Development of Landmark Use for Navigation in Children: Effects of Age, Sex, Working Memory and Landmark Type
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Navigation Task
Setup
Instructions
2.2.2. Working Memory Task
2.2.3. Left-Right Task
2.2.4. Parental Questionnaire
2.3. Procedure
2.4. Data Analyses
3. Results
3.1. Rotations
3.2. Cue Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgess, N. Spatial Memory: How Egocentric and Allocentric Combine. Trends Cogn. Sci. 2006, 10, 551–557. [Google Scholar] [CrossRef]
- Wang, R.F.; Spelke, E.S. Human Spatial Representation: Insights from Animals. Trends Cogn. Sci. 2002, 6, 376–382. [Google Scholar] [CrossRef]
- Chai, X.J.; Jacobs, L.F. Sex Differences in Directional Cue Use in a Virtual Landscape. Behav. Neurosci. 2009, 123, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Chai, X.J.; Jacobs, L.F. Effects of Cue Types on Sex Differences in Human Spatial Memory. Behav. Brain Res. 2010, 208, 336–342. [Google Scholar] [CrossRef]
- Chamizo, V.D.; Artigas, A.A.; Sansa, J.; Banterla, F. Gender Differences in Landmark Learning for Virtual Navigation: The Role of Distance to a Goal. Behav. Processes 2011, 88, 20–26. [Google Scholar] [CrossRef]
- Tascón, L.; Di Cicco, C.; Piccardi, L.; Palmiero, M.; Bocchi, A.; Cimadevilla, J.M. Sex Differences in Spatial Memory: Comparison of Three Tasks Using the Same Virtual Context. Brain Sci. 2021, 11, 757. [Google Scholar] [CrossRef]
- Levine, S.C.; Foley, A.; Lourenco, S.; Ehrlich, S.; Ratliff, K. Sex Differences in Spatial Cognition: Advancing the Conversation. WIREs Cogn. Sci. 2016, 7, 127–155. [Google Scholar] [CrossRef]
- Nazareth, A.; Huang, X.; Voyer, D.; Newcombe, N. A Meta-Analysis of Sex Differences in Human Navigation Skills. Psychon. Bull. Rev. 2019, 26, 1503–1528. [Google Scholar] [CrossRef]
- Newcombe, N.S. The Puzzle of Spatial Sex Differences: Current Status and Prerequisites to Solutions. Child Dev. Perspect. 2020, 14, 251–257. [Google Scholar] [CrossRef]
- Baumann, O.; Skilleter, A.J.; Mattingley, J.B. Short-Term Memory Maintenance of Object Locations during Active Navigation: Which Working Memory Subsystem Is Essential? PLoS ONE 2011, 6, e19707. [Google Scholar] [CrossRef]
- Hermer-Vazquez, L.; Spelke, E.S.; Katsnelson, A.S. Sources of Flexibility in Human Cognition: Dual-Task Studies of Space and Language. Cogn. Psychol. 1999, 39, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Hupbach, A.; Hardt, O.; Nadel, L.; Bohbot, V.D. Spatial Reorientation: Effects of Verbal and Spatial Shadowing. Spat. Cogn. Comput. 2007, 7, 213–226. [Google Scholar] [CrossRef]
- Meilinger, T.; Knauff, M.; Bülthoff, H.H. Working Memory in Wayfinding—A Dual Task Experiment in a Virtual City. Cogn. Sci. 2008, 32, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Ratliff, K.R.; Newcombe, N.S. Human Spatial Reorientation Using Dual Task Paradigms. In Proceedings of the 26th Annual Conference of the Cognitive Science Society, Chicago, IL, USA, 4–7 August 2005; Volume 27, pp. 1809–1814. [Google Scholar]
- Choi, J.; Silverman, I. Processes Underlying Sex Differences in Route-Learning Strategies in Children and Adolescents. Personal. Individ. Differ. 2003, 34, 1153–1166. [Google Scholar] [CrossRef]
