Cerebral Metabolic Rate of Glucose and Cognitive Tests in Long COVID Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Recruitment
2.2. Procedures
2.3. Cognitive Test Battery
2.4. PET Scanning
2.5. PET Analyses
2.6. Statistical Analyses
3. Results
Participant Characteristics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guedj, E.; Campion, J.Y.; Dudouet, P.; Kaphan, E.; Bregeon, F.; Tissot-Dupont, H.; Guis, S.; Barthelemy, F.; Habert, P.; Ceccaldi, M.; et al. (18)F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2823–2833. [Google Scholar] [CrossRef] [PubMed]
- Bliddal, S.; Banasik, K.; Pedersen, O.B.; Nissen, J.; Cantwell, L.; Schwinn, M.; Tulstrup, M.; Westergaard, D.; Ullum, H.; Brunak, S.; et al. Acute and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci. Rep. 2021, 11, 13153. [Google Scholar] [CrossRef] [PubMed]
- Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, S.; Sattler, S.M.; Miskowiak, K.W.; Kunalan, K.; Victor, A.; Pedersen, L.; Andreassen, H.F.; Jorgensen, B.J.; Heeboll, H.; Andersen, M.B.; et al. Descriptive analysis of long COVID sequelae identified in a multidisciplinary clinic serving hospitalised and non-hospitalised patients. ERJ Open Res. 2021, 7, 00205–02021. [Google Scholar] [CrossRef]
- Verger, A.; Kas, A.; Dudouet, P.; Goehringer, F.; Salmon-Ceron, D.; Guedj, E. Visual interpretation of brain hypometabolism related to neurological long COVID: A French multicentric experience. Eur. J. Nucl. Med. Mol Imaging 2022, 49, 3197–3202. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J.; et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 2020, 15, e0240784. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Miskowiak, K.W.; Johnsen, S.; Sattler, S.M.; Nielsen, S.; Kunalan, K.; Rungby, J.; Lapperre, T.; Porsberg, C.M. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021, 46, 39–48. [Google Scholar] [CrossRef]
- Du, M.; Ma, Y.; Deng, J.; Liu, M.; Liu, J. Comparison of Long COVID-19 Caused by Different SARS-CoV-2 Strains: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16010. [Google Scholar] [CrossRef]
- Notarte, K.I.; Catahay, J.A.; Velasco, J.V.; Pastrana, A.; Ver, A.T.; Pangilinan, F.C.; Peligro, P.J.; Casimiro, M.; Guerrero, J.J.; Gellaco, M.M.L.; et al. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. EClinicalMedicine 2022, 53, 101624. [Google Scholar] [CrossRef]
- Nersesjan, V.; Fonsmark, L.; Christensen, R.H.B.; Amiri, M.; Merie, C.; Lebech, A.M.; Katzenstein, T.; Bang, L.E.; Kjaergaard, J.; Kondziella, D.; et al. Neuropsychiatric and Cognitive Outcomes in Patients 6 Months After COVID-19 Requiring Hospitalization Compared With Matched Control Patients Hospitalized for Non-COVID-19 Illness. JAMA Psychiatry 2022, 79, 486–497. [Google Scholar] [CrossRef]
- Aiello, E.N.; Radici, A.; Mora, G.; Pain, D. Cognitive phenotyping of post-infectious SARS-CoV-2 patients. Neurol. Sci. 2022, 43, 4599–4604. [Google Scholar] [CrossRef]
- Bertuccelli, M.; Ciringione, L.; Rubega, M.; Bisiacchi, P.; Masiero, S.; Del Felice, A. Cognitive impairment in people with previous COVID-19 infection: A scoping review. Cortex 2022, 154, 212–230. [Google Scholar] [CrossRef]
- Biagianti, B.; Di Liberto, A.; Nicolo Edoardo, A.; Lisi, I.; Nobilia, L.; de Ferrabonc, G.D.; Zanier, E.R.; Stocchetti, N.; Brambilla, P. Cognitive Assessment in SARS-CoV-2 Patients: A Systematic Review. Front. Aging Neurosci. 2022, 14, 909661. [Google Scholar] [CrossRef]
- Trotta, A.; Murray, R.; MacCabe, J. Do premorbid and post-onset cognitive functioning differ between schizophrenia and bipolar disorder? A systematic review and meta-analysis. Psychol. Med. 2015, 45, 381–394. [Google Scholar] [CrossRef]
