Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender
Abstract
:1. Introduction
2. Regulation of the Hypothalamic-Pituitary-Adrenal Axis in Stress Reactions
3. Neurobiological Mechanisms Underlying Sex-Related Differences in Stress-Related Disorders
3.1. Assessment of Behavior Related to Anxiety and Depression in Experimental Animals
3.2. Model of Chronic Mild Unpredictable Stress (CMUS)
Behavioral and Metabolic Changes Induced by Chronic Stress in Experimental Animals
4. Influence of Stress on Developing Addiction
4.1. Nicotine—A Highly Addictive Substance
4.1.1. Sex Differences in Nicotine Dependency and Depressive Tendency among Smokers
4.1.2. The Development of Nicotine Addiction in Men vs. Women
4.2. Sex Differences in the Nicotinic Acetylcholine and Dopamine Receptor Systems Underlying Tobacco Smoking Addiction
4.3. The Impact of Oxytocin on Stress and Addiction: The Role of Sex
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beszczyńska, B. Molekularne podstawy zaburzeń psychicznych wywołanych stresem. Postep. Hig. Med. Dosw. 2007, 61, 690–701. [Google Scholar]
- Everitt, B.J.; Belin, D.; Economidou, D.; Pelloux, Y.; Dalley, J.; Robbins, T. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos. Trans. R. Soc. Lon. B Biol. Sci. 2008, 363, 3125–3135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiloha, R.C. Biological basis of tobacco addiction: Implications for smoking-cessation treatment. Indian J. Psychiatry 2010, 52, 301–307. [Google Scholar] [CrossRef] [PubMed]
- McKee, S.A.; Sinha, R.; Weinberger, A.H.; Sofuoglu, M.; Harrison, E.L.; Lavery, M.; Wanzer, J. Stress decreases the ability to resist smoking and potentiates smoking intensity and reward. J. Psychopharmacol. 2011, 25, 490–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Andrade, J.; Céspedes, I.; Abrão, R.; dos Santos, T.; Diniz, L.; Britto, L.; Spadari-Bratfisch, R.; Ortolani, D.; Melo-Thomas, L.; da Silva, R.; et al. Chronic unpredictable mild stress alters an anxiety-related defensive response, Fos immunoreactivity and hippocampal adult neurogenesis. Behav. Brain Res. 2013, 250, 81–90. [Google Scholar] [CrossRef]
- Landowski, J. Neurobiologia reakcji stresowej. Neuropsychiatry Neuropsychol. 2007, 2, 26–36. [Google Scholar]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Yan, H.-C.; Cao, X.; Das, M.; Zhu, X.-H.; Gao, T.-M. Behavioral animal models of depression. Neurosci. Bull. 2010, 26, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Leonard, B.E.; Myint, A. The psychoneuroimmunology of depression. Hum. Psychopharmacol. Clin. Exp. 2009, 24, 165–175. [Google Scholar] [CrossRef]
- Parker, K.J.; Schatzberg, A.F.; Lyons, D.M. Neuroendocrine aspects of hypercortisolism in major depression. Horm. Behav. 2003, 43, 60–66. [Google Scholar] [CrossRef]
- Feder, A.; Coplan, J.D.; Goetz, R.R.; Mathew, S.J.; Pine, D.S.; Dahl, R.E.; Ryan, N.D.; Greenwald, S.; Weissman, M.M. Twenty-four-hour cortisol secretion patterns in prepubertal children with anxiety or depressive disorders. Biol. Psychiatry 2004, 56, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Holsboer, F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res. 1999, 33, 181–214. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, R.; Siwek, M.; Grabski, B.; Dudek, D. Współwystępowanie zaburzeń depresyjnych i lękowych. Via Med. 2010, 7, 189–197. [Google Scholar]
- Faraone, S.V. Attention deficit hyperactivity disorder and premature death. Lancet 2015, 385, 2132–2133. [Google Scholar] [CrossRef] [PubMed]
- Irvine, K.; Laws, K.R.; Gale, T.M.; Kondel, T.K. Greater cognitive deterioration in women than men with Alzheimer’s disease: A meta analysis. J. Clin. Exp. Neuropsychol. 2012, 34, 989–998. [Google Scholar] [CrossRef]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef]
- Slavich, G.M.; Sacher, J. Stress, sex hormones, inflammation, and major depressive disorder: Extending Social Signal Transduction Theory of Depression to account for sex differences in mood disorders. Psychopharmacology 2019, 236, 3063–3079. [Google Scholar] [CrossRef]
- Marrocco, J.; Petty, G.H.; Ríos, M.B.; Gray, J.D.; Kogan, J.F.; Waters, E.M.; Schmidt, E.F.; Lee, F.S.; McEwen, B.S. A sexually dimorphic pre-stressed translational signature in CA3 pyramidal neurons of BDNF Val66Met mice. Nat. Commun. 2017, 8, 808. [Google Scholar] [CrossRef] [Green Version]
