The Relation Among Reactive Stepping and Fall-Related Psychological Factors in Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Questionnaires
2.4. Instrumented Push and Release Test
2.5. Mini Balance Evaluation Systems Test (Mini-BEST)
2.6. Statistical Analyses
3. Results
3.1. Sample Size and Demographics
3.2. Better Reactive Stepping Was Associated with Fewer Concerns, Greater Confidence, and Lower Feared Consequences Related to Falling
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bjartmar, C.; Trapp, B.D. Axonal and Neuronal Degeneration in Multiple Sclerosis: Mechanisms and Functional Consequences. Curr. Opin. Neurol. 2001, 14, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The Prevalence of MS in the United States: A Population-Based Estimate Using Health Claims Data. Neurology 2019, 92, e1029–e1040. [Google Scholar] [CrossRef] [PubMed]
- LaRocca, N.G. Impact of Walking Impairment in Multiple Sclerosis: Perspectives of Patients and Care Partners. Patient 2011, 4, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Coote, S.; Comber, L.; Quinn, G.; Santoyo-Medina, C.; Kalron, A.; Gunn, H. Falls in People with Multiple Sclerosis: Risk Identification, Intervention, and Future Directions. Int. J. MS Care 2020, 22, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Abou, L.; McCloskey, C.; Wernimont, C.; Fritz, N.E.; Kratz, A.L. Examination of Risk Factors Associated With Falls and Injurious Falls in People with Multiple Sclerosis: An Updated Nationwide Study. Arch. Phys. Med. Rehabil. 2024, 105, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Scholz, M.; Haase, R.; Trentzsch, K.; Weidemann, M.L.; Ziemssen, T. Fear of Falling and Falls in People with Multiple Sclerosis: A Literature Review. Mult. Scler. Relat. Disord. 2021, 47, 102609. [Google Scholar] [CrossRef] [PubMed]
- Landers, M.R.; Durand, C.; Powell, D.S.; Dibble, L.E.; Young, D.L. Development of a Scale to Assess Avoidance Behavior Due to a Fear of Falling: The Fear of Falling Avoidance Behavior Questionnaire. Phys. Ther. 2011, 91, 1253–1265. [Google Scholar] [CrossRef] [PubMed]
- Delbaere, K.; Crombez, G.; Vanderstraeten, G.; Willems, T.; Cambier, D. Fear-Related Avoidance of Activities, Falls and Physical Frailty. A Prospective Community-Based Cohort Study. Age Ageing 2004, 33, 368–373. [Google Scholar] [CrossRef]
- Peterson, E.W.; Cho, C.C.; von Koch, L.; Finlayson, M.L. Injurious Falls Among Middle Aged and Older Adults with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2008, 89, 1031–1037. [Google Scholar] [CrossRef]
- Kalron, A.; Aloni, R.; Givon, U.; Menascu, S. Fear of Falling, Not Falls, Impacts Leisure-Time Physical Activity in People with Multiple Sclerosis. Gait Posture 2018, 65, 33–38. [Google Scholar] [CrossRef]
- Patla, A.E. Strategies for Dynamic Stability During Adaptive Human Locomotion. IEEE Eng. Med. Biol. Mag. 2003, 22, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Huisinga, J.M.; St George, R.J.; Spain, R.; Overs, S.; Horak, F.B. Postural Response Latencies Are Related to Balance Control during Standing and Walking in Patients with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2014, 95, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.H.; Horak, F.B.; Herndon, R.R.; Bourdette, D. Imbalance in Multiple Sclerosis: A Result of Slowed Spinal Somatosensory Conduction. Somatosens. Mot. Res. 2008, 25, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.S.; Huisinga, J.M.; Spain, R.I.; Horak, F.B. Characterization of Compensatory Stepping in People with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Van Liew, C.; Dibble, L.E.; Hunt, G.R.; Foreman, K.B.; Peterson, D.S. Protective Stepping in Multiple Sclerosis: Impacts of a Single Session of in-Place Perturbation Practice. Mult. Scler. Relat. Disord. 2019, 30, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Monjezi, S.; Molhemi, F.; Shaterzadeh-Yazdi, M.J.; Salehi, R.; Mehravar, M.; Kashipazha, D.; Hesam, S. Perturbation-Based Balance Training to Improve Postural Responses and Falls in People with Multiple Sclerosis: A Randomized Controlled Trial. Disabil. Rehabil. 2023, 45, 3649–3655. [Google Scholar] [CrossRef]
