Research Progress in Diffusion Spectrum Imaging
Abstract
:1. Introduction
2. Methodology
- (1)
- Image denoising;
- (2)
- 3D discrete Fourier transform to obtain the PDF;
- (3)
- Radial integration for the PDF to acquire the ODF;
- (4)
- Calculation of the metrics based on the ODF, such as GFA;
- (5)
- ODF-based tractography.
2.1. Improvement in the Scanning Scheme
2.1.1. Challenges
2.1.2. Technical Advancements
2.2. Optimization of the Postprocessing Method
2.2.1. Challenges
2.2.2. Technical Advancements
3. Application
3.1. DSI Tractography for White-Matter Fibers
3.2. Cortical Parcellation and Connectivity Reconstruction
3.3. Clinical Applications
3.3.1. Disease Diagnosis
3.3.2. Progression Prediction
First Author (Ref. #) | Type | Subject | Main Findings |
---|---|---|---|
Lacerda et al., 2016 [46] | Methodology | Optimization of postprocessing method | This study proposed a new way of including biophysical constraints to compute the ODF, which removed most of the artifacts due to fast diffusion components like those from pathological tissues and offered improved angular resolution. |
Tian et al., 2019 [47] | Methodology | Optimization of postprocessing method | This study proposed a generalized DSI framework to compute the ensemble average propagator, which could be used to elucidate the contribution and combination of q-space signals to the diffusion ODF. |
Gilbert et al., 2006 [48] | Application | DSI tractography for white-matter fibers | Diffusion tensor imaging (DTI) depicted the anterior slice of the lingual core in bovine tongue solely as a region with low anisotropy, whereas DSI revealed two different fiber populations with an explicit orthogonal relationship to each other. |
Dai et al., 2016 [49] | Application | DSI tractography for white-matter fibers | The cingulum bundle was less mature when cat myelination was incomplete, whereas the DTI tractography tended to terminate in such areas. |
Schmahmann et al., 2007 [50] | Application | DSI tractography for white-matter fibers | This study identified 10 major long association fiber bundles that matched the observations in autoradiographic histological tract tracing in the monkey brain, and such precise structural characteristics were not observed by DTI. |
Wedeen et al., 2012 [51] | Application | DSI tractography for white-matter fibers | This study first clarified the relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and humans. |
Wu et al., 2016 [52]; Wang et al., 2016 [53] | Application | DSI tractography for white-matter fibers | The DSI revealed a more complete connectivity pattern and anatomical details of the IFOF I-V subcomponents and of the SLF I-III subcomponents. |
Sun et al., 2018 [54]; Suo et al., 2021 [55]; Liu et al., 2022 [56]; Wei et al., 2017 [57] | Application | DSI tractography for white-matter fibers | The DSI identified detailed and completed white-matter pathways, including the thalamic–prefrontal peduncle, pyramidal tracts, anterior commissure, and corpus callosum. |
Sheets et al., 2020, 2021 [58,59] | Application | Cortical parcellation | The DSI segmented the ventral premotor area into four subregions of 6v, 4, 3b, and 3a and the dorsal premotor area into three areas of 6a, 6d, and 6v. |
Briggs et al., 2021 [60]; Lin et al., 2020 [61] | Application | Cortical connectivity reconstruction | The MFG included two major connections of the superior longitudinal fasciculus and inferior fronto-occipital fasciculus. The ITG connected to five major fibers: the U-fiber, inferior longitudinal fasciculus, vertical occipital fasciculus, arcuate fasciculus, and uncinate fasciculus. |
Chiang et al., 2020, 2023 [2,64];Tsai et al., 2021 [65] | Application | Attention deficit and hyperactivity disorder (ADHD) | Participants with ADHD showed more rapid development of generalized fractional anisotropy (GFA) in the frontal tracts and showed higher axial diffusivity values in the perpendicular fasciculus, superior longitudinal fasciculus I, corticospinal tract, and corpus callosum compared to the control group. |
