Unraveling Spatial-Spectral Dynamics of Speech Categorization Speed Using Convolutional Neural Networks
Abstract
:1. Introduction
- 1.
- Data augmentation: To robustly model cognitive events from EEG data using deep learning (DL) tools, it is necessary to address two constraints of EEG datasets. The first is the issue of noise prevalence in EEG data and the second is the small sample size problem of EEG datasets. We have addressed these issues by adopting a data augmentation process [29] for generating event-related potentials (ERP) from EEG samples. The algorithm is designed to reduce noise as well as control the overall variance of the dataset for robust modeling.
- 2.
- Spatial-spectral representation: Bandpower features are one of the effective ways to capture spatial-spectral properties of EEG data. We extend the bandpower features to have an image representation, this is done so to include the specific location of the neural regions during modeling.
- 3.
- Large scale parameter optimized model: We used CNN to model the underlying spatial-spectral properties of RT. CNN is known for its effective spatial modeling and has proven performance in modeling cognitive events from EEG data. We deployed the Bayesian hyperparameter optimization algorithm, tree-structured Parzen Estimator (TPE) [30] to find the best configuration for our CNN model.
- 4.
- Model interpretation: To discover the spatial-spectral correlates of RT, we dive into the learned representation of the CNN models. Specifically, we combined high-resolution visual interpretation techniques like Guided-GradCAM [31] and statistical analysis to discover the underlying factors of RT.
2. Methodology
2.1. Participants
2.2. EEG Recording & Preprocessing
2.3. Clustering RTs
2.4. Bootstrap and Eigenspace Filtering
Algorithm 1 bootstrap () |
|
2.4.1. Category Specific Dropout
2.4.2. Eigenspace Filtering
2.5. Spatial-Spectral Representation
2.6. Modeling
2.7. Band Specific Class Activation Maps
2.8. Statistical Analysis
3. Results
3.1. Model Performance
3.2. ANOVA Results
3.3. Spectral Correlates of RT
4. Discussion
4.1. Effects of Neural Regions on Categorization Speed
4.2. Right Hemispheric Effect on Categorization Speed
4.3. Decoding Neural Function through Visual Interpretation
4.4. Limitations & Future Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liberman, A.; Cooper, F.; Shankweiler, D.; Studdert-Kennedy, M. Perception of the Speech Code. Psychol. Rev. 1967, 74, 431–461. [Google Scholar] [CrossRef]
- Eimas, P.D.; Siqueland, E.R.; Jusczyk, P.; Vigorito, J. Speech Perception in Infants. Science 1971, 171, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Bidelman, G.M.; Villafuerte, J.W.; Moreno, S.; Alain, C. Age-related changes in the subcortical–cortical encoding and categorical perception of speech. Neurobiol. Aging 2014, 35, 2526–2540. [Google Scholar] [CrossRef] [PubMed]
- Medina, V.; Serniclaes, W. Late development of the categorical perception of speech sounds in pre-adolescent children. ZAS Pap. Linguist. 2005, 42, 13–31. [Google Scholar] [CrossRef]
- Noordenbos, M.W.; Serniclaes, W. The Categorical Perception Deficit in Dyslexia: A Meta-Analysis. Sci. Stud. Read. 2015, 19, 340–359. [Google Scholar] [CrossRef]
- Blumstein, S.; Myers, E.; Rissman, J. The Perception of Voice Onset Time: An fMRI Investigation of Phonetic Category Structure. J. Cogn. Neurosci. 2005, 17, 1353–1366. [Google Scholar] [CrossRef] [Green Version]
- Liebenthal, E.; Binder, J.; Spitzer, S.; Possing, E.; Medler, D. Neural Substrates of Phonemic Perception. Cereb. Cortex 2005, 15, 1621–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, E.B.; Blumstein, S.E.; Walsh, E.; Eliassen, J. Inferior Frontal Regions Underlie the Perception of Phonetic Category Invariance. Psychol. Sci. 2009, 20, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Celsis, P.; Boulanouar, K.; Doyon, B.; Ranjeva, J.; Berry, I.; Nespoulous, J.; Chollet, F. Differential fMRI Responses in the Left Posterior Superior Temporal Gyrus and Left Supramarginal Gyrus to Habituation and Change Detection in Syllables and Tones. NeuroImage 1999, 9, 135–144. [Google Scholar] [CrossRef]
- Zevin, J.; Mccandliss, B. Dishabituation of the BOLD response to speech sounds. Behav. Brain Funct. BBF 2005, 1, 4. [Google Scholar] [CrossRef]
