Focusing in on the Future of Focused Ultrasound as a Translational Tool
Abstract
:1. Introduction
2. General Issues
2.1. Standardization
2.2. Aiming
2.2.1. CT/MRI-Based Forward Model (K-Wave, Kranion, Sim4Life, etc.)
2.2.2. Acoustic Lenses
2.3. Neuronavigation
2.3.1. Stereotactic Approaches (Brainsight, Visor2, Soterix)
2.3.2. Biomarker Approaches (BOLD, ASL, EEG)
2.3.3. Visualization Approaches (ARFI/Elastography, Contemporaneous TCD, Thermometry)
2.4. Stimulation
2.4.1. Parameter Space
2.4.2. Mechanisms
2.5. Safety
2.5.1. Single Target (Fixed/Movable Focus, Single/Multi-Element) vs. Multiple Target
2.5.2. Adverse Events
2.6. Interfield Comparison
2.7. Usability
2.8. Noise Masking/Sham/Black Gel Pads
3. Single Target vs. Circuit Intervention
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fry, W.; Dunn, F. Some aspects of the present status of ultrasound in fundamental biological research and in medicine (A Report on the Internation Conference of Ultrasonics in Medicine, Los-Angeles, California, September 6–7, 1957). J. Acoust. Soc. Am. 1957, 29, 1374–1375. [Google Scholar] [CrossRef]
- Elias, W.J.; Lipsman, N.; Ondo, W.G.; Ghanouni, P.; Kim, Y.G.; Lee, W.; Schwartz, M.; Hynynen, K.; Lozano, A.M.; Shah, B.B.; et al. A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor. N. Engl. J. Med. 2016, 375, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Fishman, P.; Lipsman, N. Focused ultrasound as an evolving therapy for Parkinson’s disease. Mov. Disord. 2019, 34, 1241–1242. [Google Scholar] [CrossRef] [PubMed]
- Madersbacher, S.; Kratzik, C.; Szabo, N.; Susani, M.; Vingers, L.; Marberger, M. Tissue ablation in benign prostatic hyperplasia with high-intensity focused ultrasound. Eur. Urol. 1993, 23 (Suppl. S1), 39–43. [Google Scholar] [CrossRef]
- Blana, A.; Walter, B.; Rogenhofer, S.; Wieland, W.F. High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience. Urology 2004, 63, 297–300. [Google Scholar] [CrossRef]
- Stewart, E.A.; Rabinovici, J.; Tempany, C.M.; Inbar, Y.; Regan, L.; Gostout, B.; Hesley, G.; Kim, H.S.; Hengst, S.; Gedroyc, W.M. Clinical outcomes of focused ultrasound surgery for the treatment of uterine fibroids. Fertil. Steril. 2006, 85, 22–29. [Google Scholar] [CrossRef]
- Liberman, B.; Gianfelice, D.; Inbar, Y.; Beck, A.; Rabin, T.; Shabshin, N.; Chander, G.; Hengst, S.; Pfeffer, R.; Chechick, A.; et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: A multicenter study. Ann. Surg. Oncol. 2009, 16, 140–146. [Google Scholar] [CrossRef]
- Napoli, A.; Mastantuono, M.; Cavallo Marincola, B.; Anzidei, M.; Zaccagna, F.; Moreschini, O.; Passariello, R.; Catalano, C. Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment. Radiology 2013, 267, 514–521. [Google Scholar] [CrossRef]
- Hagenson, L.C.; Doraiswamy, L.K. Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chem. Eng. Sci. 1998, 53, 131–148. [Google Scholar] [CrossRef]
- Darrow, D.P. Focused Ultrasound for Neuromodulation. Neurotherapeutics 2019, 16, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Izadifar, Z.; Izadifar, Z.; Chapman, D.; Babyn, P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J. Clin. Med. 2020, 9, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowary, P.; Greenberg, B.D. Noninvasive Focused Ultrasound for Neuromodulation: A Review. Psychiatr. Clin. N. Am. 2018, 41, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Tyler, W.J.; Tufail, Y.; Finsterwald, M.; Tauchmann, M.L.; Olson, E.J.; Majestic, C. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS ONE 2008, 3, e3511. [Google Scholar] [CrossRef] [PubMed]
