Cardiac–Brain Dynamics Depend on Context Familiarity and Their Interaction Predicts Experience of Emotional Arousal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Self-Assessment Scales and Presentation of Emotional Categories
2.4. Experiment
2.5. Pre-Processing
2.5.1. EEG
2.5.2. ECG
2.6. Power Calculation
2.7. Scalp Sites for Investigation
2.8. Statistical Analysis
3. Results
3.1. Main Effect of ECG Power in Mid-Frequency Range
3.2. The Influence of Familiarity on Cardiac–Brain Interaction during Emotion Processing
3.3. Emotional Arousal Prediction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PF | Prefrontal |
FC | Frontocentral |
PO | Parietooccipital |
midF | Mid-frequency |
HEP | Heart Evoked Potential |
Appendix A
Stim Name | Target Emotion |
---|---|
ashayen | Adventorous |
horror | Afraid |
Anacondas_The_Hunt_for_the_Blood_Orchid_clip | Alarmed |
Lage_Raho_Munnabhai_Only_the_Funny_Scenes_[360p]_2 | Amused |
anger_legend_of_baghat_singh | Angry |
Divergent_Kiss_scene_clip | Aroused |
Butterfly_Nets | Calm |
Best_Horror_Kills_Ghost_Ship_Opening_scene | Disgust |
Jai_Ho | Enthusiastic |
SaddaHaq_1 | Excited |
MASOOM | Happy |
cheerfulRang_1 | Joyous |
Crash_Saddest_scene | Melancholic |
hate_lbs | Miserable |
Madari_movie_of_best_scene_[360p] | Sad |
Final_Race_of_Milkha_Singh_Career_[360p] | Triumphant |
References
- Nguyen, V.T.; Sonkusare, S.; Stadler, J.; Hu, X.; Breakspear, M.; Guo, C.C. Distinct cerebellar contributions to cognitive-perceptual dynamics during natural viewing. J. Cereb. Cortex 2017, 27, 5652–5662. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.M.; Klotzsche, F.; Mariola, A.; Nikulin, V.; Villringer, A.; Gaebler, M. Decoding subjective emotional arousal from eeg during an immersive virtual reality experience. Elife 2021, 10, e64812. [Google Scholar] [CrossRef] [PubMed]
- Viinikainen, M.; Glerean, E.; Jääskeläinen, I.P.; Kettunen, J.; Sams, M.; Nummenmaa, L. Nonlinear neural representation of emotional feelings elicited by dynamic naturalistic stimulation. Open J. Neurosci. 2012, 2, 1–17. [Google Scholar]
- Guo, C.C.; Nguyen, V.T.; Hyett, M.P.; Parker, G.B.; Breakspear, M.J. Out-of-sync: Disrupted neural activity in emotional circuitry during film viewing in melancholic depression. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Xiang, T.; Ji, N.; Clifton, D.A.; Lu, L.; Zhang, Y.T. Interactive effects of hrv and p-qrs-t on the power density spectra of ecg signals. IEEE J. Biomed. Health Inform. 2021, 25, 4163–4174. [Google Scholar] [CrossRef]
- Tereshchenko, L.; Josephson, M. Frequency content and characteristics of ventricular conduction. J. Electrocardiol. 2015, 48, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Gramatikov, B.; Iyer, V. Intra-qrs spectral changes accompany st segment changes during episodes of myocardial ischemia. J. Electrocardiol. 2015, 48, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Murthy, V.K.; Haywood, L.J.; Richardson, J.; Kalaba, R.; Salzberg, S.; Harvey, G.; Vereeke, D. Analysis of power spectral densities of electrocardiograms. Math. Biosci. 1971, 12, 41–51. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Silvani, A.; Calandra-Buonaura, G.; Dampney, R.A.; Cortelli, P. Brain–heart interactions: Physiology and clinical implications. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150181. [Google Scholar] [CrossRef]