- Pisoni, D.; Tash, J. Reaction times to comparisons within and across phonetic categories. Percept. Psychophys. 1974, 15, 285–290. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, G.; McCloy, D.; Kubota, E.; Yeatman, J. Reading ability and phoneme categorization. Sci. Rep. 2018, 8, 16842. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.; Dogil, G.; Möbius, B. Reaction Time and Decision Difficulty in the Perception of Intonation. In Proceedings of the INTERSPEECH, Florence, Italy, 27–31 August 2011. [Google Scholar]
- Locke, S.; Kellar, L. Categorical Perception in a Non-Linguistic Mode. Cortex 1973, 9, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Wolmetz, M.; Poeppel, D.; Rapp, B. What does the right hemisphere know about phoneme categories? J. Cogn. Neurosci. 2010, 23, 552–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Chen, Y.; Yin, S.; Li, L.; Wang, R. The roles of pitch type and lexicality in the hemispheric lateralization for lexical tone processing: An ERP study. Int. J. Psychophysiol. 2022, 177, 83–91. [Google Scholar] [CrossRef]
- Luo, H.; Ni, J.T.; Li, Z.H.; Li, X.O.; Zhang, D.R.; Zeng, F.G.; Chen, L. Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants. Proc. Natl. Acad. Sci. USA 2006, 103, 19558–19563. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.D.; Wang, M.; Chen, L. Hemispheric lateralization for early auditory processing of lexical tones: Dependence on pitch level and pitch contour. Neuropsychologia 2013, 51, 2238–2244. [Google Scholar] [CrossRef]
- Mankel, K.; Shrestha, U.; Tipirneni-Sajja, A.; Bidelman, G.M. Functional Plasticity Coupled With Structural Predispositions in Auditory Cortex Shape Successful Music Category Learning. Front. Neurosci. 2022, 16, 7239. [Google Scholar] [CrossRef]
- Klein, M.E.; Zatorre, R.J. A role for the right superior temporal sulcus in categorical perception of musical chords. Neuropsychologia 2011, 49, 878–887. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef]
- Shahin, A.J.; Picton, T.W.; Miller, L.M. Brain oscillations during semantic evaluation of speech. Brain Cogn. 2009, 70, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraud, A.L.; Poeppel, D. Cortical oscillations and speech processing: Emerging computational principles and operations. Nat. Neurosci. 2012, 15, 511–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haenschel, C.; Baldeweg, T.; Croft, R.J.; Whittington, M.; Gruzelier, J. Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. Proc. Natl. Acad. Sci. USA 2000, 97, 7645–7650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, X.; Zhou, W.; Hong, B. Cooperative cortical network for categorical processing of Chinese lexical tone. Proc. Natl. Acad. Sci. USA 2017, 114, 12303–12308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidelman, G.M.; Walker, B.S. Attentional modulation and domain-specificity underlying the neural organization of auditory categorical perception. Eur. J. Neurosci. 2017, 45, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Mankel, K.; Barber, J.; Bidelman, G. Auditory categorical processing for speech is modulated by inherent musical listening skills. Neuroreport 2019, 31, 162. [Google Scholar] [CrossRef]
- Bidelman, G.M.; Bush, L.C.; Boudreaux, A.M. Effects of Noise on the Behavioral and Neural Categorization of Speech. Front. Neurosci. 2020, 14, 153. [Google Scholar] [CrossRef]
- Havugimana, F.; Muhammad, M.B.; Moinudin, K.A.; Yeasin, M. Predicting Cognitive Load using Parameter-optimized CNN from Spatial-Spectral Representation of EEG Recordings. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Virtual, 13–16 December 2021; pp. 710–715. [Google Scholar] [CrossRef]
- Bergstra, J.S.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Advances in Neural Information Processing Systems 24; Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; pp. 2546–2554. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef] [Green Version]
- Al-Fahad, R.; Yeasin, M.; Bidelman, G.M. Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions. J. Neural Eng. 2020, 17, 016045. [Google Scholar] [CrossRef]
- Bashivan, P.; Rish, I.; Yeasin, M.; Codella, C.F.N. Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks. arXiv 2015, arXiv:1511.06448. [Google Scholar]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L.; et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef] [Green Version]
- Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-Based Optimization for General Algorithm Configuration. In Proceedings of the Learning and Intelligent Optimization, Rome, Italy, 17–21 January 2011; Coello, C.A.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 507–523. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Keras. 2015. Available online: https://github.com/keras-team/keras (accessed on 1 October 2020).
