Beyond the Dorsal Column Medial Lemniscus in Proprioception and Stroke: A White Matter Investigation
Abstract
:1. Introduction
1.1. Superior Longitudinal Fasciculus
1.2. Arcuate Fasciculus
1.3. Middle Longitudinal Fasciculus
1.4. Aims and Hypothesis
2. Materials and Methods
2.1. Participant Recruitment
2.2. MRI Acquisition
2.2.1. Diffusion-Weighted Imaging
2.2.2. T1-Weighted Imaging
2.2.3. FLAIR Imaging
2.3. Image Pre-Processing
2.4. Probabilistic Tractography of SLF I, II, III, AF and MdLF
2.5. Proprioceptive Network Connectivity
2.6. Lesion Marking and Registration
2.7. Control Tracts and Lesion Overlap
2.8. Robotic Assessments
APM Task Score
2.9. Clinical Assessment
2.10. Statistical Analysis
2.10.1. Analysis of Variance
2.10.2. Linear Regression
2.10.3. Logistic Regression
3. Results
3.1. Participant Demographics
3.2. Lesion and Tract Information
3.3. Differences in APM Task Scores with White Matter Tract Lesions of the SLF I, SLF II, SLF III, AF and MdLF
3.3.1. SLF I
3.3.2. SLF II
3.3.3. SLF III
3.3.4. AF
3.3.5. MdLF
3.4. Differences in FA between Those Impaired and Those Unimpaired on the APM Task
3.4.1. SLF III
3.4.2. AF
3.5. Differences in MD and Tract Volume between Those Impaired and Those Unimpaired on the APM Task
3.6. Relationship between FA, MD, Tract Volume and APM Task Scores
3.7. Classification of APM Task Impairments from Connectome and Diffusion Data
4. Discussion
4.1. The Superior Longitudinal Fasciculus in Human Proprioception
4.2. The Arcuate Fasciculus in Imitation
4.3. The Middle Longitudinal Fasciculus, Superior Longitudinal Fasciculus and Attention
4.4. Proprioceptive Network Connectivity Predicts Proprioceptive Impairment
4.5. Limitations
4.6. Clinical Significance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sherrington, C.S. On the proprioceptive system, especially in its reflex aspect. Brain 1906, 29, 467–482. [Google Scholar] [CrossRef]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef] [PubMed]
- Sarlegna, F.R.; Sainburg, R.L. The roles of vision and proprioception in the planning of reaching movements. Adv. Exp. Med. Biol. 2009, 629, 317–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connell, L.A.; Lincoln, N.B.; Radford, K.A. Somatosensory impairment after stroke: Frequency of different deficits and their recovery. Clin. Rehabil. 2008, 22, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Dukelow, S.P.; Herter, T.M.; Bagg, S.D.; Scott, S.H. The independence of deficits in position sense and visually guided reaching following stroke. J. Neuroeng. Rehabil. 2012, 9, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.L.; Akhtar, A.J.; Garraway, W.M. Proprioception and spatial neglect after stroke. Age Ageing 1983, 12, 63–69. [Google Scholar] [CrossRef]
- Tyson, S.F.; Hanley, M.; Chillala, J.; Selley, A.; Tallis, R. Sensory loss in hospital-admitted people with stroke: Characteristics, associated factors, and relationship with function. Neurorehabil. Neural. Repair 2008, 22, 166–172. [Google Scholar] [CrossRef]
- Meyer, S.; Karttunen, A.H.; Thijs, V.; Heys, H.; Verheyden, G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review. Phys. Ther. 2014, 94, 1220–1231. [Google Scholar] [CrossRef] [Green Version]
- Rand, D. Proprioception deficits in chronic stroke: Upper extremity function and daily living. PLoS ONE 2018, 13, e0195043. [Google Scholar] [CrossRef] [Green Version]
- Gardner, E.; Johnson, K. The Somatosensory System: Receptors and central pathways. In Principals of Neural Science; Kandell, E., Schwartz, J., Jessell, T., Siegelbaum, S., Hudspeth, A., Eds.; McGraw-Hill: New York, NY, USA, 2013; pp. 473–497. [Google Scholar]