- Ruiz-Padial, E.; Vila, J.; Thayer, J.F. The effect of conscious and non-conscious presentation of biologically relevant emotion pictures on emotion modulated startle and phasic heart rate. Int. J. Psychophysiol. 2011, 79, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.M.; Tsakiris, M. The impact of cardiac afferent signaling and interoceptive abilities on passive information sampling. Int. J. Psychophysiol. 2021, 162, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.T.; Badoud, D.; Tsakiris, M. Afferent cardiac signals modulate attentional engagement to low spatial frequency fearful faces. Cortex 2018, 104, 232–240. [Google Scholar] [CrossRef]
- Vuilleumier, P.; Armony, J.L.; Driver, J.; Dolan, R.J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 2003, 6, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.; Levy, A.; Parr, T.; Friston, K.J. In the body’s eye: The computational anatomy of interoceptive inference. BioRxiv 2019, 603928. [Google Scholar] [CrossRef]
- Patron, E.; Mennella, R.; Benvenuti, S.M.; Thayer, J.F. The frontal cortex is a heart-brake: Reduction in delta oscillations is associated with heart rate deceleration. NeuroImage 2019, 188, 403–410. [Google Scholar] [CrossRef]
- McCraty, R. Exploring the role of the heart in human performance. Sci. Heart 2016, 2, 70. [Google Scholar]
- McCraty, R. Heart-brain neurodynamics: The making of emotions. In Media Models to Foster Collective Human Coherence in The PSYCHecology; IGI Global: Hershey, PA, USA, 2019; pp. 191–219. [Google Scholar]
- Elbers, J.; McCraty, R. HeartMath approach to self-regulation and psychosocial well-being. J. Psychol. Afr. 2020, 30, 69–79. [Google Scholar] [CrossRef]
- Costa, T.; Rognoni, E.; Galati, D. EEG phase synchronization during emotional response to positive and negative film stimuli. Neurosci. Lett. 2006, 406, 159–164. [Google Scholar] [CrossRef]
- Mai, S.; Wong, C.K.; Georgiou, E.; Pollatos, O. Interoception is associated with heartbeat-evoked brain potentials (heps) in adolescents. Biol. Psychol. 2018, 137, 24–33. [Google Scholar] [CrossRef]
- Villena-González, M.; Moënne-Loccoz, C.; Lagos, R.A.; Alliende, L.M.; Billeke, P.; Aboitiz, F.; Lopez, V.; Cosmelli, D. Attending to the heart is associated with posterior alpha band increase and a reduction in sensitivity to concurrent visual stimuli. Psychophysiology 2017, 54, 1483–1497. [Google Scholar] [CrossRef] [PubMed]
- Martini, N.; Menicucci, D.; Sebastiani, L.; Bedini, R.; Pingitore, A.; Vanello, N.; Milanesi, M.; Landini, L.; Gemignani, A. The dynamics of EEG gamma responses to unpleasant visual stimuli: From local activity to functional connectivity. NeuroImage 2012, 60, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Jeong, J.; Kim, H.; Kim, S.; Kim, S. Representation of cognitive reappraisal goals in frontal gamma oscillations. PLoS ONE 2014, 9, e113375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittling, W. The right hemisphere and the human stress response. Acta Physiol. Scand. Suppl. 1997, 640, 55–59. [Google Scholar] [PubMed]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 2015, 16, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Seth, A.K.; Friston, K.J. Active interoceptive inference and the emotional brain. Philos. Trans. R. Soc. Biol. Sci. 2016, 371, 20160007. [Google Scholar] [CrossRef] [Green Version]