- Okubo, Y.; Suhaimy, M.S.B.M.; Hoang, P.; Chaplin, C.; Hicks, C.; Sturnieks, D.L.; Lord, S.R. Training Reactive Balance Using Trips and Slips in People with Multiple Sclerosis: A Blinded Randomised Controlled Trial. Mult. Scler. Relat. Disord. 2023, 73, 104607. [Google Scholar] [CrossRef]
- Monaghan, A.S.; Mansfield, A.; Huisinga, J.M.; Peterson, D.S. Examining the Relationship Between Reactive Stepping Outcomes and Falls in People with Multiple Sclerosis. Phys. Ther. 2022, 102, pzac041. [Google Scholar] [CrossRef]
- Peterson, D.S.; Dijkstra, B.W.; Horak, F.B. Postural Motor Learning in People with Parkinson’s Disease. J. Neurol. 2016, 263, 1518–1529. [Google Scholar] [CrossRef]
- Tseng, S.C.; Stanhope, S.J.; Morton, S.M. Impaired Reactive Stepping Adjustments in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 807–815. [Google Scholar] [CrossRef]
- Khalil, H.; Al-Shorman, A.; El-Salem, K.; Abdo, N.; Alghwiri, A.A.; Aburub, A.; Shalabi, S.; Al-Mustafa, F. Fear of Falling in People with Multiple Sclerosis: Which Clinical Characteristics Are Important? Phys. Ther. 2017, 97, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Takla, T.N.; Matsuda, P.N.; Herring, T.E.; Daugherty, A.M.; Fritz, N.E. Scale Development to Evaluate Differences between Concern about Falling and Fear of Falling: The Concern and Fear of Falling Evaluation. Front. Psychol. 2024, 15, 1336078. [Google Scholar] [CrossRef] [PubMed]
- Abou, L.; Peters, J.; Freire, B.; Sosnoff, J.J. Fear of Falling and Common Symptoms of Multiple Sclerosis: Physical Function, Cognition, Fatigue, Depression, and Sleep—A Systematic Review. Mult. Scler. Relat. Disord. 2024, 84, 105506. [Google Scholar] [CrossRef] [PubMed]
- Painter, J.A.; Allison, L.; Dhingra, P.; Daughtery, J.; Cogdill, K.; Trujillo, L.G. Fear of Falling and Its Relationship with Anxiety, Depression, and Activity Engagement among Community-Dwelling Older Adults. Am. J. Occup. Ther. 2012, 66, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Takla, T.N.; Matsuda, P.N.; Herring, T.E.; Daugherty, A.M.; Fritz, N.E. Motor and Non-Motor Factors of Concern About Falling and Fear of Falling in Multiple Sclerosis. J. Neurol. Phys. Ther. 2024, 48, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.M.; Munoz, B.; West, S.K.; Rubin, G.S.; Fried, L.P. Falls and Fear of Falling: Which Comes First? A Longitudinal Prediction Model Suggests Strategies for Primary and Secondary Prevention. J. Am. Geriatr. Soc. 2002, 50, 1329–1335. [Google Scholar] [CrossRef]
- Mazumder, R.; Lambert, W.E.; Nguyen, T.; Bourdette, D.N.; Cameron, M.H. Fear of Falling Is Associated with Recurrent Falls in People with Multiple Sclerosis. Int. J. MS Care 2015, 17, 164–170. [Google Scholar] [CrossRef]
- Kalron, A. The Relationship between Specific Cognitive Domains, Fear of Falling, and Falls in People with Multiple Sclerosis. Biomed. Res. Int. 2014, 2014, 281760. [Google Scholar] [CrossRef]
- Söylemez, B.; Çetİşlİ-Korkmaz, N.; Tekİn, S.; Bİr, L.S.; Şenol, H. The Effect of Balance, Walking Capacity, and Fear of Falling on the Level of Community Integration in Individuals with Multiple Sclerosis: A Cross-Sectional Study. Physiother. Theory Pract. 2023, 40, 1974–1980. [Google Scholar] [CrossRef]