Wen et al., 2020 [73]; Papageorgiou et al., 2021 [74] | Application | Parkinson’s disease (PD) | The PD patients showed impaired global efficiency and characteristic path length in the DSI-based connected network, which were associated with executive function and episodic memory. |
Wang et al., 2020, 2022 [77,80]; Zhang et al., 2023 [82] | Application | Epilepsy | The AUC of the asymmetric indices of the DSI-derived QA value to the lateralization of epilepsy was 0.96, with 0.91 sensitivity and 0.90 specificity; The AUC of DSI tractography was 0.84, with 100% sensitivity and 75% specificity in discriminating patients with epilepsy from healthy controls. |
Ni et al., 2020 [76] | Application | Autism spectrum disorder (ASD) | A higher GFA of the tracts was implicated in memory, attention, sensorimotor processing, and perception associated with less dysregulation in TDC but worse dysregulation in ASD. |
Zhang et al., 2021 [79] | Application | Idiopathic normal-pressure hydrocephalus (iNPH) | The DSI-based QA values of corticospinal tracts (CSTs) in patients with Inph were lower than those in healthy controls (HCs), but such differences in DTI-based FA were observed between iNPH patients and HCs. |
Liang et al., 2021 [81] | Application | Pituitary adenomas | The DSI parameters also showed a good performance, with an accuracy of 0.83, sensitivity of 0.78, and specificity of 0.86 in discriminating patients with mild and severe visual defects |
Mao et al., 2022 [82] | Application | Breast cancer | DSI could be helpful for the preoperative prediction of human epidermal growth factor receptor 2 (HER2) in patients with breast cancer, with the findings that the AUC values of DSI quantitative parameters (0.67~0.72) were higher than those of apparent diffusion coefficient (0.57) from DTI. |
Zhang et al., 2021 [84] | Application | Idiopathic sudden sensorineural hearing loss | The DSI-derived GFA in the ipsilateral medial geniculate body was related to the prognosis (sensitivity = 64.7%; specificity = 85.7%; AUC = 0.796) in patients with unilateral idiopathic sudden sensorineural hearing loss. |
Paul et al., 2023 [72] | Application | Stroke | This study used DSI to demonstrate for the first time that recovery of basal motor control may be supported via an alternative route through contralesional M1 and non-crossing fibers of the contralesional CST. |
Salisbury et al., 2023 [68] | Application | First-episode psychosis | White-matter tracts showing associations between QA from DSI and auditory hallucinations were associated with frontal–parietal–temporal connectivity in the cingulum bundle and in the prefrontal interhemispheric connectivity. |
4. Limitations and Future Outlooks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Le Bihan, D.; Iima, M. Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues. PLoS Biol. 2015, 13, e1002203. [Google Scholar]
- Chiang, H.L.; Hsu, Y.C.; Shang, C.Y.; Tseng, W.I.; Gau, S.S. White Matter Endophenotype Candidates for ADHD: A Diffusion Imaging Tractography Study with Sibling Design. Psychol. Med. 2020, 50, 1203–1213. [Google Scholar] [CrossRef]
- Yeh, F.C.; Tang, P.F.; Tseng, W.Y. Diffusion MRI Connectometry Automatically Reveals Affected Fiber Pathways in Individuals with Chronic Stroke. NeuroImage Clin. 2013, 2, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Douglas, D.B.; Iv, M.; Douglas, P.K.; Anderson, A.; Vos, S.B.; Bammer, R.; Zeineh, M.; Wintermark, M. Diffusion Tensor Imaging of TBI: Potentials and Challenges. Top. Magn. Reson. Imaging 2015, 24, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Jeurissen, B.; Leemans, A.; Tournier, J.D.; Jones, D.K.; Sijbers, J. Investigating the Prevalence of Complex Fiber Configurations in White Matter Tissue with Diffusion Magnetic Resonance Imaging. Hum. Brain Mapp. 2013, 34, 2747–2766. [Google Scholar] [CrossRef] [PubMed]