- Laurance, H.E.; Learmonth, A.E.; Nadel, L.; Jacobs, W.J. Maturation of Spatial Navigation Strategies: Convergent Findings from Computerized Spatial Environments and Self-Report. J. Cogn. Dev. 2003, 4, 211–238. [Google Scholar] [CrossRef]
- León, I.; Cimadevilla, J.M.; Tascón, L. Developmental Gender Differences in Children in a Virtual Spatial Memory Task. Neuropsychology 2014, 28, 485–495. [Google Scholar] [CrossRef]
- van Dun, C.; van Kraaij, A.; Wegman, J.; Kuipers, J.; Aarts, E.; Janzen, G. Sex Differences and the Role of Gaming Experience in Spatial Cognition Performance in Primary School Children: An Exploratory Study. Brain Sci. 2021, 11, 886. [Google Scholar] [CrossRef]
- Balcomb, F.; Newcombe, N.S.; Ferrara, K. Finding Where and Saying Where: Developmental Relationships Between Place Learning and Language in the First Year. J. Cogn. Dev. 2011, 12, 315–331. [Google Scholar] [CrossRef]
- Hermer-Vazquez, L.; Moffet, A.; Munkholm, P. Language, Space, and the Development of Cognitive Flexibility in Humans: The Case of Two Spatial Memory Tasks. Cognition 2001, 79, 263–299. [Google Scholar] [CrossRef]
- Learmonth, A.E.; Nadel, L.; Newcombe, N.S. Children’s Use of Landmarks: Implications for Modularity Theory. Psychol. Sci. 2002, 13, 337–341. [Google Scholar] [CrossRef]
- Learmonth, A.E.; Newcombe, N.S.; Huttenlocher, J. Toddlers’ Use of Metric Information and Landmarks to Reorient. J. Exp. Child Psychol. 2001, 80, 225–244. [Google Scholar] [CrossRef]
- Piaget, J.; Inhelder, B. The Child’s Conception of Space; Routledge & Kegan Paul: London, UK, 1956. [Google Scholar]
- Newcombe, N.S. Navigation and the Developing Brain. J. Exp. Biol. 2019, 222, jeb.186460. [Google Scholar] [CrossRef] [Green Version]
- Acredolo, L.P. Development of Spatial Orientation in Infancy. Dev. Psychol. 1978, 14, 224–234. [Google Scholar] [CrossRef]
- Acredolo, L.P.; Evans, D. Developmental Changes in the Effects of Landmarks on Infant Spatial Behavior. Dev. Psychol. 1980, 16, 312–318. [Google Scholar] [CrossRef]
- Bushnell, E.W.; McKenzie, B.E.; Lawrence, D.A.; Connell, S. The Spatial Coding Strategies of One-Year-Old Infants in a Locomotor Search Task. Child Dev. 1995, 66, 937–958. [Google Scholar] [CrossRef]
- Hermer, L.; Spelke, E. Modularity and Development: The Case of Spatial Reorientation. Cognition 1996, 61, 195–232. [Google Scholar] [CrossRef]
- Hermer, L.; Spelke, E.S. A Geometric Process for Spatial Reorientation in Young Children. Nature 1994, 370, 57–59. [Google Scholar] [CrossRef]
- Hupbach, A.; Nadel, L. Reorientation in a Rhombic Environment: No Evidence for an Encapsulated Geometric Module. Cogn. Dev. 2005, 20, 279–302. [Google Scholar] [CrossRef]
- Learmonth, A.E.; Newcombe, N.S.; Sheridan, N.; Jones, M. Why Size Counts: Children’s Spatial Reorientation in Large and Small Enclosures. Dev. Sci. 2008, 11, 414–426. [Google Scholar] [CrossRef]
- Lourenco, S.F.; Addy, D.; Huttenlocher, J. Location Representation in Enclosed Spaces: What Types of Information Afford Young Children an Advantage? J. Exp. Child Psychol. 2009, 104, 313–325. [Google Scholar] [CrossRef]