- Okada, S.; Hirakawa, K.; Takada, Y.; Kinoshita, H. Relationship between Fear of Falling and Balancing Ability during Abrupt Deceleration in Aged Women Having Similar Habitual Physical Activities. Eur. J. Appl. Physiol. 2001, 85, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.G.; Frank, J.S.; Adkin, A.L.; Paton, A.; Allum, J.H.J. Influence of Postural Anxiety on Postural Reactions to Multi-Directional Surface Rotations. J. Neurophysiol. 2004, 92, 3255–3265. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Hohol, M.J.; Orav, E.J.; Weiner, H.L. Disease Steps in Multiple Sclerosis: A Longitudinal Study Comparing Disease Steps and EDSS to Evaluate Disease Progression. Mult. Scler. 1999, 5, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Abou, L.; Sosnoff, J.J.; Peterson, E.W.; Backus, D.; Willingham, T.B.; Rice, L.A. Prediction of Future Falls among Full-Time Wheelchair and Scooter Users with Multiple Sclerosis: A Prospective Study. Mult. Scler. Relat. Disord. 2022, 64, 103962. [Google Scholar] [CrossRef] [PubMed]
- Nilsagård, Y.; Lundholm, C.; Denison, E.; Gunnarsson, L.G. Predicting Accidental Falls in People with Multiple Sclerosis—A Longitudinal Study. Clin. Rehabil. 2009, 23, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and Initial Validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef]
- Van Vliet, R.; Hoang, P.; Lord, S.; Gandevia, S.; Delbaere, K. Falls Efficacy Scale-International: A Cross-Sectional Validation in People with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2013, 94, 883–889. [Google Scholar] [CrossRef]
- Nilsagård, Y.; Carling, A.; Forsberg, A. Activities-Specific Balance Confidence in People with Multiple Sclerosis. Mult. Scler. Int. 2012, 2012, 613925. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Smith, H. A Prospective Study of the Relationship between Feared Consequences of Falling and Avoidance of Activity in Community-Living Older People. Gerontologist 2002, 42, 17–23. [Google Scholar] [CrossRef]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using Psychometric Techniques to Improve the Balance Evaluation Systems Test: The Mini-Bestest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Horak, F.B.; Van Tran, K.; Nutt, J.G. An Alternative Clinical Postural Stability Test for Patients with Parkinson’s Disease. J. Neurol. 2006, 253, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- El-Gohary, M.; Peterson, D.; Gera, G.; Horak, F.B.; Huisinga, J.M. Validity of the Instrumented Push and Release Test to Quantify Postural Responses in Persons with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2017, 98, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Petersell, T.L.; Pelo, R.; Hill, S.; Cassidy, B.; Jameson, T.; Iriye, T.; Burke, J.; Dibble, L.E.; Fino, P.C. Use of Reactive Balance Assessments with Clinical Baseline Concussion Assessments in Collegiate Athletes. J. Athl. Train. 2024, 59, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Cassidy, B.; Pelo, R.; Fino, N.F.; Presson, A.P.; Cushman, D.M.; Monson, N.E.; Dibble, L.E.; Fino, P.C. Reactive Postural Responses After Mild Traumatic Brain Injury and Their Association with Musculoskeletal Injury Risk in Collegiate Athletes: A Study Protocol. Front. Sports Act. Living 2020, 2, 574848. [Google Scholar] [CrossRef]
- Morris, A.; Fino, N.F.; Pelo, R.; Kreter, N.; Cassidy, B.; Dibble, L.E.; Fino, P.C. Interadministrator Reliability of a Modified Instrumented Push and Release Test of Reactive Balance. J. Sport. Rehabil. 2022, 31, 517–523. [Google Scholar] [CrossRef]