- Amemiya, K.; Naito, E. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement. Cortex 2016, 78, 15–30. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Smith, E.E.; Eichler, F.S.; Filley, C.M. Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. N. Y. Acad. Sci. 2008, 1142, 266–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findlater, S.E.; Mazerolle, E.L.; Pike, G.B.; Dukelow, S.P. Proprioception and motor performance after stroke: An examination of diffusion properties in sensory and motor pathways. Hum. Brain Mapp. 2019, 40, 2995–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiller, C.; Jüptner, M.; Fellows, S.; Rijntkes, M.; Leonhardt, G.; Kiebel, S.; Müller, S.; Diener, H.C.; Thilmann, A.F. Brain representation of active and passive movements. Neuroimage 1996, 4, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenzie, J.M.; Findlater, S.E.; Pittman, D.J.; Goodyear, B.G.; Dukelow, S.P. Errors in proprioceptive matching post-stroke are associated with impaired recruitment of parietal, supplementary motor, and temporal cortices. Brain Imaging Behav. 2019, 13, 1635–1649. [Google Scholar] [CrossRef]
- Kenzie, J.M.; Semrau, J.A.; Findlater, S.E.; Yu, A.Y.; Desai, J.A.; Herter, T.M.; Hill, M.D.; Scott, S.H.; Dukelow, S.P. Localization of impaired kinesthetic processing post-stroke. Front. Hum. Neurosci. 2016, 10, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findlater, S.E.; Desai, J.A.; Semrau, J.A.; Kenzie, J.M.; Rorden, C.; Herter, T.M.; Scott, S.H.; Dukelow, S.P. Central perception of position sense involves a distributed neural network—Evidence from lesion-behavior analyses. Cortex 2016, 79, 42–56. [Google Scholar] [CrossRef]
- Findlater, S.E.; Hawe, R.L.; Semrau, J.A.; Kenzie, J.M.; Yu, A.Y.; Scott, S.H.; Dukelow, S.P. Lesion locations associated with persistent proprioceptive impairment in the upper limbs after stroke. Neuroimage Clin. 2018, 20, 955–971. [Google Scholar] [CrossRef]
- Naito, E.; Nakashima, T.; Kito, T.; Aramaki, Y.; Okada, T.; Sadato, N. Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Eur. J. Neurosci. 2007, 25, 3476–3487. [Google Scholar] [CrossRef]
- Naito, E.; Toland, P.; Ehrsson, H. I feel my hand moving: A new role of the primary motor cortex in somatic perception of limb movement. Neuron 2002, 36, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Naito, E.; Roland, P.E.; Grefkes, C.; Choi, H.J.; Eickhoff, S.; Geyer, S.; Zilles, K.; Ehrsson, H.H. Dominance of the right hemisphere and role of area 2 in human kinesthesia. J. Neurophysiol. 2005, 93, 1020–1034. [Google Scholar] [CrossRef]
- Mima, T.; Sadato, N.; Yazawa, S.; Hanakawa, T.; Fukuyama, H.; Yonekura, Y.; Shibasaki, H. Brain structures related to active and passive finger movements in man. Brain 1999, 122, 1989–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Shabat, E.; Matyas, T.A.; Pell, G.S.; Brodtmann, A.; Carey, L. The right supramarginal gyrus is important for proprioception in healthy and stroke-affected participants: A functional MRI study. Front. Neurol. 2015, 6, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alary, F.; Simões, C.; Jousmäki, V.; Forss, N.; Hari, R. Cortical activation associated with passive movements of the human index finger: An MEG study. Neuroimage 2002, 15, 691–696. [Google Scholar] [CrossRef]