- Peña, C.J.; Smith, M.; Ramakrishnan, A.; Cates, H.M.; Bagot, R.C.; Kronman, H.G.; Patel, B.; Chang, A.B.; Purushothaman, I.; Dudley, J.; et al. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat. Commun. 2019, 10, 5098. [Google Scholar] [CrossRef] [Green Version]
- Petit-Demouliere, B.; Chenu, F.; Bourin, M. Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology 2005, 177, 245–255. [Google Scholar] [CrossRef]
- Cryan, J.F.; Mombereau, C.; Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005, 29, 571–625. [Google Scholar] [CrossRef]
- Campos, A.C.; Fogaca, M.V.; Aguiar, D.C.; Guimaraes, F.S. Animal models of anxiety disorders and stress. Rev. Bras. Psiquiatr. 2013, 35, S101–S111. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Bhat, Z.A.; Kumar, D. Animal models of anxiety: A comprehensive review. J. Pharmacol. Toxicol. Methods 2013, 68, 175–183. [Google Scholar] [CrossRef]
- Willner, P.; Moreau, J.-L.; Nielsen, C.K.; Papp, M.; Sluzewska, A. Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiol. Behav. 1996, 60, 129–134. [Google Scholar] [CrossRef]
- Willner, P.; Muscat, R.; Papp, M. Chronic mild stress-induced anhedonia: A realistic animal model of depression. Neurosci. Biobehav. Rev. 1992, 16, 525–534. [Google Scholar] [CrossRef]
- Surget, A.; Saxe, M.; Leman, S.; Ibarguen-Vargas, Y.; Chalon, S.; Griebel, G.; Hen, R.; Belzung, C. Drug-Dependent Requirement of Hippocampal Neurogenesis in a Model of Depression and of Antidepressant Reversal. Biol. Psychiatry 2008, 64, 293–301. [Google Scholar] [CrossRef]
- Farooq, R.K.; Isingrini, E.; Tanti, A.; Le Guisquet, A.M.; Arlicot, N.; Minier, F.; Leman, S.; Chalon, S.; Belzung, C.; Camus, V. Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation? Behav. Brain Res. 2012, 231, 130–137. [Google Scholar] [CrossRef]
- Guan, S.-Z.; Liu, J.-W.; Fang, E.F.; Ng, T.B.; Lian, Y.-L.; Ge, H. Chronic unpredictable mild stress impairs erythrocyte immune function and changes T-lymphocyte subsets in a rat model of stress-induced depression. Environ. Toxicol. Pharmacol. 2014, 37, 414–422. [Google Scholar] [CrossRef]
- Mineur, Y.S.; Belzung, C.; Crusio, W.E. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav. Brain Res. 2006, 175, 43–50. [Google Scholar] [CrossRef]
- Biala, G.; Pękala, K.; Boguszewska-Czubara, A.; Michalak, A.; Kruk-Slomka, M.; Budzynska, B. Behavioral and Biochemical Interaction Between Nicotine and Chronic Unpredictable Mild Stress in Mice. Mol. Neurobiol. 2017, 54, 904–921. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Shu, X.-J.; Chen, F.-Y.; Zhu, C.; Sun, X.-H.; Liu, L.-J.; Ai, Y.-X.; Li, Y.-G.; Zhao, H. Tianeptine reverses stress-induced asymmetrical hippocampal volume and N-acetylaspartate loss in rats: An in vivo study. Psychiatry Res. Neuroimaging 2011, 194, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Pekala, K.; Budzynska, B.; Biala, G. Utility of the chronic unpredictable mild stress model in research on new antidepressants. Curr. Issues Pharm. Med. Sci. 2014, 27, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Jin, L.; Zhang, Y.; Liu, B.; Li, C. Feasibility of focal cerebral ischemia and reperfusion surgery combined with chronic unpredictable mild stress to simulate the post-stroke depressive state in rats. Behav. Brain Funct. 2015, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Culig, L.; Surget, A.; Bourdey, M.; Khemissi, W.; Le Guisquet, A.-M.; Vogel, E.; Sahay, A.; Hen, R.; Belzung, C. Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress. Neuropharmacology 2017, 126, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, Z.; Wang, Y.; Xie, K.; Zhang, Q.; Luan, Q.; Chen, W.; Liu, D. Antidepressant-like effects of curcumin in chronic mild stress of rats: Involvement of its anti-inflammatory action. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 47, 33–39. [Google Scholar] [CrossRef]
- Della, F.P.; Abelaira, H.M.; Réus, G.Z.; Antunes, A.R.; dos Santos, M.A.B.; Zappelinni, G.; Steckert, A.V.; Vuolo, F.; Galant, L.S.; Dal-Pizzol, F.; et al. Tianeptine exerts neuroprotective effects in the brain tissue of rats exposed to the chronic stress model. Pharmacol. Biochem. Behav. 2012, 103, 395–402. [Google Scholar] [CrossRef]