- Ross, E.; Purtill, H.; Uszynski, M.; Hayes, S.; Casey, B.; Browne, C.; Coote, S. Cohort Study Comparing the Berg Balance Scale and the Mini-BESTest in People Who Have Multiple Sclerosis and Are Ambulatory. Phys. Ther. 2016, 96, 1448–1455. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Monaghan, A.S.; Huisinga, J.M.; Peterson, D.S. The Relationship between Plantar Sensation and Muscle Onset during Automatic Postural Responses in People with Multiple Sclerosis and Healthy Controls. Mult. Scler. Relat. Disord. 2021, 56, 103313. [Google Scholar] [CrossRef]
- VanNostrand, M.; Monaghan, P.G.; Fritz, N.E. Examination of Proprioceptive Reliance During Backward Walking in Individuals With Multiple Sclerosis. J. Neurol. Phys. Ther. 2024, 86, 105588. [Google Scholar] [CrossRef]
- Fling, B.W.; Dutta, G.G.; Schlueter, H.; Cameron, M.H.; Horak, F.B. Associations between Proprioceptive Neural Pathway Structural Connectivity and Balance in People with Multiple Sclerosis. Front. Hum. Neurosci. 2014, 8, 814. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Horak, F.B. Cortical Control of Postural Responses. J. Neural Transm. 2007, 114, 1339–1348. [Google Scholar] [CrossRef]
- Hoang, P.D.; Baysan, M.; Gunn, H.; Cameron, M.; Freeman, J.; Nitz, J.; Low Choy, N.L.; Lord, S.R. Fall Risk in People with MS: A Physiological Profile Assessment Study. Mult. Scler. J. Exp. Transl. Clin. 2016, 2, 2055217316641130. [Google Scholar] [CrossRef] [PubMed]
Outcome Measure | Definition |
---|---|
Clinical-Grade Measures of Reactive Balance | |
Clinical Reactive Step Rating | The number of reactive steps participants took to regain their balance and performance rating using a 5-point push and release scale [41]: (0) = recovers independently with 1 step, (1) = two or three small steps backward, but recovers independently, (2) = four or more steps backward but recovers independently, (3) = steps but needs assistance to prevent a fall, (4) = falls without attempting a step or unable to stand without assistance. Lower scores on this scale indicate better reactive balance performance. |
Total Number of Reactive Steps | The number of backward reactive steps participants took to regain balance upon release of support. Non-reactive steps, such as realignment steps, were not included in the total step count. |
Mini-BEST Reactive Postural Control | Participants perform a push and release task in the forward, backward, right, and left direction. Each task is rated on a 0–2 scale. (0) = Severe: no step, or would fall if not caught, or falls spontaneously. (1) = Moderate: more than one step used to recover equilibrium. (2) = Normal: recovers independently with a single, large step. Only the lowest score from the left or right is used in scoring. The maximum score is 6, with higher scores indicating better reactive balance performance. |
Sensor-Grade Measures of Reactive Balance | |
Postural Latency (s) | Time from release to the initiation of the first step, identified when foot acceleration exceeded 7% of gravity and the rotational rate surpassed 7°/s. |
Step Latency (s) | Time from release to the first heel strike, determined when total foot acceleration exceeded 18 m/s2. |
Time to Stabilize (s) | Time from release to when the trunk became stationary; was detected when lumbar sensor acceleration dropped below 7% of gravity and the rotational rate fell below 7°. |
Step Length (m) | Length of the first step was calculated by taking the double integral of the foot’s acceleration in the anterior–posterior plane. |
Variable | Entire Sample | Non-Fallers | Fallers | p-Value |
---|---|---|---|---|
Sample Size, n | 44 | 27 | 17 | |
Female, n (%) | 35 (79.5%) | 22 (81.5%) | 13 (76.5%) | |
Age (years) | 47.77 ± 9.86 | 47.07 ± 9.91 | 48.88 ± 9.98 | 0.560 |