- Moors, A.; Ellsworth, P.C.; Scherer, K.R.; Frijda, N.H. Appraisal theories of emotion: State of the art and future development. Emot. Rev. 2013, 5, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.; McNaughton, N. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System, 2nd ed.; Oxford University Press: New York, NY, USA, 2000; ISBN 978-0198522713. [Google Scholar]
- Hirsh, J.B.; Mar, R.A.; Peterson, J.B. Psychological entropy: A framework for understanding uncertainty-related anxiety. Psychol. Rev. 2012, 119, 304. [Google Scholar] [CrossRef] [Green Version]
- Carleton, R.N. Into the unknown: A review and synthesis of contemporary models involving uncertainty. J. Anxiety Disord. 2016, 39, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.C.; Carleton, R.N.; Diefenbach, M.; Han, P.K. The relationship between uncertainty and affect. Front. Psychol. 2019, 10, 2504. [Google Scholar] [CrossRef] [PubMed]
- Nummenmaa, L.; Glerean, E.; Hari, R.; Hietanen, J. Bodily maps of emotions. Proc. Natl. Acad. Sci. USA 2014, 111, 646–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, L. The theory of constructed emotion: An active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 2017, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.; Garfinkel, S. Interoception and emotion. Curr. Opin. Psychol. 2017, 17, 7–14. [Google Scholar] [CrossRef]
- Dunn, B.; Galton, H.; Morgan, R.; Evans, D.; Oliver, C.; Meyer, M.; Cusack, R.; Lawrence, A.; Dalgleish, T. Listening to your heart: How interoception shapes emotion experience and intuitive decision making. Psychol. Sci. 2010, 21, 1835–1844. [Google Scholar] [CrossRef] [Green Version]
- Hübner, A.; Trempler, I.; Gietmann, C.; Schubotz, R. Interoceptive sensibility predicts the ability to infer others’ emotional states. PLoS ONE 2021, 16, e0258089. [Google Scholar] [CrossRef]
- Salamone, P.; Legaz, A.; Sedeño, L.; Moguilner, S.; Fraile-Vazquez, M.; Campo, C.; Fittipaldi, S.; Yoris, A.; Miranda, M.; Birba, A.; et al. Interoception primes emotional processing: Multimodal evidence from neurodegeneration. J. Neurosci. 2021, 41, 4276–4292. [Google Scholar] [CrossRef]
- Herbert, B.; Pollatos, O.; Schandry, R. Interoceptive sensitivity and emotion processing: An EEG study. Int. J. Psychophysiol. 2007, 65, 214–227. [Google Scholar] [CrossRef]
- Marshall, A.; Gentsch-Ebrahimzadeh, A.; Schütz-Bosbach, S. From the inside out: Interoceptive feedback facilitates the integration of visceral signals for efficient sensory processing. NeuroImage 2022, 251, 119011. [Google Scholar] [CrossRef]
- Gentsch, A.; Sel, A.; Marshall, A.; Schütz-Bosbach, S. Affective interoceptive inference: Evidence from heart-beat evoked brain potentials. Hum. Brain Mapp. 2019, 40, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.; Gentsch, A.; Jelinčić, V.; Schütz-Bosbach, S. Exteroceptive expectations modulate interoceptive processing: Repetition-suppression effects for visual and heartbeat evoked potentials. Sci. Rep. 2017, 7, 16525. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2015. [Google Scholar]
- Mishra, S.; Tiwary, U.S.; Srinivasan, N. Films 2021c. Available online: osf.io/tgcj8 (accessed on 13 April 2022).