- Bergstra, J.; Yamins, D.; Cox, D.D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; pp. I-115–I-123. [Google Scholar]
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 818–833. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bidelman, G.M.; Walker, B. Plasticity in auditory categorization is supported by differential engagement of the auditory-linguistic network. NeuroImage 2019, 201, 116022. [Google Scholar] [CrossRef] [PubMed]
- Bidelman, G.M.; Lee, C.C. Effects of language experience and stimulus context on the neural organization and categorical perception of speech. NeuroImage 2015, 120, 191–200. [Google Scholar] [CrossRef]
- Alho, J.; Green, B.M.; May, P.J.; Sams, M.; Tiitinen, H.; Rauschecker, J.P.; Jääskeläinen, I.P. Early-latency categorical speech sound representations in the left inferior frontal gyrus. NeuroImage 2016, 129, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijevic, A.; Smith, M.; Kadis, D.; Moore, D. Neural indices of listening effort in noisy environments. Sci. Rep. 2019, 9, 11278. [Google Scholar] [CrossRef] [Green Version]
- Möttönen, R.; Watkins, K.E. Motor Representations of Articulators Contribute to Categorical Perception of Speech Sounds. J. Neurosci. 2009, 29, 9819–9825. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.K.; Johnsrude, I.S. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 2003, 26, 100–107. [Google Scholar] [CrossRef]
- Davis, M.H.; Johnsrude, I.S. Hearing speech sounds: Top-down influences on the interface between audition and speech perception. Hear. Res. 2007, 229, 132–147. [Google Scholar] [CrossRef]
- Liégeois-Chauvel, C.; de Graaf, J.B.; Laguitton, V.; Chauvel, P. Specialization of Left Auditory Cortex for Speech Perception in Man Depends on Temporal Coding. Cereb. Cortex 1999, 9, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.F.; Wilson, S.M. Categorical Encoding of Vowels in Primary Auditory Cortex. Cereb. Cortex 2019, 30, 618–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, J.R.; Liebenthal, E.; Possing, E.T.; Medler, D.A.; Ward, B.D. Neural correlates of sensory and decision processes in auditory object identification. Nat. Neurosci. 2004, 7, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, J.D.E.; Poldrack, R.A.; Desmond, J.E. The role of left prefrontal cortex in language and memory. Proc. Natl. Acad. Sci. USA 1998, 95, 906–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampshire, A.; Chamberlain, S.; Monti, M.; Duncan, J.; Owen, A. The role of the right inferior frontal gyrus: Inhibition and attentional control. Neuroimage 2010, 50, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Poeppel, D.; Guillemin, A.; Thompson, J.; Fritz, J.; Bavelier, D.; Braun, A.R. Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex. Neuropsychologia 2004, 42, 183–200. [Google Scholar] [CrossRef] [Green Version]
- Schaum, M.; Pinzuti, E.; Sebastian, A.; Lieb, K.; Fries, P.; Mobascher, A.; Jung, P.; Wibral, M.; Tüscher, O. Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans. eLife 2021, 10, e61679. [Google Scholar] [CrossRef]
- Picazio, S.; Veniero, D.; Ponzo, V.; Caltagirone, C.; Gross, J.; Thut, G.; Koch, G. Prefrontal Control over Motor Cortex Cycles at Beta Frequency during Movement Inhibition. Curr. Biol. 2014, 24, 2940–2945. [Google Scholar] [CrossRef] [Green Version]