- Pothion, S.; Bizot, J.-C.; Trovero, F.; Belzung, C. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav. Brain Res. 2004, 155, 135–146. [Google Scholar] [CrossRef]
- Biala, G.; Pekala, K.; Boguszewska-Czubara, A.; Michalak, A.; Kruk-Slomka, M.; Grot, K.; Budzynska, B. Behavioral and Biochemical Impact of Chronic Unpredictable Mild Stress on the Acquisition of Nicotine Conditioned Place Preference in Rats. Mol. Neurobiol. 2018, 55, 3270–3289. [Google Scholar] [CrossRef] [Green Version]
- Mackiewicz, K.L.; Sarinopoulos, I.; Cleven, K.L.; Nitschke, J.B. The effect of anticipation and the specificity of sex differences for amygdala and hippocampus function in emotional memory. Proc. Natl. Acad. Sci. USA 2006, 103, 14200–14205. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Zhen, Z.; Li, J.; Huang, L.; Wang, X.; Song, Y.; Liu, J. Sex-Related Neuroanatomical Basis of Emotion Regulation Ability. PLoS ONE 2014, 9, e97071. [Google Scholar] [CrossRef]
- Orsini, C.A.; Moorman, D.E.; Young, J.W.; Setlow, B.; Floresco, S.B. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neurosci. Biobehav. Rev. 2015, 58, 147–167. [Google Scholar] [CrossRef]
- McKinnon, M.C.; Yucel, K.; Nazarov, A.; MacQueen, G.M. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J. Psychiatry Neurosci. 2009, 34, 41–54. [Google Scholar]
- Dalla, C.; Antoniou, K.; Drossopoulou, G.; Xagoraris, M.; Kokras, N.; Sfikakis, A.; Papadopoulou-Daifoti, Z. Chronic mild stress impact: Are females more vulnerable? Neuroscience 2005, 135, 703–714. [Google Scholar] [CrossRef]
- Dalla, C.; Antoniou, K.; Kokras, N.; Drossopoulou, G.; Papathanasiou, G.; Bekris, S.; Daskas, S.; Papadopoulou-Daifoti, Z. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol. Behav. 2008, 93, 595–605. [Google Scholar] [CrossRef]
- Hillerer, K.M.; Neumann, I.D.; Couillard-Despres, S.; Aigner, L.; Slattery, D.A. Sex-dependent regulation of hippocampal neurogenesis under basal and chronic stress conditions in rats. Hippocampus 2013, 23, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.; Sun, L.; Liu, X.; Peng, B.; Wang, Q.; Jia, W.; Chen, Y.; Pan, A.; Xiao, P. Preventive Action of Kai Xin San Aqueous Extract on Depressive-Like Symptoms and Cognition Deficit Induced by Chronic Mild Stress. Exp. Biol. Med. 2009, 234, 785–793. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.-L.; Yang, N.; Liu, Y.-Y.; Gao, R.-F.; Zuo, P.-P. Effects of Ning Shen Ling Granule and dehydroepiandrosterone on cognitive function in mice undergoing chronic mild stress. Chin. J. Integr. Med. 2007, 13, 46–49. [Google Scholar] [CrossRef]
- Manji, H.K.; Drevets, W.C.; Charney, D.S. The cellular neurobiology of depression. Nat. Med. 2001, 7, 541–547. [Google Scholar] [CrossRef]
- Mineur, Y.S.; Picciotto, M.R. Nicotine receptors and depression: Revisiting and revising the cholinergic hypothesis. Trends Pharmacol. Sci. 2010, 31, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Willard, S.L.; Riddle, D.R.; Forbes, M.E.; Shively, C.A. Cell number and neuropil alterations in subregions of the anterior hippocampus in a female monkey model of depression. Biol. Psychiatry 2013, 74, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Bowers, J.M.; Waddell, J.; McCarthy, M.M. A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol. Sex Differ. 2010, 1, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, C.; Johnson, F.; Wang, Z. Estrogen regulation of cell proliferation and distribution of estrogen receptor-α in the brains of adult female prairie and meadow voles. J. Comp. Neurol. 2005, 489, 166–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanapat, P.; Hastings, N.B.; Gould, E. Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose- and time-dependent manner. J. Comp. Neurol. 2004, 481, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.L. Addiction and Brain Reward and Antireward Pathways. Adv. Psychosom. Med. 2011, 30, 22–60. [Google Scholar] [CrossRef] [PubMed]
- Kalivas, P.W.; Stewart, J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 1991, 16, 223–244. [Google Scholar] [CrossRef]