- Raffelt, D.A.; Smith, R.E.; Ridgway, G.R.; Tournier, J.-D.; Vaughan, D.N.; Rose, S.; Henderson, R.; Connelly, A. Connectivity-Based Fixel Enhancement: Whole-Brain Statistical Analysis of Diffusion MRI Measures in the Presence of Crossing Fibres. NeuroImage 2015, 117, 40–55. [Google Scholar] [CrossRef]
- Voskuilen, L.; Mazzoli, V.; Oudeman, J.; Balm, A.J.; van der Heijden, F.; Froeling, M.; de Win, M.M.; Strijkers, G.J.; Smeele, L.E.; Nederveen, A.J. Crossing Muscle Fibers of the Human Tongue Resolved In Vivo Using Constrained Spherical Deconvolution. J. Magn. Reson. Imaging 2019, 50, 96–105. [Google Scholar] [CrossRef]
- Sid, F.A.; Abed-Meraim, K.; Harba, R.; Oulebsir-Boumghar, F. Analytical Performance Bounds for Multi-Tensor Diffusion-MRI. Magn. Reson. Imaging 2017, 36, 146–158. [Google Scholar]
- Rosenkrantz, A.B.; Padhani, A.R.; Chenevert, T.L.; Koh, D.M.; De Keyzer, F.; Taouli, B.; Le Bihan, D. Body Diffusion Kurtosis Imaging: Basic Principles, Applications, and Considerations For Clinical Practice. J. Magn. Reson. Imaging 2015, 42, 1190–1202. [Google Scholar] [CrossRef]
- Kamiya, K.; Hori, M.; Aoki, S. Noddi in Clinical Research. J. Neurosci. Methods 2020, 346, 108908. [Google Scholar] [CrossRef]
- Afzali, M.; Nilsson, M.; Palombo, M.; Jones, D.K. Spheriously? The Challenges of Estimating Sphere Radius Non-Invasively in the Human Brain from Diffusion MRI. NeuroImage 2021, 237, 118183. [Google Scholar] [CrossRef]
- Schilling, K.G.; Janve, V.; Gao, Y.; Stepniewska, I.; Landman, B.A.; Anderson, A.W. Histological Validation of Diffusion MRI Fiber Orientation Distributions and Dispersion. NeuroImage 2018, 165, 200–221. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Lo, Y.C.; Chen, Y.J.; Wedeen, V.J.; Isaac Tseng, W.Y. NTU-DSI-122: A Diffusion Spectrum Imaging Template with High Anatomical Matching to the ICBM-152 Space. Hum. Brain Mapp. 2015, 36, 3528–3541. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.H.; Glenn, G.R.; Helpern, J.A. Fiber Ball Imaging. NeuroImage 2016, 124, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.L.; Sotiropoulos, S.N. Non-Parametric Representation and Prediction of Single-and Multi-Shell Diffusion-Weighted MRI Data Using Gaussian Processes. NeuroImage 2015, 122, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.C.-H.; Chuang, W.; Chen, C.-W.; Tsai, Y.-H.; McIntyre, R.S.; Weng, J.-C. Detecting Microstructural Alterations of Cerebral White Matter Associated with Breast Cancer and Chemotherapy Revealed by Generalized q-Sampling MRI. Front. Psychiatry 2023, 14, 1161246. [Google Scholar] [CrossRef] [PubMed]
- Wedeen, V.J.; Reese, T.G.; Tuch, D.S.; Weigel, M.R.; Dou, J.G.; Weiskoff, R.M.; Chessler, D. Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. In Proceedings of the 8th Annual Meeting of ISMRM, Denver, CO, USA, 3–7 April 2000; p. 82. [Google Scholar]
- Tuch, D.S. Q-Ball Imaging. Magn. Reson. Med. 2004, 52, 1358–1372. [Google Scholar] [CrossRef] [PubMed]
- Daducci, A.; Canales-Rodríguez, E.J.; Descoteaux, M.; Garyfallidis, E.; Gur, Y.; Lin, Y.C.; Mani, M.; Merlet, S.; Paquette, M.; Ramirez-Manzanares, A.; et al. Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery from Diffusion MRI. IEEE Trans. Med. Imaging 2014, 33, 384–399. [Google Scholar] [CrossRef]
- Rodrigues, P.; Prats-Galino, A.; Gallardo-Pujol, D.; Villoslada, P.; Falcon, C.; Prckovska, V. Evaluating Structural Connectomics in Relation to Different Q-space Sampling Techniques. Med. Image Comput. Comput.-Assist. Interv. 2013, 16 Pt 1, 671–678. [Google Scholar] [CrossRef]
- Gigandet, X.; Griffa, A.; Kober, T.; Daducci, A.; Gilbert, G.; Connelly, A.; Hagmann, P.; Meuli, R.; Thiran, J.P.; Krueger, G. A Connectome-Based Comparison of Diffusion MRI Schemes. PLoS ONE 2013, 8, e75061. [Google Scholar] [CrossRef]