- Nardini, M.; Atkinson, J.; Burgess, N. Children Reorient Using the Left/Right Sense of Coloured Landmarks at 18–24 Months. Cognition 2008, 106, 519–527. [Google Scholar] [CrossRef]
- Lew, A.R.; Bremner, J.G.; Lefkovitch, L.P. The Development of Relational Landmark Use in Six- to Twelve-Month-Old Infants in a Spatial Orientation Task. Child Dev. 2000, 71, 1179–1190. [Google Scholar] [CrossRef]
- Lew, A.R.; Foster, K.A.; Bremner, J.G.; Slavin, S.; Green, M. Detection of Geometric, but Not Topological, Spatial Transformations in 6- to 12-Month-Old Infants in a Visual Exploration Paradigm. Dev. Psychobiol. 2005, 47, 31–42. [Google Scholar] [CrossRef]
- Ribordy, F.; Jabes, A.; Banta Lavenex, P.; Lavenex, P. Development of Allocentric Spatial Memory Abilities in Children from 18 Months to 5 Years of Age. Cogn. Psychol. 2013, 66, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.D.; Gilchrist, I.D.; Cater, K.; Ikram, N.; Nott, K.; Hood, B.M. Reorientation in the Real World: The Development of Landmark Use and Integration in a Natural Environment. Cognition 2008, 107, 1102–1111. [Google Scholar] [CrossRef]
- Nardini, M.; Thomas, R.L.; Knowland, V.C.P.; Braddick, O.J.; Atkinson, J. A Viewpoint-Independent Process for Spatial Reorientation. Cognition 2009, 112, 241–248. [Google Scholar] [CrossRef]
- Negen, J.; Heywood-Everett, E.; Roome, H.E.; Nardini, M. Development of Allocentric Spatial Recall from New Viewpoints in Virtual Reality. Dev. Sci. 2018, 21, e12496. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Baizan, C.; Arias, J.L.; Mendez, M. Spatial Orientation Assessment in Preschool Children: Egocentric and Allocentric Frameworks. Appl. Neuropsychol. Child 2021, 10, 171–193. [Google Scholar] [CrossRef]
- Baumann, O.; Chan, E.; Mattingley, J.B. Dissociable Neural Circuits for Encoding and Retrieval of Object Locations during Active Navigation in Humans. NeuroImage 2010, 49, 2816–2825. [Google Scholar] [CrossRef]
- Wegman, J.; Tyborowska, A.; Janzen, G. Encoding and Retrieval of Landmark-Related Spatial Cues during Navigation: An FMRI Study. Hippocampus 2014, 24, 853–868. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.F.; Schenk, F. Unpacking the Cognitive Map: The Parallel Map Theory of Hippocampal Function. Psychol. Rev. 2003, 110, 285–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banta Lavenex, P.; Lavenex, P. Spatial Relational Learning and Memory Abilities Do Not Differ between Men and Women in a Real-World, Open-Field Environment. Behav. Brain Res. 2010, 207, 125–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-T.; Huang, T.-Y.; Lin, W.-J.; Chang, S.-Y.; Lin, Y.-H.; Ko, L.-W.; Hung, D.L.; Chang, E.C. Gender Differences in Wayfinding in Virtual Environments with Global or Local Landmarks. J. Environ. Psychol. 2012, 32, 89–96. [Google Scholar] [CrossRef]
- Nardi, D.; Newcombe, N.S.; Shipley, T.F. Reorienting with Terrain Slope and Landmarks. Mem. Cogn. 2013, 41, 214–228. [Google Scholar] [CrossRef] [Green Version]
- van Ekert, J.; Wegman, J.; Janzen, G. Neurocognitive Development of Memory for Landmarks. Front. Psychol. 2015, 6, 224. [Google Scholar] [CrossRef] [Green Version]