- Kostowski, W. Czy badania nad procesem pamięci przyniosą postęp w poznaniu mechanizmu uzależnień? Alkohol. I Narkom. 2009, 22, 161–175. (In Polish) [Google Scholar]
- Zob, H.H.; Gordon, H.W. Early Environmental Stress and Biological Vulnerability to Drug Abuse. Psychoneuroendocrinology 2002, 27, 115–126. [Google Scholar]
- Duko, B.; Pereira, G.; Tait, R.J.; Betts, K.; Newnham, J.; Alati, R. Prenatal alcohol and tobacco exposures and the risk of cannabis use in offspring: Findings from a population-based cohort study. Neurotoxicol. Teratol. 2022, 90, 107064. [Google Scholar] [CrossRef]
- Nomura, Y.; Gilman, S.E.; Buka, S.L. Maternal Smoking During Pregnancy and Risk of Alcohol Use Disorders Among Adult Offspring. J. Stud. Alcohol Drugs 2011, 72, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Mineur, Y.S.; Picciotto, M.R. Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction. Biochem. Pharmacol. 2008, 75, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, K.P.; Esterlis, I.; Sandiego, C.; Petrulli, R.; Morris, E.D. Imaging tobacco smoking with PET and SPECT. In The Neuropharmacology of Nicotine Dependence; Springer: Cham, Switzerland, 2015; pp. 1–17. [Google Scholar]
- Samochowiec, J.; Rogozinski, D.; Hajduk, A.; Skrzypińska, A.; Arentowicz, G. Diagnostyka, mechanizm uzależnienia i metody leczenia uzależnienia od nikotyny. Alkohol Narkom. 2001, 14, 323–340. (In Polish) [Google Scholar]
- Olausson, P.; Jentsch, J.D.; Taylor, J.R. Nicotine enhances responding with conditioned reinforcement. Psychopharmacology 2004, 173, 98–104. [Google Scholar] [CrossRef]
- Heisham, S.J.; Taylor, R.C.; Henningfield, J.E. Nicotine and smoking: A review of effects on human performance. Exp. Clin. Psychopharmacol. 1994, 2, 345–395. [Google Scholar] [CrossRef]
- Bruijnzeel, A.W. Tobacco addiction and the dysregulation of brain stress systems. Neurosci. Biobehav. Rev. 2012, 36, 1418–1441. [Google Scholar] [CrossRef] [Green Version]
- Zarocostas, J. WHO report warns deaths from tobacco could rise beyond eight million a year by 2030. BMJ 2008, 336, 299. [Google Scholar] [CrossRef] [Green Version]
- Perkins, K.A.; Grobe, J.E. Increased desire to smoke during acute stress. Addiction 1992, 87, 1037–1040. [Google Scholar] [CrossRef]
- Todd, M. Daily Processes in Stress and Smoking: Effects of Negative Events, Nicotine Dependence, and Gender. Psychol. Addict. Behav. 2004, 18, 31–39. [Google Scholar] [CrossRef]
- Koob, G.F. A Role for Brain Stress Systems in Addiction. Neuron 2008, 59, 11–34. [Google Scholar] [CrossRef] [Green Version]
- Anstey, K.J.; Von Sanden, C.; Salim, A.; O’Kearney, R. Smoking as a Risk Factor for Dementia and Cognitive Decline: A Meta-Analysis of Prospective Studies. Am. J. Epidemiol. 2007, 166, 367–378. [Google Scholar] [CrossRef]
- Goldwater, D.; Pavlides, C.; Hunter, R.; Bloss, E.; Hof, P.; McEwen, B.; Morrison, J. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 2009, 164, 798–808. [Google Scholar] [CrossRef] [Green Version]
- Parrott, A.C. Does cigarette smoking cause stress? Am. Psychol. 1999, 54, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Lutfy, K.; Brown, M.C.; Nerio, N.; Aimiuwu, O.; Tran, B.; Anghel, A.; Friedman, T.C. Repeated stress alters the ability of nicotine to activate the hypothalamic?pituitary?adrenal axis. J. Neurochem. 2006, 99, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Aleisa, A.M.; Alzoubi, K.H.; Gerges, N.Z.; Alkadhi, K.A. Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region. Int. J. Neuropsychopharmacol. 2006, 9, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, J.T.; Henningsen, K.; Bate, S.; Christiansen, S.; Wiborg, O. Nicotine reverses anhedonic-like response and cognitive impairment in the rat chronic mild stress model of depression: Comparison with sertraline. J. Psychopharmacol. 2011, 25, 1134–1141. [Google Scholar] [CrossRef]
- Hayase, T. Working memory- and anxiety-related behavioral effects of repeated nicotine as a stressor: The role of cannabinoid receptors. BMC Neurosci. 2013, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.-R.; Chen, T.-Y.; Chan, M.-H.; Chen, H.-H. Acute effects of nicotine on restraint stress-induced anxiety-like behavior, c-Fos expression, and corticosterone release in mice. Eur. J. Pharmacol. 2007, 566, 124–131. [Google Scholar] [CrossRef]