- Avram, A.V.; Sarlls, J.E.; Barnett, A.S.; Özarslan, E.; Thomas, C.; Irfanoglu, M.O.; Hutchinson, E.; Pierpaoli, C.; Basser, P.J. Clinical Feasibility of Using Mean Apparent Propagator (MAP) MRI to Characterize Brain Tissue Microstructure. NeuroImage 2016, 127, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Wedeen, V.J.; Hagmann, P.; Tseng, W.Y.; Reese, T.G.; Weisskoff, R.M. Mapping Complex Tissue Architecture with Diffusion Spectrum Magnetic Resonance Imaging. Magn. Reson. Med. 2005, 54, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Sun, D.; Wang, Y.; Wang, Y.; Wang, Y. Tracing Short Connections of the Temporo-Parieto-Occipital Region in the Human Brain Using Diffusion Spectrum Imaging and Fiber Dissection. Brain Res. 2016, 1646, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, E.O.; Tanner, J.E. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. J. Chem. Phys. 1965, 42, 288–292. [Google Scholar] [CrossRef]
- Lin, C.P.; Wedeen, V.J.; Chen, J.H.; Yao, C.; Tseng, W.Y. Validation of Diffusion Spectrum Magnetic Resonance Imaging with Manganese-Enhanced Rat Optic Tracts and Ex Vivo Phantoms. NeuroImage 2003, 19, 482–495. [Google Scholar] [CrossRef]
- Yang, J.Y.-M.; Yeh, C.-H.; Poupon, C.; Calamante, F. Diffusion MRI Tractography for Neurosurgery: The Basics, Current State, Technical Reliability and Challenges. Phys. Med. Biol. 2021, 66, 15TR01. [Google Scholar] [CrossRef]
- Tefera, G.B.; Zhou, Y.; Juneja, V.; Narayana, P.A. Evaluation of Fiber Tracking from Subsampled Q-Space Data in Diffusion Spectrum Imaging. Magn. Reson. Imaging 2013, 31, 820–826. [Google Scholar] [CrossRef]
- Szczepankiewicz, F.; Sjölund, J. Cross-Term-Compensated Gradient Waveform Design for Tensor-Valued Diffusion MRI. J. Magn. Reson. 2021, 328, 106991. [Google Scholar] [CrossRef]
- Kuo, L.W.; Chen, J.H.; Wedeen, V.J.; Tseng, W.Y. Optimization of Diffusion Spectrum Imaging and Q-Ball Imaging on Clinical MRI System. NeuroImage 2008, 41, 7–18. [Google Scholar] [CrossRef]
- Reese, T.G.; Benner, T.; Wang, R.; Feinberg, D.A.; Wedeen, V.J. Halving Imaging Time of Whole Brain Diffusion Spectrum Imaging and Diffusion Tractography Using Simultaneous Image Refocusing in EPI. J. Magn. Reson. Imaging JMRI 2009, 29, 517–522. [Google Scholar] [CrossRef]
- Yeh, C.H.; Cho, K.H.; Lin, H.C.; Wang, J.J.; Lin, C.P. Reduced Encoding Diffusion Spectrum Imaging Implemented with a Bi-Gaussian Model. IEEE Trans. Med. Imaging 2008, 27, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.W.; Chiang, W.Y.; Yeh, F.C.; Wedeen, V.J.; Tseng, W.Y. Diffusion Spectrum MRI Using Body-Centered-Cubic and Half-Sphere Sampling Schemes. J. Neurosci. Methods 2013, 212, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Merlet, S.; Gilbert, G.; Deriche, R.; Descoteaux, M. Comparison of Sampling Strategies and Sparsifying Transforms to Improve Compressed Sensing Diffusion Spectrum Imaging. Magn. Reson. Med. 2015, 73, 401–416. [Google Scholar] [CrossRef]
- Tobisch, A.; Stirnberg, R.; Harms, R.L.; Schultz, T.; Roebroeck, A.; Breteler, M.M.B.; Stöcker, T. Compressed Sensing Diffusion Spectrum Imaging for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging. Front. Neurosci. 2018, 12, 650. [Google Scholar] [CrossRef] [PubMed]
- Tobisch, A.; Schultz, T.; Stirnberg, R.; Varela-Mattatall, G.; Knutsson, H.; Irarrázaval, P.; Stöcker, T. Comparison of Basis Functions and Q-Space Sampling Schemes for Robust Compressed Sensing Reconstruction Accelerating Diffusion Spectrum Imaging. NMR Biomed. 2019, 32, e4055. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Maffei, C.; Augustinack, J.; Fischl, B.; Wang, H.; Bilgic, B.; Yendiki, A. High-Fidelity Approximation of Grid- and Shell-Based Sampling Schemes from Undersampled DSI Using Compressed Sensing: Post Mortem Validation. NeuroImage 2021, 244, 118621. [Google Scholar] [CrossRef]
- Radhakrishnan, H.; Zhao, C.; Sydnor, V.J.; Baller, E.B.; Cook, P.A.; Fair, D.; Giesbrecht, B.; Larsen, B.; Murtha, K.; Roalf, D.R.; et al. Establishing the Validity of Compressed Sensing Diffusion Spectrum Imaging. bioRxiv 2023, preprint. [Google Scholar] [CrossRef]
- Tournier, J.D.; Calamante, F.; Gadian, D.G.; Connelly, A. Direct Estimation of the Fiber Orientation Density Function from Diffusion-Weighted MRI Data Using Spherical Deconvolution. Neuroimage 2004, 23, 1176–1185. [Google Scholar] [CrossRef]