- Poletti, S.; Palladini, M.; Mazza, M.G.; De Lorenzo, R.; group, C.-B.O.C.S.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Long-term consequences of COVID-19 on cognitive functioning up to 6 months after discharge: Role of depression and impact on quality of life. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 773–782. [Google Scholar] [CrossRef]
- Miskowiak, K.W.; Fugledalen, L.; Jespersen, A.E.; Sattler, S.M.; Podlekareva, D.; Rungby, J.; Porsberg, C.M.; Johnsen, S. Trajectory of cognitive impairments over 1 year after COVID-19 hospitalisation: Pattern, severity, and functional implications. Eur. Neuropsychopharmacol. 2022, 59, 82–92. [Google Scholar] [CrossRef]
- Guedj, E.; Morbelli, S.; Kaphan, E.; Campion, J.-Y.; Dudouet, P.; Ceccaldi, M.; Cammilleri, S.; Nobili, F.; Eldin, C. From early limbic inflammation to long COVID sequelae. Brain 2021, 144, e65. [Google Scholar] [CrossRef]
- Guedj, E.; Million, M.; Dudouet, P.; Tissot-Dupont, H.; Bregeon, F.; Cammilleri, S.; Raoult, D. (18)F-FDG brain PET hypometabolism in post-SARS-CoV-2 infection: Substrate for persistent/delayed disorders? Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 592–595. [Google Scholar] [CrossRef]
- Guedj, E.; Verger, A.; Cammilleri, S. PET imaging of COVID-19: The target and the number. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1636–1637. [Google Scholar] [CrossRef] [PubMed]
- Morbelli, S.; Ekmekcioglu, O.; Barthel, H.; Albert, N.L.; Boellaard, R.; Cecchin, D.; Guedj, E.; Lammertsma, A.A.; Law, I.; Penuelas, I.; et al. COVID-19 and the brain: Impact on nuclear medicine in neurology. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2487–2492. [Google Scholar] [CrossRef] [PubMed]
- Kas, A.; Soret, M.; Pyatigoskaya, N.; Habert, M.O.; Hesters, A.; Le Guennec, L.; Paccoud, O.; Bombois, S.; Delorme, C. The cerebral network of COVID-19-related encephalopathy: A longitudinal voxel-based 18F-FDG-PET study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2543–2557. [Google Scholar] [CrossRef]
- Sollini, M.; Morbelli, S.; Ciccarelli, M.; Cecconi, M.; Aghemo, A.; Morelli, P.; Chiola, S.; Gelardi, F.; Chiti, A. Long COVID hallmarks on [18F]FDG-PET/CT: A case-control study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3187–3197. [Google Scholar] [CrossRef] [PubMed]
- Dressing, A.; Bormann, T.; Blazhenets, G.; Schroeter, N.; Walter, L.I.; Thurow, J.; August, D.; Hilger, H.; Stete, K.; Gerstacker, K.; et al. Neuropsychologic Profiles and Cerebral Glucose Metabolism in Neurocognitive Long COVID Syndrome. J. Nucl. Med. 2022, 63, 1058–1063. [Google Scholar] [CrossRef]
- Broadbent, D.E.; Cooper, P.F.; FitzGerald, P.; Parkes, K.R. The Cognitive Failures Questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 1982, 21, 1–16. [Google Scholar] [CrossRef]
- Lloyd, A.; Pickard, A.S. The EQ-5D and the EuroQol Group. Value Health 2019, 22, 21–22. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G. Manual for Beck Depression Inventory-II; Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- Jensen, J.H.; Stottrup, M.M.; Nayberg, E.; Knorr, U.; Ullum, H.; Purdon, S.E.; Kessing, L.V.; Miskowiak, K.W. Optimising screening for cognitive dysfunction in bipolar disorder: Validation and evaluation of objective and subjective tools. J. Affect. Disord. 2015, 187, 10–19. [Google Scholar] [CrossRef]
- Ott, C.V.; Knorr, U.; Jespersen, A.; Obenhausen, K.; Roen, I.; Purdon, S.E.; Kessing, L.V.; Miskowiak, K.W. Norms for the Screen for Cognitive Impairment in Psychiatry and cognitive trajectories in bipolar disorder. J. Affect. Disord. 2021, 281, 33–40. [Google Scholar] [CrossRef]
- Army Individual Test Battery. In Manual of Directions and Scoring; War Department, Adjutant General’s Office: Washington, DC, USA, 1944.