- Gouteux, S.; Thinus-Blanc, C.; Vauclair, J. Rhesus Monkeys Use Geometric and Nongeometric Information during a Reorientation Task. J. Exp. Psychol. Gen. 2001, 130, 505–519. [Google Scholar] [CrossRef]
- van der Ham, I.J.; Raemakers, M.; van Wezel, R.J.A.; Oleksiak, A.; Postma, P. Categorical and Coordinate Spatial Relations in Working Memory: An FMRI Study. Brain Res. 2009, 1297, 70–79. [Google Scholar] [CrossRef]
- Baumann, O.; Chan, E.; Mattingley, J.B. Distinct Neural Networks Underlie Encoding of Categorical versus Coordinate Spatial Relations during Active Navigation. NeuroImage 2012, 60, 1630–1637. [Google Scholar] [CrossRef] [Green Version]
- Newcombe, N.; Huttenlocher, J.; Drummey, A.B.; Wiley, J.G. The Development of Spatial Location Coding: Place Learning and Dead Reckoning in the Second and Third Years. Cogn. Dev. 1998, 13, 185–200. [Google Scholar] [CrossRef]
- Nardini, M.; Burgess, N.; Breckenridge, K.; Atkinson, J. Differential Developmental Trajectories for Egocentric, Environmental and Intrinsic Frames of Reference in Spatial Memory. Cognition 2006, 101, 153–172. [Google Scholar] [CrossRef]
- Alloway, T.P. Automated Working Memory Assessment: Manual; Pearson: New York, NY, USA, 2007. [Google Scholar]
- Šidák, Z.K. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. J. Am. Stat. Assoc. 1967, 62, 626–633. [Google Scholar] [CrossRef]
- Iachini, T.; Ruotolo, F.; Ruggiero, G. The Effects of Familiarity and Gender on Spatial Representation. J. Environ. Psychol. 2009, 29, 227–234. [Google Scholar] [CrossRef]
- Bullens, J.; Igloi, K.; Berthoz, A.; Postma, A.; Rondi-Reig, L. Developmental Time Course of the Acquisition of Sequential Egocentric and Allocentric Navigation Strategies. J. Exp. Child Psychol. 2010, 107, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Hund, A.M.; Naroleski, A.R. Developmental Changes in Young Children’s Spatial Memory and Language in Relation to Landmarks. J. Cogn. Dev. 2008, 9, 310–339. [Google Scholar] [CrossRef]
- Astur, R.S.; Tropp, J.; Sava, S.; Constable, R.T.; Markus, E.J. Sex Differences and Correlations in a Virtual Morris Water Task, a Virtual Radial Arm Maze, and Mental Rotation. Behav. Brain Sci. 2004, 151, 103–115. [Google Scholar] [CrossRef]
- Mandolesi, L.; Petrosini, L.; Menghini, D.; Addona, F.; Vicari, S. Children’ s Radial Arm Maze Performance as a Function of Age and Sex. Int. J. Dev. Neurosci. 2009, 27, 789–797. [Google Scholar] [CrossRef]
- Jansen-Osmann, P.; Wiedenbauer, G. The Representation of Landmarks and Routes in Children and Adults: A Study in a Virtual Environment. J. Environ. Psychol. 2004, 24, 347–357. [Google Scholar] [CrossRef]
- Lourenco, S.F.; Addy, D.; Huttenlocher, J.; Fabian, L. Early Sex Differences in Weighting Geometric Cues. Dev. Sci. 2011, 14, 1365–1378. [Google Scholar] [CrossRef]
- Schmitz, S. Gender-related Strategies in Environmental Development: Effects of Anxiety on Wayfinding in and Representation of a Three-dimensional Maze. J. Environ. Psychol. 1997, 17, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Silverman, I.; Eals, M. Sex Differences in Spatial Abilities: Evolutionary Theory and Data. In The Adapted Mind: Evolutionary Psychology and the Generation of Culture; Oxford University Press: New York, NY, USA, 1992; pp. 533–549. ISBN 978-0-19-506023-2. [Google Scholar]
