Intermittent Theta-Burst Stimulation Increases the Working Memory Capacity of Methamphetamine Addicts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Behavioral Measurements
2.3. TMS Procedures
2.4. Data Analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berridge, K.C.; Robinson, T.E. Liking, Wanting, and the Incentive-Sensitization Theory of Addiction. Am. Psychol. 2016, 71, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wise, R.A.; Baler, R. The Dopamine Motive System: Implications for Drug and Food Addiction. Nat. Rev. Neurosci. 2017, 18, 741–752. [Google Scholar] [CrossRef]
- Everitt, B.J.; Robbins, T.W. Drug Addiction: Updating Actions to Habits to Compulsions Ten Years On. Annu. Rev. Psychol. 2016, 67, 23–50. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Salmeron, B.J.; Gu, H.; Stein, E.A.; Yang, Y. Impaired Functional Connectivity within and between Frontostriatal Circuits and Its Association with Compulsive Drug Use and Trait Impulsivity in Cocaine Addiction. JAMA Psychiatry 2015, 72, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the Prefrontal Cortex in Addiction: Neuroimaging Findings and Clinical Implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.E.; D’Esposito, M. Persistent Activity in the Prefrontal Cortex during Working Memory. Trends Cogn. Sci. 2003, 7, 415–423. [Google Scholar] [CrossRef]
- Ott, T.; Nieder, A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends Cogn. Sci. 2019, 23, 213–234. [Google Scholar] [CrossRef]
- Bäckman, L.; Nyberg, L.; Soveri, A.; Johansson, J.; Andersson, M.; Dahlin, E.; Neely, A.S.; Virta, J.; Laine, M.; Rinne, J.O. Effects of Working-Memory Training on Striatal Dopamine Release. Science 2011, 333, 718. [Google Scholar] [CrossRef]
- Bechara, A.; Martin, E.M. Impaired Decision Making Related to Working Memory Deficits in Individuals With Substance Addictions. Neuropsychology 2004, 18, 152–162. [Google Scholar] [CrossRef]
- George, O.; Mandyam, C.D.; Wee, S.; Koob, G.F. Extended Access to Cocaine Self-Administration Produces Long-Lasting Prefrontal Cortex-Dependent Working Memory Impairments. Neuropsychopharmacology 2008, 33, 2474–2482. [Google Scholar] [CrossRef]
- Simões, P.F.; Silva, A.P.; Pereira, F.C.; Marques, E.; Grade, S.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Macedo, T.R. Methamphetamine Induces Alterations on Hippocampal NMDA and AMPA Receptor Subunit Levels and Impairs Spatial Working Memory. Neuroscience 2007, 150, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Grenard, J.L.; Ames, S.L.; Wiers, R.W.; Thush, C.; Sussman, S.; Stacy, A.W. Working Memory Capacity Moderates the Predictive Effects of Drug-Related Associations on Substance Use. Psychol. Addict. Behav. 2008, 22, 426. [Google Scholar] [CrossRef] [PubMed]
- Charlet, K.; Beck, A.; Jorde, A.; Wimmer, L.; Vollstädt-Klein, S.; Gallinat, J.; Walter, H.; Kiefer, F.; Heinz, A. Increased Neural Activity during High Working Memory Load Predicts Low Relapse Risk in Alcohol Dependence. Addict. Biol. 2014, 19, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Houben, K.; Wiers, R.W.; Jansen, A. Getting a Grip on Drinking Behavior: Training Working Memory to Reduce Alcohol Abuse. Psychol. Sci. 2011, 22, 968–975. [Google Scholar] [CrossRef]
- Patterson, F.; Jepson, C.; Loughead, J.; Perkins, K.; Strasser, A.A.; Siegel, S.; Frey, J.; Gur, R.; Lerman, C. Working Memory Deficits Predict Short-Term Smoking Resumption Following Brief Abstinence. Drug Alcohol Depend. 2010, 106, 61–64. [Google Scholar] [CrossRef]
