Movement Sonification Techniques to Improve Balance in Parkinson’s Disease: A Pilot Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
- Idiopathic PD
- Age < 80 years
- Mini-Mental State Examination (MMSE) > 24
- Unified Parkinson’s Disease Rating Scale score (UPDRS, Part III) < 28
- Stabilized disease and drug therapy
- Altered gait patterns
- Motor independence during walking (without orthotic devices and aids) but with a pathological pattern.
2.3. Exclusion Criteria
- Previous or concurrent diseases disabling lower limb functions
- Changes in drug therapy during the study
- Rehabilitative treatments involving music in the year before the study.
2.4. Interventions
- Anteroposterior load shift in tandem position with left foot forward (3 min)
- Anteroposterior load shift in tandem position with right foot forward (3 min)
- Left foot swing (3 min)
- Right foot swing (3 min)
- March in place (3 min).
2.5. Assessment
- Functional Independence Measure (FIM) [52] also separating the FIM cognitive and FIM motor scores to assess and document the functional status of patients.
- Six-Minute Walking Test [53] to evaluate patient’s exercise capacity and functional endurance;
- Mini BESTest [53] to assess balance, postural control, and functional mobility;
- Dynamic Gait Index [53] to evaluate patient’s ability to perform complex walking tasks and assess their dynamic balance during walking;
- Timed Up and Go [53] to assess patient’s mobility, functional mobility, and risk of falling.
- Visual Analog Scale (VAS) [54] to evaluate the perceived fatigue after each session;
- McGill Quality of Life [55] to evaluate the level of patient’s Quality of Life;
- Global Perceived Effect (GPE) [56], to assess the patient’s subjective perception concerning the impact of intervention on his/her well-being.
2.6. Endpoints
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlaug, G. Part VI introduction: Listening to and making music facilitates brain recovery processes. Ann. N. Y. Acad. Sci. 2009, 1169, 372–373. [Google Scholar] [CrossRef]
- Altenmuller, E.; Marco-Pallares, J.; Munte, T.F.; Schneider, S. Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N. Y. Acad. Sci. 2009, 1169, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Thaut, M.H. Rhythm, Music and the Brain: Scientific Foundations and Clinical Applications; Taylor & Francis Group: London, UK, 2005. [Google Scholar]
- Raglio, A. Music and neurorehabilitation: Yes, we can! Funct. Neurol. 2018, 33, 173–174. [Google Scholar]
- Braun Janzen, T.; Koshimori, Y.; Richard, N.M.; Thaut, M.H. Rhythm and Music-Based Interventions in Motor Rehabilitation: Current Evidence and Future Perspectives. Front. Hum. Neurosci. 2022, 15, 789467. [Google Scholar] [CrossRef] [PubMed]
- Bangert, M.; Altenmuller, E. Mapping perception to action in piano practice: A longitudinal DC-EEG-study. BMC Neurosci. 2003, 4, 26–36. [Google Scholar] [CrossRef]
- Bangert, M.; Peschel, T.; Schlaug, G.; Rotte, M.; Drescher, D.; Hinrichs, H.; Heinze, H.J.; Altenmüller, E. Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage 2006, 30, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Elmer, S.; Baumann, S.; Jancke, L. Short-termplasticity in the auditory system: Differential neural responses to perception and imagery of speech and music. Restor. Neurol. Neurosci. 2007, 25, 411–431. [Google Scholar]
- Baumann, S.; Koeneke, S.; Schmidt, C.F.; Meyer, M.; Lutz, K.; Jancke, L. A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res. 2007, 1161, 65–78. [Google Scholar] [CrossRef]