- Burks, J.D.; Boettcher, L.B.; Conner, A.K.; Glenn, C.A.; Bonney, P.A.; Baker, C.M.; Briggs, R.G.; Pittman, N.A.; O’Donoghue, D.L.; Wu, D.H.; et al. White matter connections of the inferior parietal lobule: A study of surgical anatomy. Brain Behav. 2017, 7, e00640. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Pandya, D.N.; Wang, R.; Dai, G.; D’Arceuil, H.E.; de Crespigny, A.J.; Wedeen, V.J. Association fibre pathways of the brain: Parallel observations from diffusion spectrum imaging and autoradiography. Brain 2007, 130, 630–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makris, N.; Kennedy, D.N.; McInerney, S.; Sorensen, A.G.; Wang, R.; Caviness, V.S., Jr.; Pandya, D.N. Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex 2005, 15, 854–869. [Google Scholar] [CrossRef]
- Petrides, M.; Pandya, D.N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 1984, 228, 105–116. [Google Scholar] [CrossRef]
- Déjerine, J.J. Anatomie Des Centres Nerveux. Vol 1; Rueff et cie: Paris, France, 1895. [Google Scholar]
- Déjerine, J.J. Anatomie Des Centres Nerveux. Vol 2; Rueff et cie: Paris, France, 1901. [Google Scholar]
- Burdach, K.F. Vom bau und Leben des Gehirns und Rückenmarks. Vol 3; der Dyk’chen buchandlung: Leipzig, Germany, 1819. [Google Scholar]
- Wernicke, C. Photographischer atlas de gehirns: Schniktte durch dasmenschliche gehirn in photographischen originalen. In Frontalschnitte Durch Eine Grosshirn—Hemisphaüre; Franck, Weigert, Eds.; Schletter’schen buchhandlung: Breslau, Germany, 1897. [Google Scholar]
- Schmahmann, J.D.; Pandya, D.N. Fiber Pathways of the Brain; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Petrides, M.; Pandya, D.N. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J. Comp. Neurol. 1988, 273, 52–66. [Google Scholar] [CrossRef]
- Geschwind, N. The organization of language and the brain. Science 1970, 170, 940–944. [Google Scholar] [CrossRef]
- Geschwind, N. Disconnexion syndromes in animals and man. II. Brain 1965, 88, 585–644. [Google Scholar] [CrossRef]
- Petrides, M.; Pandya, D.N. Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol. 2009, 7, e1000170. [Google Scholar] [CrossRef] [Green Version]
- Dick, A.S.; Tremblay, P. Beyond the arcuate fasciculus: Consensus and controversy in the connectional anatomy of language. Brain 2012, 135, 3529–3550. [Google Scholar] [CrossRef] [Green Version]
- Wernicke, C. The symptom-complex of aphasia. In Diseases of the Nervous System; Appleton: New York, NY, USA, 1908; pp. 265–324. [Google Scholar]
- Von Monakow, C. Gehirnpathologie; Alfred Hölder: Vienna, Austria, 1897. [Google Scholar]
- Catani, M.; Howard, R.J.; Pajevic, S.; Jones, D.K. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 2002, 17, 77–94. [Google Scholar] [CrossRef] [Green Version]
- de Schotten, M.T.; Dell’Acqua, F.; Valabregue, R.; Catani, M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 2012, 48, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.; Campbell, J.S.W.; Pike, G.B.; Petrides, M. Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J. Neurosci. 2008, 28, 11435–11444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal, B.; Altman, N. The connectivity of the superior longitudinal fasciculus: A tractography DTI study. Magn. Reson. Imaging 2010, 28, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Catani, M.; Mesulam, M. The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex 2008, 44, 953–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilman, K.M.; Watson, R.T. The disconnection apraxias. Cortex 2008, 44, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Doricchi, F.; de Schotten, M.T.; Tomaiuolo, F.; Bartolomeo, P. White matter (dis)connections and gray matter (dys)functions in visual neglect: Gaining insights into the brain networks of spatial awareness. Cortex 2008, 44, 983–995. [Google Scholar] [CrossRef] [PubMed]