- Dougall, N.; Maayan, N.; Soares-Weiser, K.; McDermott, L.M.; McIntosh, A. Transcranial Magnetic Stimulation (TMS) for Schizophrenia. Cochrane Database Syst. Rev. 2015, 8, 1465–1858. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C. Evidence-Based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (RTMS): An Update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Perera, T.; George, M.S.; Grammer, G.; Janicak, P.G.; Pascual-Leone, A.; Wirecki, T.S. The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major Depressive Disorder. Brain Stimulat. 2016, 9, 336–346. [Google Scholar] [CrossRef]
- Chen, R.; Classen, J.; Gerloff, C.; Celnik, P.; Wassermann, E.M.; Hallett, M.; Cohen, L.G. Depression of Motor Cortex Excitability by Low-Frequency Transcranial Magnetic Stimulation. Neurology 1997, 48, 1398–1403. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Pilato, F.; Dileone, M.; Profice, P.; Oliviero, A.; Mazzone, P.; Insola, A.; Ranieri, F.; Meglio, M.; Tonali, P.A. The Physiological Basis of the Effects of Intermittent Theta Burst Stimulation of the Human Motor Cortex. J. Physiol. 2008, 586, 3871–3879. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta Burst Stimulation of the Human Motor Cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.; Raij, T.; Melis, M.; Nummenmaa, A.; Leggio, L.; Bonci, A. Rehabilitating the Addicted Brain with Transcranial Magnetic Stimulation. Nat. Rev. Neurosci. 2017, 18, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Sun, Y.; Ku, Y. Effects of Non-Invasive Brain Stimulation on Stimulant Craving in Users of Cocaine, Amphetamine, or Methamphetamine: A Systematic Review and Meta-Analysis. Front. Neurosci. 2019, 13, 1095. [Google Scholar] [CrossRef] [PubMed]
- Young, J.R.; Smani, S.A.; Mischel, N.A.; Kritzer, M.D.; Appelbaum, L.G.; Patkar, A.A. Non-Invasive Brain Stimulation Modalities for the Treatment and Prevention of Opioid Use Disorder: A Systematic Review of the Literature. J. Addict. Dis. 2020, 38, 186–199. [Google Scholar] [CrossRef]
- Zhang, J.J.; Fong, K.N.; Ouyang, R.; Siu, A.M.; Kranz, G.S. Effects of Repetitive Transcranial Magnetic Stimulation (RTMS) on Craving and Substance Consumption in Patients with Substance Dependence: A Systematic Review and Meta-Analysis. Addiction 2019, 114, 2137–2149. [Google Scholar] [CrossRef]
- Pogarell, O.; Koch, W.; Pöpperl, G.; Tatsch, K.; Jakob, F.; Mulert, C.; Grossheinrich, N.; Rupprecht, R.; Möller, H.J.; Hegerl, U.; et al. Acute Prefrontal RTMS Increases Striatal Dopamine to a Similar Degree as D-Amphetamine. Psychiatry Res.-Neuroimaging 2007, 156, 251–255. [Google Scholar] [CrossRef]
- Cho, S.S.; Strafella, A.P. rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex. PLoS ONE 2009, 4, e6725. [Google Scholar] [CrossRef]
- Zhang, Y.; Ku, Y.; Sun, J.; Daskalakis, Z.J.; Yuan, T.-F. Intermittent Theta Burst Stimulation to the Left Dorsolateral Prefrontal Cortex Improves Working Memory of Subjects with Methamphetamine Use Disorder. Psychol. Med. 2021, 1–10. [Google Scholar] [CrossRef]
- Ma, W.J.; Husain, M.; Bays, P.M. Changing Concepts of Working Memory. Nat. Neurosci. 2014, 17, 347–356. [Google Scholar] [CrossRef]
- Zhang, W.; Luck, S.J. Discrete Fixed-Resolution Representations in Visual Working Memory. Nature 2008, 453, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Fuster, J.M.; Alexander, G.E. Neuron Activity Related to Short-Term Memory. Science 1971, 173, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S. Cellular Basis of Working Memory. Neuron 1995, 14, 477–485. [Google Scholar] [CrossRef]