- Badran, B.W.; Caulfield, K.A.; Stomberg-Firestein, S.; Summers, P.M.; Dowdle, L.T.; Savoca, M.; Li, X.; Austelle, C.W.; Short, E.B.; Borckardt, J.J.; et al. Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimul. 2020, 13, 1805–1812. [Google Scholar] [CrossRef]
- Bystritsky, A.; Korb, A.S. A Review of Low-Intensity Transcranial Focused Ultrasound for Clinical Applications. Curr. Behav. Neurosci. Rep. 2015, 2, 60–66. [Google Scholar] [CrossRef] [Green Version]
- George, M.S. Whither TMS: A One-Trick Pony or the Beginning of a Neuroscientific Revolution? Am. J. Psychiatry 2019, 176, 904–910. [Google Scholar] [CrossRef]
- Nelson, T.R.; Fowlkes, J.B.; Abramowicz, J.S.; Church, C.C. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 2009, 28, 139–150. [Google Scholar] [CrossRef] [Green Version]
- United States Food and Drug Administration. Marketing Clearance of Diagnostic Ultrasound Systems and Transducers, Guidance for Industry and Food and Drug Administration Staff. Available online: www.fda.gov/media/71100/download (accessed on 20 December 2021).
- Spivak, N.M.; Korb, A.S.; Reyes, S.D.; Bych, B.P.; Schafer, S.F.; Khanlou, N.; Johnson, E.A.; Schafer, M.E.; Cohen, M.S.; Kuhn, T.; et al. Histological examination of focused ultrasound effects on human brain tissue. Brain Stimul. 2021, 14, 1486–1488. [Google Scholar] [CrossRef]
- Stern, J.M.; Spivak, N.M.; Becerra, S.A.; Kuhn, T.P.; Korb, A.S.; Kronemyer, D.; Khanlou, N.; Reyes, S.D.; Monti, M.M.; Schnakers, C.; et al. Safety of focused ultrasound neuromodulation in humans with temporal lobe epilepsy. Brain Stimul. 2021, 14, 1022–1031. [Google Scholar] [CrossRef]
- Dallapiazza, R.F.; Timbie, K.F.; Holmberg, S.; Gatesman, J.; Lopes, M.B.; Price, R.J.; Miller, G.W.; Elias, W.J. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J. Neurosurg. 2018, 128, 875–884. [Google Scholar] [CrossRef]
- Yoon, K.; Lee, W.; Lee, J.E.; Xu, L.; Croce, P.; Foley, L.; Yoo, S.S. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS ONE 2019, 14, e0224311. [Google Scholar] [CrossRef] [Green Version]
- Sammartino, F.; Beam, D.W.; Snell, J.; Krishna, V. Kranion, an open-source environment for planning transcranial focused ultrasound surgery: Technical note. J. Neurosurg. 2019, 132, 1249–1255. [Google Scholar] [CrossRef]
- Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef]
- Park, T.Y.; Pahk, K.J.; Kim, H. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound. Comput. Methods Programs Biomed. 2019, 179, 104982. [Google Scholar] [CrossRef]
- Zhang, S.; Silburn, P.; Pouratian, N.; Cheeran, B.; Venkatesan, L.; Kent, A.; Schnitzler, A. Comparing Current Steering Technologies for Directional Deep Brain Stimulation Using a Computational Model That Incorporates Heterogeneous Tissue Properties. Neuromodulation 2020, 23, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Neufeld, E.; Szczerba, D.; Chavannes, N.; Kuster, N. A novel medical image data-based multi-physics simulation platform for computational life sciences. Interface Focus 2013, 3, 20120058. [Google Scholar] [CrossRef]
- Neufeld, E.; Kyriakou, A.; Sharma, D.; Kuster, N. Modeling, Effect Prediction, and Planning for EM-and FUS-Based Thermal Treatment. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 1483–1487. [Google Scholar]
- Jiménez-Gambín, S.; Jiménez, N.; Benlloch, J.M.; Camarena, F. Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Phys. Rev. Appl. 2019, 12, 014016. [Google Scholar] [CrossRef]