- Hayase, T. Depression-related anhedonic behaviors caused by immobilization stress: A comparison with nicotine-induced depression-like behavioral alterations and effects of nicotine and/or "antidepressant" drugs. J. Toxicol. Sci. 2011, 36, 31–41. [Google Scholar] [CrossRef]
- Bardo, M.T.; Bevins, R.A. Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology 2000, 153, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Tzschentke, T.M. Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 1998, 56, 613–672. [Google Scholar] [CrossRef]
- Biala, G.; Budzynska, B. Reinstatement of nicotine-conditioned place preference by drug priming: Effects of calcium channel antagonists. Eur. J. Pharmacol. 2006, 537, 85–93. [Google Scholar] [CrossRef]
- Feltenstein, M.W.; Ghee, S.M.; See, R.E. Nicotine self-administration and reinstatement of nicotine-seeking in male and female rats. Drug Alcohol Depend. 2012, 121, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.D.; Abnet, C.C.; Feskanich, D.; Freedman, N.; Hartge, P.; Lewis, C.; Ockene, J.; Prentice, R.; Speizer, F.; Thun, M.; et al. Smoking and mortality—Beyond established causes. N. Engl. J. Med. 2015, 372, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Jamal, A.; Agaku, I.T.; O’Connor, E.; King, B.A.; Kenemer, J.B.; Neff, L. Current cigarette smoking among adults—United States, 2005–2013. MMWR Morb Mortal Wkly. Rep. 2014, 63, 1108–1112. [Google Scholar]
- Smith, P.H.; Kasza, K.A.; Hyland, A.; Fong, G.T.; Borland, R.; Brady, K.; Carpenter, M.J.; Hartwell, K.; Cummings, K.M.; McKee, S.A. Gender Differences in Medication Use and Cigarette Smoking Cessation: Results From the International Tobacco Control Four Country Survey. Nicotine Tob. Res. 2015, 17, 463–472. [Google Scholar] [CrossRef]
- Kenny, P.J.; Markou, A. Neurobiology of the nicotine withdrawal syndrome. Pharmacol. Biochem. Behav. 2001, 70, 531–549. [Google Scholar] [CrossRef]
- Himeno, A.; Satoh-Asahara, N.; Usui, T.; Wada, H.; Tochiya, M.; Kono, S.; Yamada-Goto, N.; Katsuura, G.; Hasegawa, K.; Nakao, K.; et al. Salivary cortisol levels are associated with outcomes of weight reduction therapy in obese Japanese patients. Metabolism 2012, 61, 255–261. [Google Scholar] [CrossRef]
- Klein, L.C.; Corwin, E.J. Seeing the unexpected: How sex differences in stress responses may provide a new perspective on the manifestation of psychiatric disorders. Curr. Psychiatry Rep. 2002, 4, 441–448. [Google Scholar] [CrossRef]
- Motzer, S.A.; Hertig, V. Stress, stress response, and health. Nurs. Clin. N. Am. 2004, 39, 1–17. [Google Scholar] [CrossRef]
- Rao, K. Recent research in stress, coping and women’s health. Curr. Opin. Psychiatry 2009, 22, 188–193. [Google Scholar] [CrossRef]
- Suzuki, A.; Sakurazawa, H.; Fujita, T.; Akamatsu, R. Overeationg at dinner time among Japanese workers: Is overeationg related to stress response and late dinner times? Appetite 2016, 101, 8–14. [Google Scholar] [CrossRef]
- Sztalryd, C.; Hamilton, J.; Horwitz, B.A.; Johnson, P.; Kraemer, F.B. Alterations of lipolysis and lipoprotein lipase in chronically nicotine-treated rats. Am. J. Physiol. Metab. 1996, 270, E215–E223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zung, W.W.K.; Richards, C.B.; Short, M.J. Self-Rating Depression Scale in an Outpatient Clinic. Further validation of the SDS. Arch. Gen. Psychiatry 1965, 13, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Siennicki-Lantz, A.; André-Petersson, L.; Wollmer, P.; Elmståhl, S. Depressive symptoms, atherosclerotic burden andcerebral blood flowdisturbances inacohort of octogenarian men from a general population. BMC Psychiatry 2013, 13, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, K.; Terashima, S.; Satoh, N.; Inoue, M.; Wada, H. Depressive state of patients on their initial visit to a smoking cessation clinic. Smok. Control Sci. 2008, 2, 23–26. [Google Scholar]
- Panday, S.; Reddy, S.P.; Ruiter, R.A.; Bergström, E.; de Vries, H. Nicotine dependence and withdrawal symptoms among occasional smokers. J. Adolesc. Health 2007, 40, 144–150. [Google Scholar]