Symptom Duration (years) | 14.02 ± 9.90 | 13.37 ± 10.63 | 15.06 ± 8.82 | 0.588 |
Disease Severity (PDDS) | 1.93 ± 2.02 | 1.37 ± 1.67 | 2.82 ± 2.24 | 0.029 |
Race, n (%) | Black or African American: 22 (50.0%) White: 19 (43.2%) Pacific Islander: 1 (2.3%) Biracial or Multiracial: 2 (4.5%) | Black or African American: 15 (55.6%) White: 9 (33.3%) Pacific Islander: 1 (3.7%) Biracial or Multiracial: 2 (7.4%) | Black or African American: 7 (41.2%) White: 10 (58.8%) | |
Postural Latency (seconds) | 0.21 ± 0.07 | 0.20 ± 0.06 | 0.24 ± 0.08 | 0.109 |
Step Latency (seconds) | 0.53 ± 0.11 | 0.51 ± 0.10 | 0.57 ± 0.12 | 0.098 |
Time to Stabilize (seconds) | 1.44 ± 0.63 | 1.45 ± 0.64 | 1.43 ± 0.64 | 0.926 |
Step Length (meters) | 0.22 ± 0.14 | 0.19 ± 0.12 | 0.26 ± 0.15 | 0.087 |
Number of Steps | 2.48 ± 1.39 | 2.53 ± 1.34 | 2.4 ± 1.39 | 0.780 |
Clinical Rating of Reactive Postural Control | 1.23 ± 0.99 | 1.12 ± 0.80 | 1.39 ± 1.24 | 0.386 |
Mini-BEST Reactive Postural Control | 3.81 ± 1.30 | 3.96 ± 1.09 | 3.56 ± 1.59 | 0.333 |
FES-I | 27.75 ± 10.52 | 25.78 ± 9.48 | 30.88 ± 11.60 | 0.118 |
ABC Scale | 69.05 ± 25.14 | 70.79 ± 24.75 | 66.04 ± 26.39 | 0.567 |
CoFQ Functional Independence | 9.63 ± 3.78 | 9.58 ± 3.51 | 9.73 ± 4.33 | 0.900 |
CoFQ Damage to Identity | 13.10 ± 4.31 | 13.19 ± 4.22 | 12.93 ± 4.61 | 0.856 |
FES-I | ABC Scale | CoFQ Functional Independence | CoFQ Damage to Identity | |
---|---|---|---|---|
Postural Latency | 0.194 | −0.148 | −0.079 | −0.243 |
Step Latency | 0.144 | −0.085 | −0.242 | −0.090 |
Time to Stabilize | 0.499 ** | −0.254 | 0.322 * | 0.126 |
Step Length | 0.121 | −0.020 | −0.009 | 0.168 |
Number of Steps | 0.379 * | −0.197 | 0.333 * | 0.207 |
Clinical Rating | 0.499 ** | −0.363 * | 0.170 | 0.087 |
Mini-BEST Reactive Postural Control | −0.519 ** | 0.324 * | −0.286 | −0.256 |
Non-Fallers (n = 27) | Fallers (n = 17) | |||||||
---|---|---|---|---|---|---|---|---|
FES-I | ABC Scale | CoFQ Loss of Independence | CoFQ Damage to Identity | FES-I | ABC Scale | CoFQ Loss of Independence | CoFQ Damage to Identity | |
Postural Latency | −0.032 | −0.174 | −0.033 | −0.299 | 0.454 | −0.128 | −0.191 | −0.203 |
Step Latency | 0.014 | −0.058 | −0.203 | 0.024 | 0.343 | −0.108 | −0.326 | −0.315 |
Time to Stabilize | 0.612 ** | −0.443 * | 0.479 * | 0.253 | 0.393 | 0.068 | −0.080 | −0.049 |
Step Length (x) | 0.236 | −0.042 | −0.142 | 0.052 | −0.047 | −0.007 | 0.254 | 0.295 |
Number of Steps | 0.442 * | −0.262 | 0.516 ** | 0.292 | 0.308 | −0.089 | −0.114 | 0.120 |
Clinical Rating | 0.578 ** | −0.515 ** | 0.448 * | 0.246 | 0.373 | −0.111 | −0.265 | −0.090 |
Mini-BEST Reactive Postural Control | −0.674 ** | 0.445 * | −0.569 ** | −0.435 * | −0.251 | 0.048 | 0.146 | −0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takla, T.N.; Monaghan, P.G.; Peterson, D.S.; Fritz, N.E. The Relation Among Reactive Stepping and Fall-Related Psychological Factors in Multiple Sclerosis. Brain Sci. 2024, 14, 1197. https://doi.org/10.3390/brainsci14121197
Takla TN, Monaghan PG, Peterson DS, Fritz NE. The Relation Among Reactive Stepping and Fall-Related Psychological Factors in Multiple Sclerosis. Brain Sciences. 2024; 14(12):1197. https://doi.org/10.3390/brainsci14121197
Chicago/Turabian StyleTakla, Taylor N., Patrick G. Monaghan, Daniel S. Peterson, and Nora E. Fritz. 2024. "The Relation Among Reactive Stepping and Fall-Related Psychological Factors in Multiple Sclerosis" Brain Sciences 14, no. 12: 1197. https://doi.org/10.3390/brainsci14121197
APA StyleTakla, T. N., Monaghan, P. G., Peterson, D. S., & Fritz, N. E. (2024). The Relation Among Reactive Stepping and Fall-Related Psychological Factors in Multiple Sclerosis. Brain Sciences, 14(12), 1197. https://doi.org/10.3390/brainsci14121197