- Suh, J.H.; Han, S.J.; Jeon, S.Y.; Kim, H.J.; Lee, J.E.; Yoon, T.S.; Chong, H.J. Effect of rhythmic auditory stimulation on gait and balance in hemiplegic stroke patients. NeuroRehabilitation 2014, 34, 193–199. [Google Scholar] [CrossRef]
- Cha, Y.; Kim, Y.; Hwang, S.; Chung, Y. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: A pilot randomized controlled study. NeuroRehabilitation 2014, 35, 681–688. [Google Scholar] [CrossRef]
- Wittwer, J.E.; Webster, K.E.; Hill, K. Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson’s disease--what is theevidence? Disabil. Rehabil. 2013, 35, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Hayden, R.; Clair, A.A.; Johnson, G.; Otto, D. The effect of rhythmic auditory stimulation (RAS) on physical therapy outcomes for patients in gait training following stroke: A feasibility study. Int. J. Neurosci. 2009, 119, 2183–2195. [Google Scholar] [CrossRef] [PubMed]
- Thaut, M.H.; McIntosh, G.C.; Rice, R.R. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J. Neurol. Sci. 1997, 151, 207–212. [Google Scholar] [CrossRef]
- Thaut, M.H.; Leins, A.K.; Rice, R.R.; Argstatter, H.; Kenyon, G.P.; McIntosh, G.C.; Bolay, H.V.; Fetter, M. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: A single-blind, randomized trial. Neurorehabil. Neural Repair. 2007, 21, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.J.; Han, S.J.; Kim, Y.J.; Park, H.Y.; Kim, S.J. Relationship between output from MIDI-keyboard playing and hand function assessments on affected hand after stroke. NeuroRehabilitation 2014, 35, 673–680. [Google Scholar] [CrossRef]
- Villeneuve, M.; Penhune, V.; Lamontagne, A. A piano training program to improve manual dexterity and upper extremity function in chronic stroke survivors. Front. Hum. Neurosci. 2014, 8, 662. [Google Scholar] [CrossRef]
- Van Delden, A.L.; Peper, C.L.; Nienhuys, K.N.; Zijp, N.I.; Beek, P.J.; Kwakkel, G. Unilateral versus bilateral upper limb training after stroke: The Upper Limb Training After Stroke clinical trial. Stroke 2013, 44, 2613–2616. [Google Scholar] [CrossRef]
- Van Wijck, F.; Knox, D.; Dodds, C.; Cassidy, G.; Alexander, G.; MacDonald, R. Making music after stroke: Using musical activities to enhance arm function. Ann. N. Y. Acad. Sci. 2012, 1252, 305–311. [Google Scholar] [CrossRef]
- Schneider, S.; Schonle, P.W.; Altenmuller, E.; Münte, T.F. Using musical instruments to improve motor skill recovery following a stroke. J. Neurol. 2007, 254, 1339–1346. [Google Scholar] [CrossRef]
- Kim, S.J.; Koh, I. The effects of music on pain perception of stroke patients during upper extremity joint exercises. J. Music Ther. 2005, 42, 81–92. [Google Scholar] [CrossRef]
- Lim, K.B.; Kim, Y.K.; Lee, H.J.; Yoo, J.; Hwang, J.Y.; Kim, J.A.; Kim, S.K. The therapeutic effect of neurologic music therapy and speech language therapy in post-stroke aphasic patients. Ann. Rehabil. Med. 2013, 37, 556–562. [Google Scholar] [CrossRef]
- Kim, S.J.; Jo, U. Study of accent-based music speech protocol development for improving voice problems in stroke patients with mixed dysarthria. NeuroRehabilitation 2013, 32, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Conklyn, D.; Stough, D.; Novak, E.; Paczak, S.; Chemali, K.; Bethoux, F. A home-based walking program using rhythmic auditory stimulation improves gait performance in patients with multiple sclerosis: A pilot study. Neurorehabil. Neural Repair 2010, 24, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Tamplin, J.; Baker, F.A.; Jones, B.; Way, A.; Lee, S. ‘Stroke a Chord’: The effect of singing in a community choir on mood and social engagement for people living with aphasia following a stroke. NeuroRehabilitation 2013, 32, 929–941. [Google Scholar] [CrossRef]