- Melde, K.; Mark, A.G.; Qiu, T.; Fischer, P. Holograms for acoustics. Nature 2016, 537, 518–522. [Google Scholar] [CrossRef]
- Bystritsky, A.; Spivak, N.M.; Dang, B.H.; Becerra, S.A.; Distler, M.G.; Jordan, S.E.; Kuhn, T.P. Brain circuitry underlying the ABC model of anxiety. J. Psychiatr. Res. 2021, 138, 3–14. [Google Scholar] [CrossRef]
- Monti, M.M.; Schnakers, C.; Korb, A.S.; Bystritsky, A.; Vespa, P.M. Non-Invasive Ultrasonic Thalamic Stimulation in Disorders of Consciousness after Severe Brain Injury: A First-in-Man Report. Brain Stimul. 2016, 9, 940–941. [Google Scholar] [CrossRef]
- Yoo, S.S.; Bystritsky, A.; Lee, J.H.; Zhang, Y.; Fischer, K.; Min, B.K.; McDannold, N.J.; Pascual-Leone, A.; Jolesz, F.A. Focused ultrasound modulates region-specific brain activity. Neuroimage 2011, 56, 1267–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legon, W.; Bansal, P.; Tyshynsky, R.; Ai, L.; Mueller, J.K. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci. Rep. 2018, 8, 10007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Kim, H.; Jung, Y.; Song, I.U.; Chung, Y.A.; Yoo, S.S. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci. Rep. 2015, 5, 8743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fine, J.M.; Fini, M.E.; Mysore, A.S.; Tyler, W.J.; Santello, M. Response inhibition is driven by top-down network mechanisms and enhanced with focused ultrasound. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Woletz, M.; Tik, M.; Pratapa, N.; Prinčič, M.; Schuler, A.; Windischberger, C. Real-time neuronavigation feedback in concurrent TMS-fMRI. Brain Stimul. 2019, 12, 574–575. [Google Scholar] [CrossRef]
- Kyriakou, A.; Neufeld, E.; Werner, B.; Paulides, M.M.; Szekely, G.; Kuster, N. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int. J. Hyperth. 2014, 30, 36–46. [Google Scholar] [CrossRef]
- Legon, W.; Sato, T.F.; Opitz, A.; Mueller, J.; Barbour, A.; Williams, A.; Tyler, W.J. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 2014, 17, 322–329. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, Y.; Wang, X.; Li, X. Closed-Loop Transcranial Ultrasound Stimulation for Real-Time Non-invasive Neuromodulation in vivo. Front. Neurosci. 2020, 14, 445. [Google Scholar] [CrossRef]
- Spivak, N.M.; Kuhn, T.P. Variations in targeting techniques of focused ultrasound for use in neuromodulation. Brain Stimul. 2019, 12, 1595–1596. [Google Scholar] [CrossRef]
- Ozenne, V.; Constans, C.; Bour, P.; Santin, M.D.; Valabregue, R.; Ahnine, H.; Pouget, P.; Lehericy, S.; Aubry, J.F.; Quesson, B. MRI monitoring of temperature and displacement for transcranial focus ultrasound applications. Neuroimage 2020, 204, 116236. [Google Scholar] [CrossRef]
- Rieke, V.; Butts Pauly, K. MR thermometry. J. Magn. Reson. Imaging 2008, 27, 376–390. [Google Scholar] [CrossRef]
- Chaplin, V.; Phipps, M.A.; Jonathan, S.V.; Grissom, W.A.; Yang, P.F.; Chen, L.M.; Caskey, C.F. On the accuracy of optically tracked transducers for image-guided transcranial ultrasound. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1317–1327. [Google Scholar] [CrossRef]
- Phipps, M.A.; Jonathan, S.V.; Yang, P.F.; Chaplin, V.; Chen, L.M.; Grissom, W.A.; Caskey, C.F. Considerations for ultrasound exposure during transcranial MR acoustic radiation force imaging. Sci. Rep. 2019, 9, 16235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coussios, C.C.; Holland, C.K.; Shaw, G.J. Transmission of a large unfocused 120-kHz and 1-MHz ultrasound beam through the human skull. J. Acoust. Soc. Am. 2002, 112, 2433. [Google Scholar] [CrossRef]