- Ku, Y.; Bodner, M.; Zhou, Y.D. Prefrontal Cortex and Sensory Cortices during Working Memory: Quantity and Quality. Neurosci. Bull. 2015, 31, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Sisi, W.; Yixuan, K.U. The Causal Role of Right Dorsolateral Prefrontal Cortex in Visual Working Memory. Acta Psychol. Sin. 2018, 50, 727–738. [Google Scholar]
- Cowan, N. The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental Storage Capacity. Behav. Brain Sci. 2001, 24, 87–114. [Google Scholar] [CrossRef]
- Engle, R.W.; Tuholski, S.W.; Laughlin, J.E.; Conway, A.R. Working Memory, Short-Term Memory, and General Fluid Intelligence: A Latent-Variable Approach. J. Exp. Psychol. Gen. 1999, 128, 309. [Google Scholar] [CrossRef]
- Hofmann, W.; Schmeichel, B.J.; Baddeley, A.D. Executive Functions and Self-Regulation. Trends Cogn. Sci. 2012, 16, 174–180. [Google Scholar] [CrossRef]
- Landau, S.M.; Lal, R.; O’Neil, J.P.; Baker, S.; Jagust, W.J. Striatal Dopamine and Working Memory. Cereb. Cortex 2009, 19, 445–454. [Google Scholar] [CrossRef]
- Sawaguchi, T.; Goldman-Rakic, P.S. D1 Dopamine Receptors in Prefrontal Cortex: Involvement in Working Memory. Science 1991, 251, 947–950. [Google Scholar] [CrossRef]
- Zhao, Y.; Kuai, S.; Zanto, T.P.; Ku, Y. Neural Correlates Underlying the Precision of Visual Working Memory. Neuroscience 2020, 425, 301–311. [Google Scholar] [CrossRef]
- Zhao, Y.-J.; Kay, K.N.; Tian, Y.; Ku, Y. Sensory Recruitment Revisited: Ipsilateral V1 Involved in Visual Working Memory. Cereb. Cortex 2022, 32, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, K.C.; Xu, Y. Decoding the Content of Visual Short-Term Memory under Distraction in Occipital and Parietal Areas. Nat. Neurosci. 2016, 19, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chun, M.M. Dissociable Neural Mechanisms Supporting Visual Short-Term Memory for Objects. Nature 2006, 440, 91–95. [Google Scholar] [CrossRef] [PubMed]
Subject Variable | iTBS Group (N = 9) | Sham Group (N = 8) | t | p |
---|---|---|---|---|
M (S.D.) | M (S.D.) | |||
Age | 32.333 (3.536) | 32.375 (2.669) | 0.027 | 0.979 |
Education years | 8.667 (4.213) | 9.563 (2.382) | 0.530 | 0.604 |
Abstinent days | 272.444 (97.815) | 373.625 (249.258) | 1.128 | 0.277 |
Addiction years | 7.111 (4.106) | 7.875 (3.482) | 0.411 | 0.687 |
Dosage per month (g) | 13.844 (12.838) | 6.725 (4.742) | −1.739 | 0.103 |
PSQI | 9.111 (2.369) | 7.25 (3.412) | −1.319 | 0.207 |
BIS | 97 (16.606) | 104.75 (22.601) | 0.812 | 0.429 |
Baseline response error (degree) | 30.960 (5.989) | 30.314 (7.613) | −0.195 | 0.848 |
Baseline RT (s) | 1.813 (0.592) | 1.672 (0.341) | −0.590 | 0.564 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, H.; Ku, Y. Intermittent Theta-Burst Stimulation Increases the Working Memory Capacity of Methamphetamine Addicts. Brain Sci. 2022, 12, 1212. https://doi.org/10.3390/brainsci12091212
Sun Y, Wang H, Ku Y. Intermittent Theta-Burst Stimulation Increases the Working Memory Capacity of Methamphetamine Addicts. Brain Sciences. 2022; 12(9):1212. https://doi.org/10.3390/brainsci12091212
Chicago/Turabian StyleSun, Yurong, Huimin Wang, and Yixuan Ku. 2022. "Intermittent Theta-Burst Stimulation Increases the Working Memory Capacity of Methamphetamine Addicts" Brain Sciences 12, no. 9: 1212. https://doi.org/10.3390/brainsci12091212