- Keita, G.P. Psychosocial and cultural contributions to depression in women: Considerations for women midlife and beyond. J. Manag. Care Pharm. 2007, 13, S12–S15. [Google Scholar] [CrossRef]
- van der Meer, R.M.; Willemsen, M.C.; Smit, F.; Cuijpers, P. Smoking cessation interventions for smokers with current or past depression. Cochrane Database Syst. Rev. 2013, 8, CD006102. [Google Scholar] [CrossRef] [Green Version]
- Mendelsohn, C. Smoking and depression—A review. Aust. Fam. Physician 2012, 41, 304–307. [Google Scholar]
- Allen, S.S.; Hatsukami, D.K.; Christianson, D.; Nelson, D. Withdrawal and pre-menstrual symptomatology during the menstrual cycle in short-term smoking abstinence: Effects of menstrual cycle on smoking abstinence. Nicotine Tob. Res. 1999, 1, 129–142. [Google Scholar] [CrossRef]
- Huang, C.-Q.; Dong, B.-R.; Lu, Z.-C.; Yue, J.-R.; Liu, Q.-X. Chronic diseases and risk for depression in old age: A meta-analysis of published literature. Ageing Res. Rev. 2010, 9, 131–141. [Google Scholar] [CrossRef]
- Kim, B.J.; Nakaoka, S.; Underwood, C. The impacts of social support and cognitive function on depression amongcommunity-dwelling older Japanese Americans. Soc. Work Public Health 2016, 23, 1–12. [Google Scholar]
- Verplaetse, T.L.; Morris, E.D.; McKee, S.A.; Cosgrove, K.P. Sex differences in the nicotinic acetylcholine and dopamine receptor systems underlying tobacco smoking addiction. Curr. Opin. Behav. Sci. 2018, 23, 196–202. [Google Scholar] [CrossRef]
- Esterlis, I.; Hillmer, A.T.; Bois, F.; Pittman, B.; McGovern, E.; O’Malley, S.S.; Picciotto, M.R.; Yang, B.-Z.; Gelernter, J.; Cosgrove, K.P. CHRNA4 and ANKK1 Polymorphisms Influence Smoking-Induced Nicotinic Acetylcholine Receptor Upregulation. Nicotine Tob. Res. 2016, 18, 1845–1852. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, K.P.; Esterlis, I.; McKee, S.A.; Bois, F.; Seibyl, J.P.; Mazure, C.M.; Krishnan-Sarin, S.; Staley, J.K.; Picciotto, M.R.; O’Malley, S.S. Sex differences in availability of beta2*-nicotinic acetylcholine receptors in recently abstinent tobacco smokers. Arch. Gen. Psychiatry 2012, 69, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.H.; Weinberger, A.H.; Zhang, J.; Emme, E.; Mazure, C.M.; McKee, S.A. Sex Differences in Smoking Cessation Pharmacotherapy Comparative Efficacy: A Network Meta-analysis. Nicotine Tob. Res. 2017, 19, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Fehr, C.; Yakushev, I.; Hohmann, N.; Buchholz, H.-G.; Landvogt, C.; Deckers, H.; Eberhardt, A.; Kläger, M.; Smolka, M.N.; Scheurich, A.; et al. Association of Low Striatal Dopamine D2 Receptor Availability With Nicotine Dependence Similar to That Seen With Other Drugs of Abuse. Am. J. Psychiatry 2008, 165, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.K.; Mandelkern, M.A.; Farahi, J.; Robertson, C.; Ghahremani, D.G.; Sumerel, B.; Moallem, N.; London, E.D. Sex differences in striatal dopamine D2/D3 receptor availability in smokers and non-smokers. Int. J. Neuropsychopharmacol. 2012, 15, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Okita, K.; Petersen, N.; Robertson, C.L.; Dean, A.C.; Mandelkern, M.A.; London, E.D. Sex Differences in Midbrain Dopamine D2-Type Receptor Availability and Association with Nicotine Dependence. Neuropsychopharmacology 2016, 41, 2913–2919. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, K.P.; Wang, S.; Kim, S.J.; McGovern, E.; Nabulsi, N.; Gao, H.; Labaree, D.; Tagare, H.D.; Sullivanm, M.; Morris, E.D. Sex differences in the brain’s dopamine signature of cigarette smoking. J. Neurosci. 2014, 34, 16851–16855. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.H.; Rose, J.S.; Mazure, C.M.; Giovino, G.A.; McKee, S.A. What is the evidence for hardening in the cigarette smoking population? Trends in nicotine dependence in the U.S., 2002–2012. Drug Alcohol Depend. 2014, 142, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Arnsten, A.F.T. Stress weakens prefrontal networks: Molecular insults to higher cognition. Nat. Neurosci. 2015, 18, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R. Chronic stress, drug use, and vulnerability to addiction. Ann. N. Y. Acad. Sci. 2008, 1141, 105–130. [Google Scholar] [CrossRef] [PubMed]