- Daffertshofer, M.; Gass, A.; Ringleb, P.; Sitzer, M.; Sliwka, U.; Els, T.; Sedlaczek, O.; Koroshetz, W.J.; Hennerici, M.G. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: Results of a phase II clinical trial. Stroke 2005, 36, 1441–1446. [Google Scholar] [CrossRef] [Green Version]
- Vion-Bailly, J.; N’Djin, W.A.; Suarez Castellanos, I.M.; Mestas, J.L.; Carpentier, A.; Chapelon, J.Y. A causal study of the phenomenon of ultrasound neurostimulation applied to an in vivo invertebrate nervous model. Sci. Rep. 2019, 9, 13738. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.G.; Kamimura, H.A.S.; Lee, S.A.; Aurup, C.; Kwon, N.; Konofagou, E.E. Image-guided focused ultrasound modulates electrically evoked motor neuronal activity in the mouse peripheral nervous system in vivo. J. Neural Eng. 2020, 17, 026026. [Google Scholar] [CrossRef]
- Kubanek, J.; Shi, J.; Marsh, J.; Chen, D.; Deng, C.; Cui, J. Ultrasound modulates ion channel currents. Sci. Rep. 2016, 6, 24170. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.E.; Juranka, P.F. Nav channel mechanosensitivity: Activation and inactivation accelerate reversibly with stretch. Biophys. J. 2007, 93, 822–833. [Google Scholar] [CrossRef] [Green Version]
- Korb, A.S.; Shellock, F.G.; Cohen, M.S.; Bystritsky, A. Low-intensity focused ultrasound pulsation device used during magnetic resonance imaging: Evaluation of magnetic resonance imaging-related heating at 3 Tesla/128 MHz. Neuromodulation 2014, 17, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Darrow, D.P.; O’Brien, P.; Richner, T.J.; Netoff, T.I.; Ebbini, E.S. Reversible neuroinhibition by focused ultrasound is mediated by a thermal mechanism. Brain Stimul. 2019, 12, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Plaksin, M.; Kimmel, E.; Shoham, S. Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation. eNeuro 2016, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.E.; Spivak, N.M.; Korb, A.S.; Bystritsky, A. Design, Development, and Operation of a Low-Intensity Focused Ultrasound Pulsation (LIFUP) System for Clinical Use. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 54–64. [Google Scholar] [CrossRef]
- Legon, W.; Adams, S.; Bansal, P.; Patel, P.D.; Hobbs, L.; Ai, L.; Mueller, J.K.; Meekins, G.; Gillick, B.T. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci. Rep. 2020, 10, 5573. [Google Scholar] [CrossRef]
- Schiff, N.D.; Giacino, J.T.; Kalmar, K.; Victor, J.D.; Baker, K.; Gerber, M.; Fritz, B.; Eisenberg, B.; Biondi, T.; O’Connor, J.; et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007, 448, 600–603. [Google Scholar] [CrossRef]
- Cain, J.A.; Spivak, N.M.; Coetzee, J.P.; Crone, J.S.; Johnson, M.A.; Lutkenhoff, E.S.; Real, C.; Buitrago-Blanco, M.; Vespa, P.M.; Schnakers, C.; et al. Ultrasonic thalamic stimulation in chronic disorders of consciousness. Brain Stimul. 2021, 14, 301–303. [Google Scholar] [CrossRef]
- Bronstein, J.M.; Tagliati, M.; Alterman, R.L.; Lozano, A.M.; Volkmann, J.; Stefani, A.; Horak, F.B.; Okun, M.S.; Foote, K.D.; Krack, P.; et al. Deep brain stimulation for Parkinson disease: An expert consensus and review of key issues. Arch. Neurol. 2011, 68, 165. [Google Scholar] [CrossRef]