- Gabriel, K.I.; Hong, S.M.; Chandra, M.; Lonborg, S.D.; Barkley, C.L. Gender Differences in the Effects of Acute Stress on Spatial Ability. Sex Roles 2011, 64, 81–89. [Google Scholar] [CrossRef]
- Gavrielidou, E.; Lamers, M.H. Landmarks and Time-Pressure in Virtual Navigation: Towards Designing Gender-Neutral Virtual Environments. In Facets of Virtual Environments; Lehmann-Grube, F., Sablatnig, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 60–67. [Google Scholar]
- Sanders, G.; Sinclair, K.; Walsh, T. Testing Predictions from the Hunter-Gatherer Hypothesis—2: Sex Differences in the Visual Processing of near and Far Space. Evol. Psychol. 2007, 5, 147470490700500320. [Google Scholar] [CrossRef]
- Coluccia, E.; Louse, G. Gender Differences in Spatial Orientation: A Review. J. Environ. Psychol. 2004, 24, 329–340. [Google Scholar] [CrossRef]
- Pine, D.S.; Grun, J.; Maguire, E.A.; Burgess, N.; Zarahn, E.; Koda, V.; Fyer, A.; Szeszko, P.R.; Bilder, R.M. Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality FMRI Study. NeuroImage 2002, 15, 396–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegman, J.; Janzen, G. Neural Encoding of Objects Relevant for Navigation and Resting State Correlations with Navigational Ability. J. Cogn. Neurosci. 2011, 23, 3841–3854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen-Osmann, P.; Fuchs, P. Wayfinding Behavior and Spatial Knowledge of Adults and Children in a Virtual Environment. Exp. Psychol. 2006, 53, 171–181. [Google Scholar] [CrossRef]
- van den Brink, D.; Janzen, G. Visual Spatial Cue Use for Guiding Orientation in Two-to-Three-Year-Old Children. Front. Psychol. 2013, 4, 904. [Google Scholar] [CrossRef] [Green Version]
- Jansen-Osmann, P. Use of Virtual Environments to Investigate Development of Spatial Behavior and Spatial Knowledge of School-Age Children. Psychol. Rep. 2007, 100, 675–690. [Google Scholar] [CrossRef]
- Plumert, J.M.; Kearney, J.K.; Cremer, J.F.; Recker, K. Distance Perception in Real and Virtual Environments. ACM Trans. Appl. Percept. 2005, 2, 216–233. [Google Scholar] [CrossRef]
- Peruch, P.; Wilson, P.N. Active versus Passive Learning and Testing in a Complex Outside Built Environment. Cogn. Process. 2004, 5, 218–227. [Google Scholar] [CrossRef]
- Wallet, G.; Sauzéon, H.; Pala, P.A.; Larrue, F.; Zheng, X.; N’Kaoua, B. Virtual/Real Transfer of Spatial Knowledge: Benefit from Visual Fidelity Provided in a Virtual Environment and Impact of Active Navigation. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Sensibaugh, T.; Bodenheimer, B.; McNamara, T.P.; Nazareth, A.; Newcombe, N.; Minear, M.; Klippel, A. Desktop versus Immersive Virtual Environments: Effects on Spatial Learning. Spat. Cogn. Comput. 2020, 20, 328–363. [Google Scholar] [CrossRef]
6 Years | 8 Years | 10 Years | |
---|---|---|---|
AWMA backwards digit recall | 102.28 (18.26) | 106.69 (13.02) | 100.17 (12.09) |
AWMA odd one out | 109.87 (15.60) | 116.52 (12.87) | 111.91 (15.05) |
Left-right task | 4.95 (3.14) | 6.95 (2.53) | 7.59 (1.75) |