- Hashem, O.A.; Ebtehal, A.; Nada, A.; Reem, A.; Fahad, S.A.; Atiah, H.A.; Walaa, F.A.; Ahmed, G.; Turki, A.; Ahmad, A.; et al. Sex differences in pregabalin-seeking like behavior in a conditioned place preference paradigm. Saudi Pharm. J. 2020, 28, 1749–1755. [Google Scholar]
- Bowen, M.T.; Neumann, I.D. The Multidimensional Therapeutic Potential of Targeting the Brain Oxytocin System for the Treatment of Substance Use Disorders. Curr. Top. Behav. Neurosci. 2017, 35, 269–287. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Pedersen, C.A. Oxytocin, Tolerance, and the Dark Side of Addiction. Int. Rev. Neurobiol. 2017, 136, 239–274. [Google Scholar] [CrossRef]
- Pang, R.D.; Zvolensky, M.J.; Schmidt, N.B.; Leventhal, A.M. Gender differences in negative reinforcement smoking expectancies. Nicotine Tob. Res. 2015, 17, 750–754. [Google Scholar] [CrossRef] [Green Version]
- Andersson, K.; Eneroth, P.; Agnati, L.F. Nicotine-induced increases of noradrenaline turnover in discrete noradrenaline nerve terminal systems of the hypothalamus and the median eminence of the rat and their relationship to changes in the secretion of adenohypophyseal hormones. Acta Physiol. Scand. 1981, 113, 227–231. [Google Scholar] [CrossRef]
- Skwara, A.J.; Karwoski, T.E.; Czambel, R.K.; Rubin, R.T.; Rhodes, M.E. Influence of environmental enrichment on hypothalamic-pituitary-adrenal (HPA) responses to single-dose nicotine, continuous nicotine by osmotic mini-pumps, and nicotine withdrawal by mecamylamine in male and female rats. Behav. Brain Res. 2012, 234, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pomerleau, C.S.; Pomerleau, O.F. The Effects of a Psychological Stressor on Cigarette Smoking and Subsequent Behavioral and Physiological Responses. Psychophysiology 1987, 24, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Toth, E.; Sershen, H.; Hashim, A.; Vizi, E.S.; Lajtha, A. Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: Role of glutamic acid. Neurochem. Res. 1992, 17, 265–271. [Google Scholar] [CrossRef]
- Herman, J.P.; Cullinan, W.E. Neurocircuitry of stress: Central control of the hypothalamo–pituitary–adrenocortical axis. Trends Neurosci. 1997, 20, 78–84. [Google Scholar] [CrossRef]
- Dai, Z.; Kang, L.; Wang, L.; Ma, L. Different roles of dopamine receptor subtypes in footshock stress-induced enhancement of morphine conditioned place preference. Neurosci. Lett. 2006, 409, 52–56. [Google Scholar] [CrossRef]
- Brielmaier, J.; McDonald, C.G.; Smith, R.F. Effects of acute stress on acquisition of nicotine conditioned place preference in adolescent rats: A role for corticotropin-releasing factor 1 receptors. Psychopharmacology 2012, 219, 73–82. [Google Scholar] [CrossRef]
- Imperato, A.; Angelucci, L.; Casolini, P.; Zocchi, A.; Puglisi-Allegra, S. Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res. 1992, 577, 194–199. [Google Scholar] [CrossRef]
- Spina, L.; Fenu, S.; Longoni, R.; Rivas, E.; Di Chiara, G. Nicotine-conditioned single-trial place preference: Selective role of nucleus accumbens shell dopamine D1 receptors in acquisition. Psychopharmacology 2006, 184, 447–455. [Google Scholar] [CrossRef]
- Sellings, L.H.L.; Baharnouri, G.; McQuade, L.E.; Clarke, P.B.S. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens. Eur. J. Neurosci. 2008, 28, 342–352. [Google Scholar] [CrossRef]
- Saal, D.; Dong, Y.; Bonci, A.; Malenka, R.C. Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons. Neuron 2003, 37, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Niehaus, J.L.; Murali, M.; Kauer, J.A. Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. Eur. J. Neurosci. 2010, 32, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Perkins, K.A.; Karelitz, J.L.; Boldry, M.C. Nicotine Acutely Enhances Reinforcement from Non-Drug Rewards in Humans. Front. Psychiatry 2017, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Valentine, G.; Sofuoglu, M. Cognitive effects of nicotine: Recent Progress. Curr. Neuropharmacol. 