- Tournier, J.D.; Calamante, F.; Connelly, A. Robust Determination of the Fibre Orientation Distribution in Diffusion MRI: Non-Negativity Constrained Super-Resolved Spherical Deconvolution. Neuroimage 2007, 35, 1459–1472. [Google Scholar] [CrossRef] [PubMed]
- Tournier, J.D.; Yeh, C.H.; Calamante, F.; Cho, K.H.; Connelly, A.; Lin, C.P. Resolving Crossing Fibres Using Constrained Spherical Deconvolution: Validation Using Diffusion-Weighted Imaging Phantom Data. Neuroimage 2008, 42, 617–625. [Google Scholar] [CrossRef]
- Alimi, A.; Ussou, Y.; Jouk, P.-S.; Michalowicz, G.; Deriche, R. An Analytical Fiber ODF Reconstruction in 3D Polarized Light Imaging. Proceedings of 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1276–1279. [Google Scholar]
- Tsai, D.-C.; Chang, Y.-H.; Chow, C.-W.; Liu, Y.; Yeh, C.-H.; Peng, C.-W.; Hsu, L.-S. Optical Camera Communication (OCC) Using a Laser-Diode Coupled Optical-Diffusing Fiber (ODF) and Rolling Shutter Image Sensor. Opt. Express 2022, 30, 16069–16077. [Google Scholar] [CrossRef] [PubMed]
- Canales-Rodríguez, E.J.; Lin, C.P.; Iturria-Medina, Y.; Yeh, C.H.; Cho, K.H.; Melie-García, L. Diffusion Orientation Transform Revisited. NeuroImage 2010, 49, 1326–1339. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.-C.; Panesar, S.; Fernandes, D.; Meola, A.; Yoshino, M.; Fernandez-Miranda, J.C.; Vettel, J.M.; Verstynen, T. Population-Averaged Atlas of the Macroscale Human Structural Connectome and Its Network Topology. NeuroImage 2018, 178, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, L.M.; Sperl, J.I.; Menzel, M.I.; Sprenger, T.; Barker, G.J.; Dell’Acqua, F. Diffusion in Realistic Biophysical Systems Can Lead to Aliasing Effects in Diffusion Spectrum Imaging. Magn. Reson. Med. 2016, 76, 1837–1847. [Google Scholar] [CrossRef]
- Tian, Q.; Yang, G.; Leuze, C.; Rokem, A.; Edlow, B.L.; McNab, J.A. Generalized Diffusion Spectrum Magnetic Resonance Imaging (GDSI) for Model-Free Reconstruction of the Ensemble Average Propagator. NeuroImage 2019, 189, 497–515. [Google Scholar] [CrossRef]
- Gilbert, R.J.; Magnusson, L.H.; Napadow, V.J.; Benner, T.; Wang, R.; Wedeen, V.J. Mapping Complex Myoarchitecture in the Bovine Tongue with Diffusion-Spectrum Magnetic Resonance Imaging. Biophys. J. 2006, 91, 1014–1022. [Google Scholar] [CrossRef]
- Dai, G.; Das, A.; Hayashi, E.; Chen, Q.; Takahashi, E. Regional Variation of White Matter Development in the Cat Brain Revealed by Ex Vivo Diffusion MR Tractography. Int. J. Dev. Neurosci. 2016, 54, 32–38. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Pandya, D.N.; Wang, R.; Dai, G.; D’Arceuil, H.E.; de Crespigny, A.J.; Wedeen, V.J. Association Fibre Pathways of the Brain: Parallel Observations from Diffusion Spectrum Imaging and Autoradiography. Brain 2007, 130 Pt 3, 630–653. [Google Scholar] [CrossRef]
- Wedeen, V.J.; Rosene, D.L.; Wang, R.; Dai, G.; Mortazavi, F.; Hagmann, P.; Kaas, J.H.; Tseng, W.Y. The Geometric Structure of the Brain Fiber Pathways. Science 2012, 335, 1628–1634. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, D.; Wang, Y.; Wang, Y. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking. Front. Neuroanat. 2016, 10, 88. [Google Scholar] [CrossRef]
- Wang, X.; Pathak, S.; Stefaneanu, L.; Yeh, F.C.; Li, S.; Fernandez-Miranda, J.C. Subcomponents and Connectivity of the Superior Longitudinal Fasciculus in the Human Brain. Brain Struct. Funct. 2016, 221, 2075–2092. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, Y.; Cui, R.; Wu, C.; Li, X.; Bao, Y.; Wang, Y. Human Thalamic-Prefrontal Peduncle Connectivity Revealed by Diffusion Spectrum Imaging Fiber Tracking. Front Neuroanat. 2018, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Suo, X.; Guo, L.; Fu, D.; Ding, H.; Li, Y.; Qin, W. A Comparative Study of Diffusion Fiber Reconstruction Models for Pyramidal Tract Branches. Front. Neurosci. 2021, 15, 777377. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kinoshita, M.; Shinohara, H.; Hori, O.; Ozaki, N.; Nakada, M. A Fiber Dissection Study of the Anterior Commissure: Correlations with Diffusion Spectrum Imaging Tractography and Clinical Relevance in Gliomas. Brain Topogr. 2022, 35, 232–240. [Google Scholar] [CrossRef]