df | F | p | η2 | |
---|---|---|---|---|
Rotation | 4, 103 | 49.60 | <0.001 ** | 0.658 |
Metrical | 2, 212 | 73.89 | <0.001 ** | 0.411 |
Categorical | 2, 212 | 109.69 | <0.001 ** | 0.509 |
Age Group | 4, 210 | 17.93 | <0.001 ** | 0.222 |
Metrical | 2, 105 | 42.20 | <0.001 ** | 0.443 |
Categorical | 2, 105 | 34.18 | <0.001 ** | 0.392 |
Sex | 2, 105 | 9.35 | <0.001 ** | 0.151 |
Metrical | 1, 106 | 12.17 | 0.001 * | 0.103 |
Categorical | 1, 106 | 2.98 | 0.087 † | 0.027 |
Rotation *Age Group | 8, 206 | 1.89 | 0.063 † | 0.067 |
Metrical | 4, 103 | 3.49 | 0.009 * | 0.062 |
Categorical | 4, 103 | 3.83 | 0.005 * | 0.067 |
Rotation *Sex | 4, 103 | 2.54 | 0.045 * | 0.090 |
Metrical | 2, 212 | 4.25 | 0.016 * | 0.039 |
Categorical | 2, 212 | 4.82 | 0.009 * | 0.044 |
Rotation *Age Group *Sex | 8, 206 | 0.54 | 0.829 | 0.020 |
Metrical | Categorical | |||||||
---|---|---|---|---|---|---|---|---|
df | F | p | η2 | df | F | p | η2 | |
Sex | 3, 85 | 2.69 | 0.051 † | 0.087 | 3, 86 | 0.95 | 0.420 | 0.032 |
Age | 3, 85 | 9.37 | <0.001 ** | 0.248 | 3, 86 | 6.48 | 0.001 * | 0.184 |
Verbal WM | 3, 85 | 0.45 | 0.721 | 0.015 | 3, 86 | 1.58 | 0.199 | 0.052 |
Spatial WM | 3, 85 | 2.18 | 0.097 † | 0.071 | 3, 86 | 2.98 | 0.036 * | 0.094 |
Left/right | 3, 85 | 1.94 | 0.129 | 0.064 | 3, 86 | 4.52 | 0.005 * | 0.136 |
Keyboard use | 3, 85 | 0.39 | 0.764 | 0.013 | 3, 86 | 0.40 | 0.752 | 0.014 |
Game experience | 3, 85 | 0.08 | 0.969 | 0.003 | 3, 86 | 0.44 | 0.726 | 0.015 |
df | F | p | η2 | |
---|---|---|---|---|
Cue Type | 4, 103 | 5.65 | <0.001 ** | 0.180 |
Metrical | 2, 212 | 11.99 | <0.001 ** | 0.102 |
Categorical | 2, 212 | 11.23 | <0.001 ** | 0.096 |
Age Group | 4, 212 | 15.43 | <0.001 ** | 0.226 |
Metrical | 2, 106 | 43.34 | <0.001 ** | 0.450 |
Categorical | 2, 106 | 30.90 | <0.001 ** | 0.368 |
Sex | 2, 105 | 11.99 | <0.001 ** | 0.186 |
Metrical | 1, 106 | 16.48 | <0.001 ** | 0.135 |
Categorical | 1, 106 | 4.17 | 0.044 * | 0.038 |
Cue Type *Age Group | 8, 206 | 1.16 | 0.322 | 0.043 |
Cue Type *Sex | 4, 103 | 0.53 | 0.712 | 0.020 |
Cue Type *Age Group *Sex | 8, 206 | 0.38 | 0.926 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Hoogmoed, A.H.; Wegman, J.; van den Brink, D.; Janzen, G. Development of Landmark Use for Navigation in Children: Effects of Age, Sex, Working Memory and Landmark Type. Brain Sci. 2022, 12, 776. https://doi.org/10.3390/brainsci12060776
van Hoogmoed AH, Wegman J, van den Brink D, Janzen G. Development of Landmark Use for Navigation in Children: Effects of Age, Sex, Working Memory and Landmark Type. Brain Sciences. 2022; 12(6):776. https://doi.org/10.3390/brainsci12060776
Chicago/Turabian Stylevan Hoogmoed, Anne H., Joost Wegman, Danielle van den Brink, and Gabriele Janzen. 2022. "Development of Landmark Use for Navigation in Children: Effects of Age, Sex, Working Memory and Landmark Type" Brain Sciences 12, no. 6: 776. https://doi.org/10.3390/brainsci12060776
APA Stylevan Hoogmoed, A. H., Wegman, J., van den Brink, D., & Janzen, G. (2022). Development of Landmark Use for Navigation in Children: Effects of Age, Sex, Working Memory and Landmark Type. Brain Sciences, 12(6), 776. https://doi.org/10.3390/brainsci12060776