2018, 16, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Bilkei-Gorzo, A.; Rácz, I.; Michel, K.; Darvas, M.; Maldonado, R.; Zimmer, A. A Common Genetic Predisposition to Stress Sensitivity and Stress-Induced Nicotine Craving. Biol. Psychiatry 2008, 63, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Picciotto, M.R. Nicotine as a modulator of behavior: Beyond the inverted U. Trends Pharmacol. Sci. 2003, 24, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Hall, F.S.; Der-Avakian, A.; Gould, T.J.; Markou, A.; Shoaib, M.; Young, J.W. Negative affective states and cognitive impairments in nicotine dependence. Neurosci. Biobehav. Rev. 2015, 58, 168–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dell, L.E.; Torres, O.V. A mechanistic hypothesis of the factors that enhance vulnerability to nicotine use in females. Neuropharmacology 2014, 76, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Covey, L.S.; Glassman, A.H. A meta-analysis of double-blind placebo-controlled trials of clonidine for smoking cessation. Br. J. Addict. 1991, 86, 991–998. [Google Scholar] [CrossRef]
- Terelak, J.F. Psychologia stresu; Oficyna Wydawnicza Branta: Bydgoszcz, Poland, 2002. (In Polish) [Google Scholar]
- Caudell, K.A.; Gallucci, B.B. Neuroendocrine and Immunological Responses of Women to Stress. West. J. Nurs. Res. 1995, 17, 672–692. [Google Scholar] [CrossRef]
- Sadava, S.W.; Pak, A.W. Stress-related problem drinking and alcohol problems: A longitudinal study and extension of Marlatt’s model. Can. J. Behav. Sci./Rev. Can. Des Sci. Du Comport. 1993, 25, 446–464. [Google Scholar] [CrossRef]
Type of Test | Test Characteristics | Measured Parameter |
---|---|---|
Forced swimming test | The apparatus is a cylindrical vessel (25 cm × 10 cm) filled with water up to a height of 10 cm (temperature 23–25 °C). | Measurement of the time of immobility. |
Tail suspension test | The test procedure is to tether the mouse by the tail and hang it in the air as it tries to free itself from an unpleasant situation. | Measure the time of active efforts to break free or measure the time of immobility. |
Sucrose preference test | The test procedure consists in subjecting the test animals to drinking adaptation of 1% sucrose solution or water twice a week (for a period of 5 weeks). Each single one hour trial is preceded by 14 h of water and food deprivation. | Measure the amount of sucrose solution consumed by weighing the bottles before and after each test as a measure of anhedonia. |
Type of Test | Test Characteristics | Measured Parameter |
---|---|---|
Elevated plus maze test | The apparatus is a maze consisting of 4 closed and open arms. The maze is set about 50 cm above the ground. This test is performed in an acoustically isolated experimental room lit with low intensity light | (1) Measurement of residence time in open arms. (2) Measurement of the number of entries into open arms. (3) Number of entries to closed arms and total number of entries to both arms. |
Light field and dark field test | The apparatus consists of an open room and a closed room that are connected to each other by a tunnel | The number of swings and entrances to the bright room and the time spent in the bright part. |
Open field test | The apparatus is a square arena that is available in 100 × 100 × 60 cm, made of white boards. The floor of the arena is divided into central and peripheral squares. A light source is placed above the central part. | (1) Locomotor activity measured on the basis of the number of squares crossed. (2) Number of entrances to central squares and residence time in the central part of the arena. (3) The number of droppings left by the animal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabowska, K.; Ziemichód, W.; Biała, G. Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender. Brain Sci. 2023, 13, 121. https://doi.org/10.3390/brainsci13010121
Grabowska K, Ziemichód W, Biała G. Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender. Brain Sciences. 2023; 13(1):121. https://doi.org/10.3390/brainsci13010121
Chicago/Turabian StyleGrabowska, Karolina, Wojciech Ziemichód, and Grażyna Biała. 2023. "Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender" Brain Sciences 13, no. 1: 121. https://doi.org/10.3390/brainsci13010121
APA StyleGrabowska, K., Ziemichód, W., & Biała, G. (2023). Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender. Brain Sciences, 13(1), 121. https://doi.org/10.3390/brainsci13010121