- Wei, P.H.; Mao, Z.Q.; Cong, F.; Wang, B.; Ling, Z.P.; Liang, S.L.; Yu, X.G. Connection between Bilateral Temporal Regions: Tractography Using Human Connectome Data and Diffusion Spectrum Imaging. J. Clin. Neurosci. 2017, 39, 103–108. [Google Scholar] [CrossRef]
- Sheets, J.R.; Briggs, R.G.; Dadario, N.B.; Young, I.M.; Bai, M.Y.; Poologaindran, A.; Baker, C.M.; Conner, A.K.; Sughrue, M.E. A Cortical Parcellation Based Analysis of Ventral Premotor Area Connectivity. Neurol. Res. 2021, 43, 595–607. [Google Scholar] [CrossRef]
- Sheets, J.R.; Briggs, R.G.; Bai, M.Y.; Poologaindran, A.; Young, I.M.; Conner, A.K.; Baker, C.M.; Glenn, C.A.; Sughrue, M.E. Parcellation-Based Modeling of the Dorsal Premotor Area. J. Neurol. Sci. 2020, 415, 116907. [Google Scholar] [CrossRef]
- Briggs, R.G.; Lin, Y.H.; Dadario, N.B.; Kim, S.J.; Young, I.M.; Bai, M.Y.; Dhanaraj, V.; Fonseka, R.D.; Hormovas, J.; Tanglay, O.; et al. Anatomy and White Matter Connections of the Middle Frontal Gyrus. World Neurosurg. 2021, 150, e520–e529. [Google Scholar] [CrossRef]
- Lin, Y.H.; Young, I.M.; Conner, A.K.; Glenn, C.A.; Chakraborty, A.R.; Nix, C.E.; Bai, M.Y.; Dhanaraj, V.; Fonseka, R.D.; Hormovas, J.; et al. Anatomy and White Matter Connections of the Inferior Temporal Gyrus. World Neurosurg. 2020, 143, e656–e666. [Google Scholar] [CrossRef]
- Shinohara, H.; Liu, X.; Nakajima, R.; Kinoshita, M.; Ozaki, N.; Hori, O.; Nakada, M. Pyramid-Shape Crossings and Intercrossing Fibers Are Key Elements for Construction of the Neural Network in the Superficial White Matter of the Human Cerebrum. Cereb. Cortex 2020, 30, 5218–5228. [Google Scholar] [CrossRef]
- Ou, S.Q.; Wei, P.H.; Fan, X.T.; Wang, Y.H.; Meng, F.; Li, M.Y.; Shan, Y.Z.; Zhao, G.G. Delineating the Decussating Dentato-Rubro-Thalamic Tract and Its Connections in Humans Using Diffusion Spectrum Imaging Techniques. Cerebellum 2022, 21, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.L.; Tseng, W.I.; Tseng, W.L.; Tung, Y.H.; Hsu, Y.C.; Chen, C.L.; Gau, S.S. Atypical Development in White Matter Microstructures in ADHD: A Longitudinal Diffusion Imaging Study. Asian J. Psychiatry 2023, 79, 103358. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.J.; Lin, H.Y.; Tseng, I.W.; Gau, S.S. White Matter Microstructural Integrity Correlates of Emotion Dysregulation in Children with ADHD: A Diffusion Imaging Tractography Study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 110, 110325. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Liu, C.M.; Hwang, T.J.; Chen, Y.J.; Hsu, Y.C.; Hwu, H.G.; Lin, Y.T.; Hsieh, M.H.; Liu, C.C.; Chien, Y.L.; et al. Shared and Distinct Alterations of White Matter Tracts in Remitted and Nonremitted Patients with Schizophrenia. Hum. Brain Mapp. 2018, 39, 2007–2019. [Google Scholar] [CrossRef]
- Salisbury, D.F.; Wang, Y.; Yeh, F.C.; Coffman, B.A. White Matter Microstructural Abnormalities in the Broca’s-Wernicke’s-Putamen “Hoffman Hallucination Circuit” and Auditory Transcallosal Fibers in First-Episode Psychosis With Auditory Hallucinations. Schizophr. Bull. 2020, 47, 149–159. [Google Scholar] [CrossRef]
- Salisbury, D.F.; Seebold, D.; Longenecker, J.M.; Coffman, B.A.; Yeh, F.C. White Matter Tracts Differentially Associated with Auditory Hallucinations in First-Episode Psychosis: A Correlational Tractography Diffusion Spectrum Imaging Study. Schizophr. Res. 2023, in press. [Google Scholar] [CrossRef]
- Hula, W.D.; Panesar, S.; Gravier, M.L.; Yeh, F.C.; Dresang, H.C.; Dickey, M.W.; Fernandez-Miranda, J.C. Structural White Matter Connectometry of Word Production in Aphasia: An Observational Study. Brain A J. Neurol. 2020, 143, 2532–2544. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Qin, W.; Ding, H.; Guo, J.; Han, T.; Cheng, J.; Yu, C. Corticospinal Fibers With Different Origins Impact Motor Outcome and Brain after Subcortical Stroke. Stroke 2020, 51, 2170–2178. [Google Scholar] [CrossRef]