- Barbey, A.; Koenigs, M.; Grafman, J. Dorsolateral Prefrontal Contributions to Human Working Memory. Cortex 2012, 49, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Parbery-Clark, A.; Skoe, E.; Lam, C.; Kraus, N. Musician Enhancement for Speech-In-Noise. Ear Hear. 2009, 30, 653–661. [Google Scholar] [CrossRef]
- Mariën, P.; Ackermann, H.; Adamaszek, M.; Barwood, C.; Beaton, A.; Desmond, J.; De Witte, E.; Fawcett, A.; Hertrich, I.; Küper, M.; et al. Consensus Paper: Language and the Cerebellum: An Ongoing Enigma. Cerebellum 2013, 13, 386–410. [Google Scholar] [CrossRef] [PubMed]
- Ivry, R.; Fiez, J. Cerebellar contributions to cognition and imagery. New Cogn. Neurosci. 2000, 2, 999–1011. [Google Scholar]
- Ackermann, H. Cerebellar contributions to speech production and speech perception: Psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008, 31, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Hertrich, I.; Mathiak, K.; Ackermann, H. Chapter 2—The Role of the Cerebellum in Speech Perception and Language Comprehension. In The Linguistic Cerebellum; Mariën, P., Manto, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 33–50. [Google Scholar] [CrossRef]
- Herrojo Ruiz, M.; Maess, B.; Altenmüller, E.; Curio, G.; Nikulin, V. Cingulate and Cerebellar Beta Oscillations are Engaged in the Acquisition of Auditory-Motor Sequences. Hum. Brain Mapp. 2017, 38, 5161–5179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craik, A.; He, Y.; Contreras-Vidal, J. Deep learning for Electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef] [PubMed]
- Hajinoroozi, M.; Mao, Z.; Jung, T.P.; Lin, C.T.; Huang, Y. EEG-based prediction of driver’s cognitive performance by deep convolutional neural network. Signal Process. Image Commun. 2016, 47, 549–555. [Google Scholar] [CrossRef]
- Hosseini, M.; Pompili, D.; Elisevich, K.; Soltanian-Zadeh, H. Optimized Deep Learning for EEG Big Data and Seizure Prediction BCI via Internet of Things. IEEE Trans. Big Data 2017, 3, 392–404. [Google Scholar] [CrossRef]
- Hosseini, M.; Soltanian-Zadeh, H.; Elisevich, K.; Pompili, D. Cloud-based deep learning of big EEG data for epileptic seizure prediction. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; pp. 1151–1155. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.; Alsulaiman, M.; Muhammad, G.; Amine, M.; Hossain, M.S. Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Future Gener. Comput. Syst. 2019, 101, 542–554. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Sun, S. Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik 2017, 130, 11–18. [Google Scholar] [CrossRef]
- Olivas-Padilla, B.E.; Chacon-Murguia, M.I. Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl. Soft Comput. 2019, 75, 461–472. [Google Scholar] [CrossRef]
- Dai, M.; Zheng, D.; Na, R.; Wang, S.; Zhang, S. EEG Classification of Motor Imagery Using a Novel Deep Learning Framework. Sensors 2019, 19, 551. [Google Scholar] [CrossRef] [Green Version]
- Rezaeitabar, Y.; Halici, U. A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 2017, 14, 016003. [Google Scholar] [CrossRef]
- Chambon, S.; Galtier, M.N.; Arnal, P.J.; Wainrib, G.; Gramfort, A. A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 758–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haro, S.; Smalt, C.J.; Ciccarelli, G.A.; Quatieri, T.F. Deep Neural Network Model of Hearing-Impaired Speech-in-Noise Perception. Front. Neurosci. 2020, 14, 8448. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulos, F.; Baby, D.; Verhulst, S. A convolutional neural-network framework for modelling auditory sensory cells and synapses. Commun. Biol. 2021, 4, 827. [Google Scholar] [CrossRef]
