC (%) | 84.3 ± 4.7 | n/a |
3.1. Dynamic Postural Stability Irrespective of Leg Dominance
3.2. Effect of ACL Injury on Dynamic Postural Stability When Considering Leg Dominance
4. Discussion
4.1. Dynamic Postural Stability Irrespective of Injury Side
4.2. Effect of Leg Dominance on Dynamic Postural Stability
4.3. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiggins, A.J.; Grandhi, R.K.; Schneider, D.K.; Stanfield, D.; Webster, K.E.; Myer, G.D. Risk of Secondary Injury in Younger Athletes after Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2016, 44, 1861–1876. [Google Scholar] [CrossRef] [PubMed]
- Bourke, H.E.; Salmon, L.J.; Waller, A.; Patterson, V.; Pinczewski, L.A. Survival of the Anterior Cruciate Ligament Graft and the Contralateral ACL at a Minimum of 15 Years. Am. J. Sports Med. 2012, 40, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Swanik, C.B.; Lephart, S.M.; Giannantonio, F.P.; Fu, F.H. Reestablishing Proprioception and Neuromuscular Control in Th ACL-Injured Athlete. J. Sport Rehabil. 1997, 6, 182–206. [Google Scholar] [CrossRef]
- An, Y.W. Neurophysiological Mechanisms Underlying Functional Knee Instability Following an Anterior Cruciate Ligament Injury. Exerc. Sci. 2018, 27, 109–117. [Google Scholar] [CrossRef]
- Kapreli, E.; Athanasopoulos, S.; Gliatis, J.; Papathanasiou, M.; Peeters, R.; Strimpakos, N.; Van Hecke, P.; Gouliamos, A.; Sunaert, S. Anterior Cruciate Ligament Deficiency Causes Brain Plasticity: A Functional MRI Study. Am. J. Sports Med. 2009, 37, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Grooms, D.R.; Page, S.J.; Nichols-Larsen, D.S.; Chaudhari, A.M.W.; White, S.E.; Onate, J.A. Neuroplasticity Associated with Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2017, 47, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.L.; Nettleton, N.C. The Nature of Hemispheric Specialization in Man. Behav. Brain Sci. 1981, 4, 51–63. [Google Scholar] [CrossRef]
- Serrien, D.J.; Ivry, R.B.; Swinnen, S.P. Dynamics of Hemispheric Specialization and Integration in the Context of Motor Control. Nat. Rev. Neurosci. 2006, 7, 160–166. [Google Scholar] [CrossRef]
- Negrete, R.J.; Schick, E.A.; Cooper, J.P. Lower-limb dominance as a possible etiologic factor in noncontact anterior cruciate ligament tears. J. Strength Cond. Res. 2007, 21, 270–273. [Google Scholar] [CrossRef]
- Culvenor, A.G.; Alexander, B.C.; Clark, R.A.; Collins, N.J.; Ageberg, E.; Morris, H.G.; Whitehead, T.S.; Crossley, K.M. Dynamic Single-Leg Postural Control Is Impaired Bilaterally Following Anterior Cruciate Ligament Reconstruction: Implications for Reinjury Risk. J. Orthop. Sports Phys. Ther. 2016, 46, 357–364. [Google Scholar] [CrossRef]
- Reider, B.; Arcand, M.A.; Diehl, L.H.; Mroczek, K.; Abulencia, A.; Stroud, C.C.; Palm, M.; Gilbertson, J.; Staszak, P. Proprioception of the Knee before and after Anterior Cruciate Ligament Reconstruction. Arthrosc. J. Arthrosc. Relat. Surg. 2003, 19, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.A.; Gribble, P.A. Time to Stabilization of Anterior Cruciate Ligament–Reconstructed Versus Healthy Knees in National Collegiate Athletic Association Division I Female Athletes. J. Athl. Train. 2010, 45, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Heise, G.D. The Effect of Jump-Landing Directions on Dynamic Stability. J. Appl. Biomech. 2013, 29, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Colby, S.M.; Hintermeister, R.A.; Torry, M.R.; Steadman, J.R. Lower Limb Stability with ACL Impairment. J. Orthop. Sports Phys. Ther. 1999, 29, 444–454. [Google Scholar] [CrossRef] [PubMed]
- DuPrey, K.M.; Liu, K.; Cronholm, P.F.; Reisman, A.S.; Collina, S.J.; Webner, D.; Kaminski, T.W. Baseline Time to Stabilization Identifies Anterior Cruciate Ligament Rupture Risk in Collegiate Athletes. Am. J. Sports Med. 2016, 44, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Roos, P.E.; Button, K.; Sparkes, V.; van Deursen, R.W.M. Altered Biomechanical Strategies and Medio-Lateral Control of the Knee Represent Incomplete Recovery of Individuals with Injury during Single Leg Hop. J. Biomech. 2014, 47, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Agel, J.; Rockwood, T.; Klossner, D. Collegiate ACL Injury Rates Across 15 Sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004–2005 Through 2012–2013). Clin. J. Sport Med. 2016, 26, 6. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Federolf, P. How Does Lower Limb Dominance Influence Postural Control Movements during Single Leg Stance? Hum. Mov. Sci. 2018, 58, 165–174. [Google Scholar] [CrossRef]