- Wan, X.; Xiao, Y.; Liu, Z. Diffusion Spectrum Imaging of Patients with Middle Cerebral Artery Stenosis. NeuroImage Clin. 2022, 36, 103133. [Google Scholar] [CrossRef]
- Paul, T.; Wiemer, V.M.; Hensel, L.; Cieslak, M.; Tscherpel, C.; Grefkes, C.; Grafton, S.T.; Fink, G.R.; Volz, L.J. Interhemispheric Structural Connectivity Underlies Motor Recovery after Stroke. Ann. Neurol. 2023, 94, 785–797. [Google Scholar] [CrossRef]
- Wen, M.C.; Thiery, A.; Tseng, W.I.; Kok, T.; Xu, Z.; Chua, S.T.; Tan, L.C.S. Apathy Is Associated with White Matter Network Disruption and Specific Cognitive Deficits in Parkinson’s Disease. Psychol. Med. 2020, 52, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, P.; Rossi-mossuti, F.; Wiest, R.; Kiefer, C.; Zbinden, M.; Pollo, C. Characterisation of Dentatorubrothalamic Tract with Diffusion Spectrum Imaging in Patients Suffering from Parkinson’s Disease; Research Square: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
- Luo, D.H.; Tseng, W.I.; Chang, Y.L. White Matter Microstructure Disruptions Mediate the Adverse Relationships between Hypertension and Multiple Cognitive Functions in Cognitively Intact Older Adults. NeuroImage 2019, 197, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.C.; Lin, H.Y.; Tseng, W.I.; Gau, S.S. Association of Self-Regulation with White Matter Correlates in Boys with and without Autism Spectrum Disorder. Sci. Rep. 2020, 10, 13811. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Wang, Z.M.; Wei, P.H.; Lu, C.; Fan, X.T.; Ren, L.K.; Shan, Y.Z.; Lu, J.; Zhao, G.G. Lateralizing the Affected Side of Hippocampal Sclerosis with Quantitative High Angular Resolution Diffusion Scalars: A Preliminary Approach Validated by Diffusion Spectrum Imaging. Ann. Transl. Med. 2021, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Shibahara, I.; Saito, R.; Kanamori, M.; Sonoda, Y.; Sato, S.; Hide, T.; Tominaga, T.; Kumabe, T. Role of the Parietooccipital Fissure and Its Implications in the Pathophysiology of Posterior Medial Temporal Gliomas. J. Neurosurg. 2021, 137, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; He, W.J.; Liang, L.H.; Zhang, H.W.; Zhang, X.J.; Zeng, L.; Luo, S.P.; Lin, F.; Lei, Y. Diffusion Spectrum Imaging of Corticospinal Tracts in Idiopathic Normal Pressure Hydrocephalus. Front. Neurol. 2021, 12, 636518. [Google Scholar] [CrossRef]
- Wang, Z.M.; Wei, P.H.; Zhang, M.; Wu, C.; Shan, Y.; Yeh, F.C.; Shan, Y.; Lu, J. Diffusion Spectrum Imaging Predicts Hippocampal Sclerosis In Mesial Temporal Lobe Epilepsy Patients. Ann. Clin. Transl. Neurol. 2022, 9, 242–252. [Google Scholar] [CrossRef]
- Liang, L.; Lin, H.; Lin, F.; Yang, J.; Zhang, H.; Zeng, L.; Hu, Y.; Lan, W.; Zhong, H.; Zhang, H.; et al. Quantitative Visual Pathway Abnormalities Predict Visual Field Defects in Patients with Pituitary Adenomas: A Diffusion Spectrum Imaging Study. Eur. Radiol. 2021, 31, 8187–8196. [Google Scholar] [CrossRef]
- Mao, C.; Jiang, W.; Huang, J.; Wang, M.; Yan, X.; Yang, Z.; Wang, D.; Zhang, X.; Shen, J. Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer. Front. Oncol. 2022, 12, 817070. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, P.; Lu, C.; Wang, Z.; Fan, X.; Shan, Y.; Zhao, G. Assessing Structural Integrity of the Pyramidal Tracts with Diffusion Spectrum Imaging to Predict Postoperative Motor Function in Pediatric Epilepsy Patients with Hemispherectomy. Acta Epileptol. 2023, 5, 2. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Jia, X.; Guan, X.; Lyu, Y.; Yang, J.; Jiang, T. Imaging Parameters of the Ipsilateral Medial Geniculate Body May Predict Prognosis of Patients with Idiopathic Unilateral Sudden Sensorineural Hearing Loss on the Basis of Diffusion Spectrum Imaging. AJNR Am. J. Neuroradiol. 2021, 42, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.D.; Marshall, D.; Rosin, P.L.; Drage, N.; Richmond, S.; Jones, D.K. A Pitfall in the Reconstruction of Fibre ODFs Using Spherical Deconvolution of Diffusion MRI Data. NeuroImage 2013, 65, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.T.; Marinelli, L.; Sperl, J.I.; Menzel, M.I.; Hardy, C.J. Multi-Directional Anisotropy from Diffusion Orientation Distribution Functions. J. Magn. Reson. Imaging JMRI 2015, 41, 841–850. [Google Scholar] [CrossRef]