- Xu, J.; Shi, J.; Liu, G.; Chen, X.; Xu, B. Modeling Attention and Memory for Auditory Selection in a Cocktail Party Environment. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–3 February 2018; Volume 32. [Google Scholar] [CrossRef]
- Bidelman, G.; Mahmud, M.S.; Yeasin, M.; Shen, D.; Arnott, S.; Alain, C. Age-related hearing loss increases full-brain connectivity while reversing directed signaling within the dorsal–ventral pathway for speech. Brain Struct. Funct. 2019, 224, 2661–2676. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar] [CrossRef] [Green Version]
- Mopuri, K.R.; Garg, U.; Venkatesh Babu, R. CNN Fixations: An Unraveling Approach to Visualize the Discriminative Image Regions. IEEE Trans. Image Process. 2019, 28, 2116–2125. [Google Scholar] [CrossRef]
- Muhammad, M.B.; Yeasin, M. Eigen-CAM: Class Activation Map using Principal Components. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Jonas, S.; Rossetti, A.O.; Oddo, M.; Jenni, S.; Favaro, P.; Zubler, F. EEG-based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features. Hum. Brain Mapp. 2019, 40, 4606–4617. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wu, S.; Zhang, W.; Xu, Z.; Zhang, Y.; Wu, C.; Coleman, S. Emotion recognition with convolutional neural network and EEG-based EFDMs. Neuropsychologia 2020, 146, 107506. [Google Scholar] [CrossRef]
- Chen, H.; Song, Y.; Li, X. Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD. J. Neural Eng. 2019, 16, 066046. [Google Scholar] [CrossRef] [PubMed]
- Aslan, Z.; Akin, M. Automatic Detection of Schizophrenia by Applying Deep Learning over Spectrogram Images of EEG Signals. Trait. Signal 2020, 37, 235–244. [Google Scholar] [CrossRef]
- Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B. Sanity Checks for Saliency Maps; Curran Associates Inc.: Red Hook, NY, USA, 2018. [Google Scholar]
- Springenberg, J.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. In Proceedings of the ICLR (Workshop Track), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Precision | Recall | F1-Score | |
---|---|---|---|
slow | 0.73 | 0.66 | 0.69 |
fast | 0.71 | 0.79 | 0.75 |
med | 0.69 | 0.64 | 0.66 |
macro avg | 0.71 | 0.70 | 0.70 |
weighted avg | 0.71 | 0.71 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moinuddin, K.A.; Havugimana, F.; Al-Fahad, R.; Bidelman, G.M.; Yeasin, M. Unraveling Spatial-Spectral Dynamics of Speech Categorization Speed Using Convolutional Neural Networks. Brain Sci. 2023, 13, 75. https://doi.org/10.3390/brainsci13010075
Moinuddin KA, Havugimana F, Al-Fahad R, Bidelman GM, Yeasin M. Unraveling Spatial-Spectral Dynamics of Speech Categorization Speed Using Convolutional Neural Networks. Brain Sciences. 2023; 13(1):75. https://doi.org/10.3390/brainsci13010075
Chicago/Turabian StyleMoinuddin, Kazi Ashraf, Felix Havugimana, Rakib Al-Fahad, Gavin M. Bidelman, and Mohammed Yeasin. 2023. "Unraveling Spatial-Spectral Dynamics of Speech Categorization Speed Using Convolutional Neural Networks" Brain Sciences 13, no. 1: 75. https://doi.org/10.3390/brainsci13010075
APA StyleMoinuddin, K. A., Havugimana, F., Al-Fahad, R., Bidelman, G. M., & Yeasin, M. (2023). Unraveling Spatial-Spectral Dynamics of Speech Categorization Speed Using Convolutional Neural Networks. Brain Sciences, 13(1), 75. https://doi.org/10.3390/brainsci13010075