- Jun, E.M.; Roh, Y.H.; Kim, M.J. The effect of music-movement therapy on physical and psychological states of stroke patients. J. Clin. Nurs. 2013, 22, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Sarkamo, T.; Tervaniemi, M.; Laitinen, S.; Forsblom, A.; Soinila, S.; Mikkonen, M.; Autti, T.; Silvennoinen, H.M.; Erkkilä, J.; Laine, M.; et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 2008, 131, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Sarkamo, T.; Pihko, E.; Laitinen, S.; Forsblom, A.; Soinila, S.; Mikkonen, M.; Autti, T.; Silvennoinen, H.M.; Erkkilä, J.; Laine, M.; et al. Music and speech listening enhance the recovery of early sensory processing after stroke. J. Cogn. Neurosci. 2010, 22, 2716–2727. [Google Scholar] [CrossRef]
- Kim, D.S.; Park, Y.G.; Choi, J.H.; Im, S.H.; Jung, K.J.; Cha, Y.A.; Jung, C.O.; Yoon, Y.H. Effects of music therapy on mood in stroke patients. Yonsei Med. J. 2011, 52, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Magee, W.L.; Davidson, J.W. The effect of music therapy on mood states in neurological patients: A pilot study. J. Music Ther. 2002, 39, 20–29. [Google Scholar] [CrossRef]
- Purdie, H.; Hamilton, S.; Baldwin, S. Music therapy: Facilitating behavioural and psychological change in people with stroke—A pilot study. Int. J. Rehabil. Res. 1997, 20, 325–327. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I.; Schmitz, G.; Effenberg, A.O. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Bella, S.D.; Benoit, C.E.; Farrugia, N.; Keller, P.E.; Obrig, H.; Mainka, S.; Kotz, S.A. Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci. Rep. 2017, 7, 42005. [Google Scholar] [CrossRef] [PubMed]
- Ashoori, A.; Eagleman, D.M.; Jankovic, J. Effects of Auditory Rhythm and Music on Gait Disturbances in Parkinson’s Disease. Front. Neurol. 2015, 6, 234. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Lowenthal, J.; Herman, T.; Gruendlinger, L.; Peretz, C.; Giladi, N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur. J. Neurosci. 2007, 26, 2369–2375. [Google Scholar] [CrossRef] [PubMed]
- Moumdjian, L.; Moens, B.; Maes, P.J.; Van Geel, F.; Ilsbroukx, S.; Borgers, S.; Leman, M.; Feys, P. Continuous 12 min walking to music, metronomes and in silence: Auditory-motor coupling and its effects on perceived fatigue, motivation and gait in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 35, 92–99. [Google Scholar] [CrossRef]
- Moumdjian, L.; Moens, B.; Maes, P.J.; Van Nieuwenhoven, J.; Van Wijmeersch, B.; Leman, M.; Feys, P. Walking to Music and Metronome at Various Tempi in Persons With Multiple Sclerosis: A Basis for Rehabilitation. Neurorehabil. Neural Repair 2019, 33, 464–475. [Google Scholar] [CrossRef]
- Shahraki, M.; Sohrabi, M.; Taheri Torbati, H.R.; Nikkhah, K.; NaeimiKia, M. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. J. Med. Life 2017, 10, 33–37. [Google Scholar] [PubMed]
- Hermann, T.; Hunt, A.; Neuhoff, J.G. The “Sonification” Handbook; Logos Verlag: Berlin, Germany, 2011. [Google Scholar]
- Dubus, G.; Bresin, R. A systematic review of mapping strategies for the “sonification” of physical quantities. PLoS ONE 2013, 8, e82491. [Google Scholar] [CrossRef]