- Heinert, B.; Willett, K.; Kernozek, T.W. Influence of anterior cruciate ligament reconstruction on dynamic postural control. Int. J. Sports Phys. Ther. 2018, 13, 432–440. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Ebben, W.P.; Jensen, R.L. Reliability of the Reactive Strength Index and Time to Stabilization During Depth Jumps. J. Strength Cond. Res. 2008, 22, 1677–1682. [Google Scholar] [CrossRef]
- Field, A.P. Discovering Statistics Using SPSS: And Sex, Drugs and Rock “n” Roll, 3rd ed.; SAGE Publications: Los Angeles, CA, USA, 2009; ISBN 978-1-84787-906-6. [Google Scholar]
- Chaput, M.; Onate, J.A.; Simon, J.E.; Criss, C.R.; Jamison, S.; McNally, M.; Grooms, D.R. Visual Cognition Associated with Knee Proprioception, Time to Stability, and Sensory Integration Neural Activity after ACL Reconstruction. J. Orthop. Res. 2022, 40, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.R.; Delahunt, E. A Diagonal Landing Task to Assess Dynamic Postural Stability in ACL Reconstructed Females. Knee 2013, 20, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Krogsgaard, M.R.; Fischer-Rasmussen, T.; Dyhre-Poulsen, P. Absence of Sensory Function in the Reconstructed Anterior Cruciate Ligament. J. Electromyogr. Kinesiol. 2011, 21, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Young, S.W.; Valladares, R.D.; Loi, F.; Dragoo, J.L. Mechanoreceptor Reinnervation of Autografts Versus Allografts after Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2016, 4, 232596711666878. [Google Scholar] [CrossRef] [PubMed]
- Sainburg, R.L. Handedness: Differential Specializations for Control of Trajectory and Position. Exerc. Sport Sci. Rev. 2005, 33, 206–213. [Google Scholar] [CrossRef]
- Paillard, T.; Noé, F. Does Monopedal Postural Balance Differ between the Dominant Leg and the Non-Dominant Leg? A Review. Hum. Mov. Sci. 2020, 74, 102686. [Google Scholar] [CrossRef]
- Hewett, T.E.; Ford, K.R.; Hoogenboom, B.J.; Myer, G.D. Understanding and preventing ACL injuries: Current biomechanical and epidemiologic considerations—Update 2010. N. Am. J. Sports Phys. Ther. 2010, 5, 234–251. [Google Scholar]
- Schaefer, S.Y.; Haaland, K.Y.; Sainburg, R.L. Ipsilesional Motor Deficits Following Stroke Reflect Hemispheric Specializations for Movement Control. Brain 2007, 130, 2146–2158. [Google Scholar] [CrossRef]
- Promsri, A.; Longo, A.; Haid, T.; Doix, A.-C.M.; Federolf, P. Leg Dominance as a Risk Factor for Lower-Limb Injuries in Downhill Skiers—A Pilot Study into Possible Mechanisms. Int. J. Environ. Res. Public Health 2019, 16, 3399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calisti, M.; Mohr, M.; Federolf, P. Bilateral Deficits in Dynamic Postural Stability in Females Persist Years after Unilateral ACL Injury and Are Modulated by the Match between Injury Side and Leg Dominance. Brain Sci. 2023, 13, 1721. https://doi.org/10.3390/brainsci13121721
Calisti M, Mohr M, Federolf P. Bilateral Deficits in Dynamic Postural Stability in Females Persist Years after Unilateral ACL Injury and Are Modulated by the Match between Injury Side and Leg Dominance. Brain Sciences. 2023; 13(12):1721. https://doi.org/10.3390/brainsci13121721
Chicago/Turabian StyleCalisti, Maité, Maurice Mohr, and Peter Federolf. 2023. "Bilateral Deficits in Dynamic Postural Stability in Females Persist Years after Unilateral ACL Injury and Are Modulated by the Match between Injury Side and Leg Dominance" Brain Sciences 13, no. 12: 1721. https://doi.org/10.3390/brainsci13121721
APA StyleCalisti, M., Mohr, M., & Federolf, P. (2023). Bilateral Deficits in Dynamic Postural Stability in Females Persist Years after Unilateral ACL Injury and Are Modulated by the Match between Injury Side and Leg Dominance. Brain Sciences, 13(12), 1721. https://doi.org/10.3390/brainsci13121721