- corwin, J. On measuring discrimination and response bias: Unequal numbers of targets and distractors and two classes of distractors. Neuropsychology 1994, 8, 110–117. [Google Scholar] [CrossRef]
- Rey, A. L'examen Clinique en Psychologie. [The Clinical Examination in Psychology]; Presses Universitaries De France: Oxford, UK, 1958. [Google Scholar]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [Google Scholar] [CrossRef]
- Wechsler, D. WAIS-III: Administration and Scoring Manual: Wechsler Adult Intelligence Scale; Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Harmer, C.J.; Shelley, N.C.; Cowen, P.J.; Goodwin, G.M. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am. J. Psychiatry. 2004, 161, 1256–1263. [Google Scholar] [CrossRef]
- Borkowski, J.G.; Benton, A.L.; Spreen, O. Word fluency and brain damage. Neuropsychologia 1967, 5, 135–140. [Google Scholar] [CrossRef]
- Nelson, H.E.; O’Connell, A. Dementia: The estimation of premorbid intelligence levels using the New adult reading test. Cortex 1978, 14, 234–244. [Google Scholar] [CrossRef]
- Henriksen, A.C.; Lonsdale, M.N.; Fuglo, D.; Kondziella, D.; Nersesjan, V.; Marner, L. Non-invasive quantification of cerebral glucose metabolism using Gjedde-Patlak plot and image-derived input function from the aorta. Neuroimage 2022, 253, 119079. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Kessing, L.V.; Munkholm, K.; Faurholt-Jepsen, M.; Miskowiak, K.W.; Nielsen, L.B.; Frikke-Schmidt, R.; Ekstrom, C.; Winther, O.; Pedersen, B.K.; Poulsen, H.E.; et al. The Bipolar Illness Onset study: Research protocol for the BIO cohort study. BMJ Open 2017, 7, e015462. [Google Scholar] [CrossRef] [Green Version]
- Schmahmann, J.D. The cerebellum and cognition. Neurosci. Lett. 2019, 688, 62–75. [Google Scholar] [CrossRef]
- Koziol, L.F.; Budding, D.; Andreasen, N.; D'Arrigo, S.; Bulgheroni, S.; Imamizu, H.; Ito, M.; Manto, M.; Marvel, C.; Parker, K.; et al. Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum 2014, 13, 151–177. [Google Scholar] [CrossRef]
- Jacobi, H.; Faber, J.; Timmann, D.; Klockgether, T. Update cerebellum and cognition. J. Neurol. 2021, 268, 3921–3925. [Google Scholar] [CrossRef] [PubMed]
- Miskowiak, K.W.; Petersen, C.S. Neuronal underpinnings of cognitive impairment and—Improvement in mood disorders. CNS Spectr. 2019, 24, 30–53. [Google Scholar] [CrossRef] [Green Version]