- Scholz, D.S.; Rhode, S.; Großbach, M.; Rollnik, J.; Altenmüller, E. Moving with music for stroke rehabilitation: A sonification feasibility study. Ann. N. Y. Acad. Sci. 2015, 1337, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Scholz, D.S.; Rohde, S.; Nikmaram, N.; Brückner, H.P.; Großbach, M.; Rollnik, J.D.; Altenmüller, E.O. Sonification of Arm Movements in Stroke Rehabilitation—A Novel Approach in Neurologic Music Therapy. Front. Neurol. 2016, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Scholz, D.S.; Wu, L.; Pirzer, J.; Schneider, J.; Rollnik, J.D.; Großbach, M.; Altenmüller, E.O. Sonification as a possible stroke rehabilitation strategy. Front. Neurosci. 2014, 8, 332. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, F.; Boyer, E.O.; Françoise, J.; Houix, O.; Susini, P.; Roby-Brami, A.; Hanneton, S. Sensori-motor learning with movement sonification: Perspectives from recent interdisciplinary studies. Front. Neurosci. 2016, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, D.M.; Ghahramani, Z. Computational principles of movement neuroscience. Nat. Neurosci. 2000, 3, 1212. [Google Scholar] [CrossRef] [PubMed]
- Colombo, R.; Raglio, A.; Panigazzi, M.; Mazzone, A.; Bazzini, G.; Imarisio, C.; Molteni, D.; Caltagirone, C.; Imbriani, M. The SonicHand Protocol for Rehabilitation of Hand Motor Function: A Validation and Feasibility Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 664–672. [Google Scholar] [CrossRef]
- Raglio, A.; Panigazzi, M.; Colombo, R.; Tramontano, M.; Iosa, M.; Mastrogiacomo, S.; Baiardi, P.; Molteni, D.; Baldissarro, E.; Imbriani, C.; et al. Hand rehabilitation with sonification techniques in the subacute stage of stroke. Sci. Rep. 2021, 11, 7237. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I. Effects of (music-based) rhythmic auditory cueing training on gait and posture post-stroke: A systematic review & dose-response meta-analysis. Sci. Rep. 2019, 9, 2183. [Google Scholar]
- Brodie, M.A.; Dean, R.T.; Beijer, T.R.; Canning, C.G.; Smith, S.T.; Menant, J.C.; Lord, S.R. Symmetry matched auditory cues improve gait steadiness in most people with Parkinson’s disease but not in healthy older people. J. Park. Dis. 2015, 5, 105–116. [Google Scholar] [CrossRef]
- Rodger, M.W.; Young, W.R.; Craig, C.M. Synthesis of walking sounds for alleviating gait disturbances in Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 543–548. [Google Scholar] [CrossRef]
- Baram, Y.; Miller, A. Auditory feedback control for improvement of gait in patients with Multiple Sclerosis. J. Neurol. Sci. 2007, 254, 90–94. [Google Scholar] [CrossRef]
- Dodds, T.A.; Martin, D.P.; Stolov, W.C.; Deyo, R.A. A validation of the Functional Independence Measurement and its performance among rehabilitation inpatients. Arch. Phys. Med. Rehabil. 1993, 74, 531–536. [Google Scholar] [CrossRef]
- Bloem, B.R.; Marinus, J.; Almeida, Q.; Dibble, L.; Nieuwboer, A.; Post, B.; Ruzicka, E.; Goetz, C.; Stebbins, G.; Martinez-Martin, P.; et al. Measurement instruments to assess posture, gait, and balance in Parkinson’s disease: Critique and recommendations. Mov. Disord. 2016, 31, 1342–1355. [Google Scholar] [CrossRef] [PubMed]
- McCormack, H.M.; Horne, D.J.; Sheather, S. Clinical applications of visual analogue scales: A critical review. Psychol. Med. 1988, 18, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Sguazzin, C.; Giorgi, I.; Alesii, A.; Fini, M. Italian validation of the McGill Quality of Life Questionnaire (MQOL-It). G. Ital. Med. Lav. Ergon. 2010, 32, B58–B62. [Google Scholar] [PubMed]
- Kamper, S.J.; Ostelo, R.W.; Knol, D.L.; Maher, C.G.; de Vet, H.C.; Hancock, M.J. Global Perceived Effect scales provided reliable assessments of health transition in people with musculoskeletal disorders, but ratings are strongly influenced by current status. J. Clin. Epidemiol. 2010, 63, 760–766.e1. [Google Scholar] [CrossRef]