- Suthana, N.; Haneef, Z.; Stern, J.; Mukamel, R.; Behnke, E.; Knowlton, B.; Fried, I. Memory enhancement and deep-brain stimulation of the entorhinal area. N. Engl. J. Med. 2012, 366, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Novey, W. Are all rTMS machines equal? New research suggests there may be clinically significant differences. Ment. Illn. 2019, 11, 8125. [Google Scholar] [CrossRef] [PubMed]
- Bass, H.E.; Sutherland, L.C.; Zuckerwar, A.J. Atmospheric absorption of sound: Update. J. Acoust. Soc. Am. 1990, 88, 2019–2021. [Google Scholar] [CrossRef]
- Raymond, S.B.; Hynynen, K. Acoustic transmission losses and field alterations due to human scalp hair. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Eames, M.D.; Hananel, A.; Snell, J.W.; Kassell, N.F.; Aubry, J.F. Trans-cranial focused ultrasound without hair shaving: Feasibility study in an ex vivo cadaver model. J. Ther. Ultrasound 2013, 1, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cain, J.A.; Visagan, S.; Johnson, M.A.; Crone, J.; Blades, R.; Spivak, N.M.; Shattuck, D.W.; Monti, M.M. Real time and delayed effects of subcortical low intensity focused ultrasound. Sci. Rep. 2021, 11, 6100. [Google Scholar] [CrossRef]
- Braun, V.; Blackmore, J.; Cleveland, R.O.; Butler, C.R. Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked. Brain Stimul. 2020, 13, 1527–1534. [Google Scholar] [CrossRef]
- Piercy, M.A.; Sramek, J.J.; Kurtz, N.M.; Cutler, N.R. Placebo response in anxiety disorders. Ann. Pharmacother. 1996, 30, 1013–1019. [Google Scholar] [CrossRef]
- Mahdavi, K.; Packham, H.; Nicodemus, N.; Jordan, S.; Iovine, J.; Duncan, J.; Becerra, S.; Spivak, N.; Kuhn, T.; Whitney, M.; et al. Focused ultrasound as a potential means of facilitated exosome delivery to brodmann area 25 in the treatment of refractory depression. Brain Stimul. 2019, 12, 544–545. [Google Scholar] [CrossRef]
- Thibaut, A.; Bruno, M.A.; Ledoux, D.; Demertzi, A.; Laureys, S. tDCS in patients with disorders of consciousness: Sham-controlled randomized double-blind study. Neurology 2014, 82, 1112–1118. [Google Scholar] [CrossRef]
- Giacobbe, P.; Mithani, K.; Bhat, V.; Meng, Y. Neurocircuitry-Based Treatments for Major Depressive Disorder. In Major Depressive Disorder; Elsevier: Toronto, Canada, 2020; pp. 121–129. [Google Scholar] [CrossRef]
- Mobbs, D.; Headley, D.B.; Ding, W.; Dayan, P. Space, Time, and Fear: Survival Computations along Defensive Circuits. Trends Cogn. Sci. 2020, 24, 228–241. [Google Scholar] [CrossRef]
- Babaev, O.; Piletti Chatain, C.; Krueger-Burg, D. Inhibition in the amygdala anxiety circuitry. Exp. Mol. Med. 2018, 50, 18. [Google Scholar] [CrossRef] [Green Version]
- Schiff, N.D. Recovery of consciousness after brain injury: A mesocircuit hypothesis. Trends Neurosci. 2010, 33, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spivak, N.M.; Tyler, W.J.; Bari, A.A.; Kuhn, T. Ultrasound as a Neurotherapeutic: A Circuit- and System-Based Interrogation. Focus 2022, 20. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spivak, N.M.; Sanguinetti, J.L.; Monti, M.M. Focusing in on the Future of Focused Ultrasound as a Translational Tool. Brain Sci. 2022, 12, 158. https://doi.org/10.3390/brainsci12020158
Spivak NM, Sanguinetti JL, Monti MM. Focusing in on the Future of Focused Ultrasound as a Translational Tool. Brain Sciences. 2022; 12(2):158. https://doi.org/10.3390/brainsci12020158
Chicago/Turabian StyleSpivak, Norman M., Joseph L. Sanguinetti, and Martin M. Monti. 2022. "Focusing in on the Future of Focused Ultrasound as a Translational Tool" Brain Sciences 12, no. 2: 158. https://doi.org/10.3390/brainsci12020158