- Mazza, M.G.; Palladini, M.; De Lorenzo, R.; Magnaghi, C.; Poletti, S.; Furlan, R.; Ciceri, F.; group, C.-B.O.C.S.; Rovere-Querini, P.; Benedetti, F. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav. Immun. 2021, 94, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M. COVID and the brain: Researchers zero in on how damage occurs. Nature 2021, 595, 484–485. [Google Scholar] [CrossRef] [PubMed]
- Duindam, H.B.; Kessels, R.P.C.; van den Borst, B.; Pickkers, P.; Abdo, W.F. Long-term cognitive performance and its relation to anti-inflammatory therapy in a cohort of survivors of severe COVID-19. Brain Behav. Immun. Health 2022, 25, 100513. [Google Scholar] [CrossRef]
- Putilina, M.V.; Grishin, D.V. SARS-CoV-2 (COVID-19) as a Predictor of Neuroinflammation and Neurodegeneration: Potential Treatment Strategies. Neurosci. Behav. Physiol. 2021, 51, 577–582. [Google Scholar] [CrossRef]
- Mas, M.; Garcia-Vicente, J.A.; Estrada-Gelonch, A.; Perez-Mana, C.; Papaseit, E.; Torrens, M.; Farre, M. Antidepressant Drugs and COVID-19: A Review of Basic and Clinical Evidence. J. Clin. Med. 2022, 11, 4038. [Google Scholar] [CrossRef]
Impaired (n = 8) | Intact (n = 6) | p-Value | |
---|---|---|---|
Age (mean ± SD) | 54 ± 15 | 56 ± 13 | 0.82 |
Sex (Women; n (%)) | 5 (63%) | 3 (50%) | 0.67 |
Education (mean ± SD) | 13 ± 3 | 17 ± 3 | 0.10 |
Estimated verbal IQ (DART, mean ± SD) | 112 ± 2 | 112 ± 8 | 0.95 |
Days between tests (mean ± SD) | 41 ± 26 | 63 ± 17 | 0.11 |
Days from infection to PET-scan (mean ± SD) | 210 ± 35 | 329 ± 152 | 0.09 |
Hospitalization (Yes; n (%)) | 4 (57%) | 1 (17%) | 0.16 |
Depression rating (BDI, mean ± SD) | 14 ± 7 | 11 ± 6 | 0.38 |
Quality of life (EQ-5D, mean ± SD) | 5 ± 4 | 6 ± 4 | 0.63 |
BMI (mean ± SD) | 27 ± 4 | 26 ± 3 | 0.55 |
Self-reported Cognitive Distortions (CFQ, mean ± SD) | 37 ± 10 | 44 ± 15 | 0.38 |
Comorbid conditions (CCI, mean ± SD) | 2.6 ± 1.7 | 3.8 ± 4.3 | 0.60 |
Impaired (n = 8) | Intact (n = 6) | p-Value | |
---|---|---|---|
Hippocampus (mean ± SD) | 16.44 ± 2.65 | 14.08 ± 1.83 | 0.09 |
Amygdala (mean ± SD) | 17.19 ± 3.31 | 14.58 ± 1.43 | 0.10 |
Thalamus (mean ± SD) | 27.44 ± 5.99 | 23.17 ± 4.05 | 0.16 |
Superior Frontal Gyrus (mean ± SD) | 32.25 ± 7.09 | 28.67 ± 4.65 | 0.31 |
Superior Temporal Pole (mean ± SD) | 20.19 ± 3.90 | 16.92 ± 2.52 | 0.10 |
Gyrus Rectus (mean ± SD) | 28.13 ± 5.62 | 24.67 ± 3.01 | 0.19 |
Pons (mean ± SD) | 17.63 ± 2.67 | 16.33 ± 5.39 | 0.56 |
Cerebellum (mean ± SD) | 22.88 ± 4.45 | 18.33 ± 1.37 | 0.03 * |
Vermis (mean ± SD) | 24.25 ± 4.53 | 20.67 ± 3.14 | 0.12 |
Impaired (n = 8) | Intact (n = 6) | Norm (SCIP) | p-Value Impaired vs. Intact Intact vs. Norm Impaired vs. Norm All COVID vs. Norm | |