- Ghai, S.; Schmitz, G.; Hwang, T.H.; Effenberg, A.O. Auditory proprioceptive integration: Effects of real-time kinematic auditory feedback on knee proprioception. Front. Neurosci. 2018, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Mezzarobba, S.; Grassi, M.; Pellegrini, L.; Catalan, M.; Krüger, B.; Stragapede, L.; Manganotti, P.; Bernardis, P. Action observation improves sit-to-walk in patients with Parkinson’s disease and freezing of gait. Biomechanical analysis of performance. Park. Relat. Disord. 2020, 80, 133–137. [Google Scholar] [CrossRef]
Control Group (n = 9) | Experimental Group (n = 10) | p-Value | |
---|---|---|---|
Age § [years] | 70.0 ± 6.3 | 74.6 ± 5.6 | 0.053 |
Sex * [M/F] | 6/3 | 8/2 | 0.510 |
MMSE § [0–30] | 27.7 ± 1.3 | 27.5 ± 1.3 | 0.549 |
MDS-UPDRS III § [0–132] | 14.0 ± 6.2 | 18.0 ± 6.1 | 0.182 |
Control Group § | Experimental Group § | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
PRE | POST | FU | PRE | POST | FU | G Effect | T Effect | G*T Effect | |
6MWT [m] | 434 ± 82 | 432 ± 64 | 441 ± 92 | 363 ± 91 | 401 ± 65 | 394 ± 49 | 0.21 | 0.52 | 0.21 |
FIM motor [13–91] | 82.7 ± 3.0 | 84.1 ± 2.9 | 84.4 ± 3.3 | 77 ± 6.1 | 79.2 ± 5.5 | 79.4 ± 5.6 | 0.02 * | <0.001 * | 0.78 |
FIM cognitive [5–35] | 34.3 ± 1.0 | 34.6 ± 0.5 | 34.6 ± 0.5 | 33.6 ± 1.3 | 33.8 ± 1.3 | 33.8 ± 1.3 | 0.01 * | 0.80 | 0.99 |
FIM total [18–126] | 117.1 ± 3.6 | 118.8 ± 3.2 | 119.0 ± 3.7 | 110.6 ± 6.1 | 113.0 ± 5.4 | 113.2 ± 5.6 | 0.01 * | <0.001 * | 0.79 |
Mini-BESTest [0–28] | 22.0 ± 2.5 | 22.6 ± 2.3 | 22.4 ± 2.4 | 17.7 ± 3.9 | 20.6 ± 3.4 | 21.3 ± 3.0 | 0.05 | 0.001 * | 0.01 * |
DGI [0–24] | 21.4 ± 2.2 | 21.6 ± 1.4 | 21.4 ± 1.6 | 17.7 ± 5.0 | 20.0 ± 3.2 | 20.8 ± 2.8 | 0.09 | 0.09 | 0.03 * |
TUG [s] | 9.1 ± 1.9 | 9.1 ± 2.6 | 9.1 ± 2.0 | 12.5 ± 5.7 | 9.9 ± 1.8 | 9.9 ± 1.3 | 0.14 | 0.16 | 0.36 |
Control Group § | Experimental Group § | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
PRE | POST | FU | PRE | POST | FU | G Effect | T Effect | G*T Effect | |
McGill QoL— Physical [0–10] | 6.2 ± 2.3 | 5.7 ± 2.1 | 5.7 ± 2.4 | 5.1 ± 2.3 | 4.9 ± 0.9 | 4.9 ± 1.0 | 0.23 | 0.71 | 0.85 |
McGill QoL— Psychological [0–10] | 7.2 ± 2.3 | 6.9 ± 1.4 | 7.0 ± 1.8 | 5.8 ± 1.9 | 6.3 ± 1.1 | 6.7 ± 1.0 | 0.16 | 0.67 | 0.59 |
McGill QoL— Existential [0–10] | 8.0 ± 1.3 | 7.7 ± 1.3 | 7.9 ± 1.0 | 6.6 ± 1.8 | 7.4 ± 0.9 | 7.1 ± 1.3 | 0.07 | 0.64 | 0.21 |
McGill QoL— Support [0–10] | 8.5 ± 1.8 | 8.2 ± 1.6 | 7.6 ± 1.7 | 6.8 ± 1.9 | 6.9 ± 1.3 | 7.1 ± 1.3 | 0.07 | 0.89 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raglio, A.; De Maria, B.; Parati, M.; Giglietti, A.; Premoli, S.; Salvaderi, S.; Molteni, D.; Ferrante, S.; Dalla Vecchia, L.A. Movement Sonification Techniques to Improve Balance in Parkinson’s Disease: A Pilot Randomized Controlled Trial. Brain Sci. 2023, 13, 1586. https://doi.org/10.3390/brainsci13111586
Raglio A, De Maria B, Parati M, Giglietti A, Premoli S, Salvaderi S, Molteni D, Ferrante S, Dalla Vecchia LA. Movement Sonification Techniques to Improve Balance in Parkinson’s Disease: A Pilot Randomized Controlled Trial. Brain Sciences. 2023; 13(11):1586. https://doi.org/10.3390/brainsci13111586
Chicago/Turabian StyleRaglio, Alfredo, Beatrice De Maria, Monica Parati, Andrea Giglietti, Stefano Premoli, Stefano Salvaderi, Daniele Molteni, Simona Ferrante, and Laura Adelaide Dalla Vecchia. 2023. "Movement Sonification Techniques to Improve Balance in Parkinson’s Disease: A Pilot Randomized Controlled Trial" Brain Sciences 13, no. 11: 1586. https://doi.org/10.3390/brainsci13111586
APA StyleRaglio, A., De Maria, B., Parati, M., Giglietti, A., Premoli, S., Salvaderi, S., Molteni, D., Ferrante, S., & Dalla Vecchia, L. A. (2023). Movement Sonification Techniques to Improve Balance in Parkinson’s Disease: A Pilot Randomized Controlled Trial. Brain Sciences, 13(11), 1586. https://doi.org/10.3390/brainsci13111586