- Mishra, S.; Srinivasan, N.; Tiwary, U.S. Affective film dataset from india (afdi): Creation and validation with an indian sample. PsyArXiv 2021. Revision is under review. [Google Scholar] [CrossRef]
- Mishra, S.; Asif, M.; Tiwary, U.S.; Srinivasan, N. Dataset on emotion with naturalistic stimuli (dens). bioRxiv 2021. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Kliegl, R.; Vasishth, S.; Baayen, H. Parsimonious mixed models. arXiv 2015, arXiv:1506.04967. [Google Scholar]
- Luke, S.G. Evaluating significance in linear mixed-effects models in r. Behav. Res. Methods 2017, 49, 1494–1502. [Google Scholar] [CrossRef]
- Maas, C.J.; Hox, J.J. The influence of violations of assumptions on multilevel parameter estimates and their standard errors. Comput. Stat. Data Anal. 2004, 46, 427–440. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Couto, B.; Adolfi, F.; Velasquez, M.; Mesow, M.; Feinstein, J.; Canales-Johnson, A.; Mikulan, E.; Martínez-Pernía, D.; Bekinschtein, T.; Sigman, M.; et al. Heart evoked potential triggers brain responses to natural affective scenes: A preliminary study. Auton. Neurosci. 2015, 193, 132–137. [Google Scholar] [CrossRef]
- Kim, J.; Park, H.D.; Kim, K.W.; Shin, D.W.; Lim, S.; Kwon, H.; Kim, M.Y.; Kim, K.; Jeong, B. Sad faces increase the heartbeat-associated interoceptive information flow within the salience network: A meg study. Sci. Rep. 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.; Gentsch, A.; Schütz-Bosbach, S. Interoceptive cardiac expectations to emotional stimuli predict visual perception. Emotion 2020, 20, 1113. [Google Scholar] [CrossRef] [PubMed]
- Schubring, D.; Schupp, H. Affective picture processing: Alpha-and lower beta-band desynchronization reflects emotional arousal. Psychophysiology 2019, 56, e13386. [Google Scholar] [CrossRef] [PubMed]
- Scholz, S.; Schneider, S.; Rose, M. Differential effects of ongoing EEG beta and theta power on memory formation. PLoS ONE 2017, 12, e0171913. [Google Scholar] [CrossRef] [PubMed]
- Legrand, N.; Etard, O.; Vandevelde, A.; Pierre, M.; Viader, F.; Clochon, P.; Doidy, F.; Peschanski, D.; Eustache, F.; Gagnepain, P. Long-term modulation of cardiac activity induced by inhibitory control over emotional memories. Sci. Rep. 2020, 10, 15008. [Google Scholar] [CrossRef]
- Yang, K.; Tong, L.; Shu, J.; Zhuang, N.; Yan, B.; Zeng, Y. High gamma band EEG closely related to emotion: Evidence from functional network. Front. Hum. Neurosci. 2020, 14, 89. [Google Scholar] [CrossRef]
- Fermin, A.; Friston, K.; Yamawaki, S. Insula Interoception, Active Inference and Feeling Representation. arXiv 2021, arXiv:2112.12290. [Google Scholar]
- Lechinger, J.; Heib, D.P.J.; Gruber, W.; Schabus, M.; Klimesch, W. Heartbeat-related eeg amplitude and phase modulations from wakefulness to deep sleep: Interactions with sleep spindles and slow oscillations. Psychophysiology 2015, 52, 1441–1450. [Google Scholar] [CrossRef]
- Luft, C.D.B.; Bhattacharya, J. Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates. Sci. Rep. 2015, 5, 15717. [Google Scholar] [CrossRef] [Green Version]
- Minguillon, J.; Lopez-Gordo, M.; Pelayo, F. Stress assessment by prefrontal relative gamma. Front. Comput. Neurosci. 2016, 10, 101. [Google Scholar] [CrossRef] [Green Version]
- HajiHosseini, A.; Rodrıgguez-Fornells, A.; Marco-Pallares, J. The role of beta-gamma oscillations in unexpected rewards processing. Neuroimage 2012, 60, 1678–1685. [Google Scholar] [CrossRef]
- Pan, X.; Sawa, K.; Tsuda, I.; Tsukada, M.; Sakagami, M. Reward prediction based on stimulus categorization in primate lateral prefrontal cortex. Nat. Neurosci. 2008, 11, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Rothé, M.; Quilodran, R.; Sallet, J.; Procyk, E. Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation. J. Neurosci. 2011, 31, 11110–11117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Sakagami, M. Category representation and generalization in the prefrontal cortex. Eur. J. Neurosci. 2012, 35, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Roux, F.; Wibral, M.; Mohr, H.; Singer, W.; Uhlhaas, P. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J. Neurosci. 2012, 32, 12411–12420. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.C.; Gentsch, A.; Schröder, L.; Schütz-Bosbach, S. Cardiac interoceptive learning is modulated by emotional valence perceived from facial expressions. Soc. Cogn. Affect. Neurosci. 2018, 13, 677–686. [Google Scholar] [CrossRef]