---|---|---|---|---|
SCIP total score (mean ± SD) | 62 ± 6 | 79 ± 5 | 76 ± 4 | 0.001 |
0.30 | ||||
0.001 | ||||
0.06 | ||||
SCIP 1 (Verbal Learning, mean ± SD) | 17.8 ± 3.3 | 22.7 ± 1.8 | 22.4 ± 1.1 | 0.009 |
0.66 | ||||
0.001 | ||||
0.06 | ||||
SCIP 2 (Working Memory, mean ± SD) | 16.7 ± 5.0 | 21.0 ± 1.4 | 19.9 ± 0.7 | 0.07 |
0.04 | ||||
0.04 | ||||
0.39 | ||||
SCIP 3 (Verbal Fluency, mean ± SD) | 10.2 ± 3.7 | 17.3 ± 2.3 | 16.3 ± 1.2 | 0.002 |
0.24 | ||||
0.001 | ||||
0.08 | ||||
SCIP 4 (Verbal Recall, mean ± SD) | 7.0 ± 1.4 | 7.5 ± 2.1 | 7.2 ± 0.7 | 0.64 |
0.64 | ||||
0.70 | ||||
0.91 | ||||
SCIP 5 (Psychomotor Speed, mean ± SD) | 10.0 ± 2.1 | 10.0 ± 1.7 | 10.4 ± 1.2 | 1 |
0.58 | ||||
0.31 | ||||
0.54 | ||||
Trail Making B score (s) (mean ± SD) | 113 ± 25 | 89 ± 31 | 79 ± 16 | 0.16 |
0.40 | ||||
0.003 0.04 |
Cognitive Domains Based on Neuropsychological Test Battery (Mean ± SD) | Impaired (n = 8) | Intact (n = 6) | p-Value |
---|---|---|---|
Global composite (mean ± SD) | −0.72 ± 0.57 | −0.39 ± 0.29 | 0.22 |
Working memory and executive function (mean ± SD) | −0.72 ± 0.61 | −0.04 ± 0.30 | 0.03 * |
Verbal learning memory (mean ± SD) | 0.07 ± 0.75 | 0.26 ± 0.54 | 0.67 |
Attention (mean ± SD) | −0.58 ± 0.80 | −0.58 ± 1.31 | 1 |
Psychomotor speed (mean ± SD) | −2.11 ± 1.56 | −1.18 ± 1.17 | 0.25 |
Facial Expression Recognition (mean ± SD) | −0.07 ± 0.68 | 0.12 ± 0.45 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miskowiak, K.W.; Bech, J.L.; Henriksen, A.C.; Johnsen, S.; Podlekareva, D.; Marner, L. Cerebral Metabolic Rate of Glucose and Cognitive Tests in Long COVID Patients. Brain Sci. 2023, 13, 23. https://doi.org/10.3390/brainsci13010023
Miskowiak KW, Bech JL, Henriksen AC, Johnsen S, Podlekareva D, Marner L. Cerebral Metabolic Rate of Glucose and Cognitive Tests in Long COVID Patients. Brain Sciences. 2023; 13(1):23. https://doi.org/10.3390/brainsci13010023
Chicago/Turabian StyleMiskowiak, Kamilla W., Johanne L. Bech, Alexander Cuculiza Henriksen, Stine Johnsen, Daria Podlekareva, and Lisbeth Marner. 2023. "Cerebral Metabolic Rate of Glucose and Cognitive Tests in Long COVID Patients" Brain Sciences 13, no. 1: 23. https://doi.org/10.3390/brainsci13010023
APA StyleMiskowiak, K. W., Bech, J. L., Henriksen, A. C., Johnsen, S., Podlekareva, D., & Marner, L. (2023). Cerebral Metabolic Rate of Glucose and Cognitive Tests in Long COVID Patients. Brain Sciences, 13(1), 23. https://doi.org/10.3390/brainsci13010023