- Tang, M.; Oshinomi, K.; Ishizaka, K.; Tha, K.K.; Yamamoto, T. Dependence of Scan Parameters on Nerve Fiber Crossing Depiction in Diffusion Spectrum Imaging in Clinical Practice. J. Comput. Assist. Tomogr. 2018, 42, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Tristán-Vega, A.; Pieciak, T.; París, G.; Rodríguez-Galván, J.R.; Aja-Fernández, S. HYDI-DSI Revisited: Constrained Non-Parametric EAP Imaging without Q-Space Re-Gridding. Med. Image Anal. 2023, 84, 102728. [Google Scholar] [CrossRef]
First Author (Ref. #) | Type | Subject | Main Findings |
---|---|---|---|
Lin et al., 2003 [26]; Tefera et al., 2013 [28] | Methodology | Improvement in scanning scheme | Hemispherical or subsampled DSI data decreased the DSI acquisition time while preserving the patterns and orientations of the probability density function (PDF). |
Kuo et al., 2008 [30] | Methodology | Improvement in scanning scheme | Optimizing the bmax-value not only effectively decreased the scanning time but also yielded comparable angular precision and accuracy with high sampling schemes. |
Reese et al., 2009 [31] | Methodology | Improvement in scanning scheme | The modulated sequence, which modified the usual EPI acquisition using two windowed sinc(t) excitation RF pulses with different frequency offsets, reduced the total scan time by nearly one-half. |
Yeh et al., 2008 [32]; Kuo et al., 2013 [33] | Methodology | Improvement in scanning scheme | Two sampling schemes of reduced-encoding DSI and the body-centered-cubic both decreased the scanning time of DSI while maintaining the precision and accuracy of the orientation distribution function (ODF). |
Paquette et al., 2015 [34]; Tobisch et al., 2018, 2019 [35,36]; Jones et al., 2021 [37]; Radhakrishnan et al., 2023 [38] | Methodology | Improvement in scanning scheme | Compressed sensing (CS) accelerated DSI data acquisition while preserving essential information on diffusion properties. |
Tournier et al., 2004, 2007, 2008 [39,40,41]; Alimi et al., 2018 [42]; Tsai et al., 2022 [43] | Methodology | Optimization of postprocessing method | They assumed that all fiber bundles in the brain white matter share identical diffusion characteristics and found the fiber ODF might reflect more real fiber orientations than the diffusion ODF. |
Canales-Rodríguez et al., 2010 [44] | Methodology | Optimization of postprocessing method | This study argued that the PDF obtained from the experiments was the convolution between the true PDF and a point spread function (PSF). The angular resolution of the ODF was enhanced after deconvolution. |
Yeh et al., 2013, 2018 [3,45] | Methodology | Optimization of postprocessing method | The authors proposed a mixed diffusion model and a diffusion decomposition method to obtain a precise solution of fiber ODF. These methods provided a better resolution power for crossing fibers. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; Huang, Y.; Wang, J.; Hong, W.; Zhao, Z. Research Progress in Diffusion Spectrum Imaging. Brain Sci. 2023, 13, 1497. https://doi.org/10.3390/brainsci13101497
Sun F, Huang Y, Wang J, Hong W, Zhao Z. Research Progress in Diffusion Spectrum Imaging. Brain Sciences. 2023; 13(10):1497. https://doi.org/10.3390/brainsci13101497
Chicago/Turabian StyleSun, Fenfen, Yingwen Huang, Jingru Wang, Wenjun Hong, and Zhiyong Zhao. 2023. "Research Progress in Diffusion Spectrum Imaging" Brain Sciences 13, no. 10: 1497. https://doi.org/10.3390/brainsci13101497
APA StyleSun, F., Huang, Y., Wang, J., Hong, W., & Zhao, Z. (2023). Research Progress in Diffusion Spectrum Imaging. Brain Sciences, 13(10), 1497. https://doi.org/10.3390/brainsci13101497