- Linkovski, O.; Rodriguez, C.; Wheaton, M.; Henik, A.; Anholt, G. Momentary Induction of Inhibitory Control and Its Effects on Uncertainty. J. Cogn. 2021, 4, 10. [Google Scholar] [CrossRef]
- Kim, H.; Seo, P.; Choi, J.; Kim, K. Emotional arousal due to video stimuli reduces local and inter-regional synchronization of oscillatory cortical activities in alpha-and beta-bands. PLoS ONE 2021, 16, e0255032. [Google Scholar] [CrossRef]
- Jeon, H.; Lee, S. From neurons to social beings: Short review of the mirror neuron system research and its socio-psychological and psychiatric implications. Clin. Psychopharmacol. Neurosci. 2018, 16, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Barrett, L.; Quigley, K.; Bliss-Moreau, E.; Aronson, K. Interoceptive sensitivity and self-reports of emotional experience. J. Personal. Soc. Psychol. 2004, 87, 684. [Google Scholar] [CrossRef] [Green Version]
- Abercrombie, H.; Kalin, N.; Davidson, R. Acute cortisol elevations cause heightened arousal ratings of objectively nonarousing stimuli. Emotion 2005, 5, 354. [Google Scholar] [CrossRef]
- Damasio, A. The fabric of the mind: A neurobiological perspective. Prog. Brain Res. 2000, 126, 457–467. [Google Scholar] [PubMed]
- Clark, L.; Manes, F. Social and emotional decision-making following frontal lobe injury. Neurocase 2004, 10, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, J.; Almeida, O.; Sousa, N. The stressed prefrontal cortex. Left? Right! Brain Behav. Immun. 2008, 22, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.; Thiruchselvam, R.; Todd, R.; Christoff, K. Emotion and the prefrontal cortex: An integrative review. Psychol. Bull. 2017, 143, 1033. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Craig, A. How do you feel–now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef]
- St. Jacques, P.; Grady, C.; Davidson, P.; Chow, T. Emotional evaluation and memory in behavioral variant frontotemporal dementia. Neurocase 2015, 21, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Keil, A.; Gruber, T.; Elbert, T. Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin. Neurophysiol. 1999, 110, 1913–1920. [Google Scholar] [CrossRef] [Green Version]
- Headley, D.; Paré, D. In sync: Gamma oscillations and emotional memory. Front. Behav. Neurosci. 2013, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Greenaway, K.; Kalokerinos, E.; Williams, L. Context is everything (in emotion research). Soc. Personal. Psychol. Compass 2018, 12, e12393. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.; Srinivasan, N.; Tiwary, U.S. Cardiac–Brain Dynamics Depend on Context Familiarity and Their Interaction Predicts Experience of Emotional Arousal. Brain Sci. 2022, 12, 702. https://doi.org/10.3390/brainsci12060702
Mishra S, Srinivasan N, Tiwary US. Cardiac–Brain Dynamics Depend on Context Familiarity and Their Interaction Predicts Experience of Emotional Arousal. Brain Sciences. 2022; 12(6):702. https://doi.org/10.3390/brainsci12060702
Chicago/Turabian StyleMishra, Sudhakar, Narayanan Srinivasan, and Uma Shanker Tiwary. 2022. "Cardiac–Brain Dynamics Depend on Context Familiarity and Their Interaction Predicts Experience of Emotional Arousal" Brain Sciences 12, no. 6: 702. https://doi.org/10.3390/brainsci12060702
APA StyleMishra, S., Srinivasan, N., & Tiwary, U. S. (2022). Cardiac–Brain Dynamics Depend on Context Familiarity and Their Interaction Predicts Experience of Emotional Arousal. Brain Sciences, 12(6), 702. https://doi.org/10.3390/brainsci12060702