- He, B.J.; Snyder, A.Z.; Vincent, J.L.; Epstein, A.; Shulman, G.L.; Corbetta, M. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 2007, 53, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Seltzer, B.; Pandya, D.N. Further Observations on Parieto-Temporal Connections in the Rhesus Monkey; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Menjot de Champfleur, N.; Maldonado, I.L.; Moritz-Gasser, S.; Machi, P.; Le Bars, E.; Bonafé, A.; Duffau, H. Middle longitudinal fasciculus delineation within language pathways: A diffusion tensor imaging study in human. Eur. J. Radiol. 2013, 82, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Makris, N.; Papadimitriou, G.M.; Kaiser, J.R.; Sorg, S.; Kennedy, D.N.; Pandya, D.N. Delineation of the middle longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex 2009, 19, 777–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makris, N.; Preti, M.G.; Asami, T.; Pelavin, P.; Campbell, B.; Papadimitriou, G.M.; Kaiser, J.; Baselli, G.; Westin, C.F.; Shenton, M.E.; et al. Human middle longitudinal fascicle: Variations in patterns of anatomical connections. Brain Struct. Funct. 2013, 218, 951–968. [Google Scholar] [CrossRef] [Green Version]
- Makris, N.; Preti, M.G.; Wassermann, D.; Rathi, Y.; Papadimitriou, G.M.; Yergatian, C.; Dickerson, B.C.; Shenton, M.E.; Kubicki, M. Human middle longitudinal fascicle: Segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav. 2013, 7, 335–352. [Google Scholar] [CrossRef]
- Kalyvas, A.; Koutsarnakis, C.; Komaitis, S.; Karavasilis, E.; Christidi, F.; Skandalakis, G.P.; Liouta, E.; Papkonstantinou, O.; Kelekis, N.; Duffau, H.; et al. Mapping the human middle longitudinal fasciculus through a focused anatomo-imaging study: Shifting the paradigm of its segmentation and connectivity pattern. Brain Struct. Funct. 2020, 225, 85–119. [Google Scholar] [CrossRef] [PubMed]
- Latini, F.; Trevisi, G.; Fahlström, M.; Jemstedt, M.; Munkhammar, A.A.; Zetterling, M.; Hesselager, G.; Ryttlefors, M. New insights into the anatomy, connectivity and clinical implications of the middle longitudinal fasciculus. Front. Neuroanat. 2021, 14, 610324. [Google Scholar] [CrossRef]
- Wang, Y.; Fernández-Miranda, J.C.; Verstynen, T.; Pathak, S.; Schneider, W.; Yeh, F.C. Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cerebral Cortex 2013, 23, 2347–2356. [Google Scholar] [CrossRef] [Green Version]
- Chilvers, M.J.; Hawe, R.L.; Scott, S.H.; Dukelow, S.P. Investigating the neuroanatomy underlying proprioception using a stroke model. J. Neurol. Sci. 2021, 430, 120029. [Google Scholar] [CrossRef]
- Fisher, G.; Quel de Oliveira, C.; Verhagen, A.; Gandevia, S.; Kennedy, D. Proprioceptive impairment in unilateral neglect after stroke: A systematic review. SAGE Open Med. 2020, 8, 205031212095107. [Google Scholar] [CrossRef] [PubMed]
- Semrau, J.A.; Herter, T.M.; Scott, S.H.; Dukelow, S.P. Examining differences in patterns of sensory and motor recovery after stroke with robotics. Stroke 2015, 46, 3459–3469. [Google Scholar] [CrossRef]
- Morita, T.; Saito, D.N.; Ban, M.; Shimada, K.; Okamoto, Y.; Kosaka, H.; Okazawa, H.; Asada, M.; Naito, E. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network. Neuroscience 2017, 348, 288–301. [Google Scholar] [CrossRef] [PubMed]
- van Heugten, C.M.; Dekker, J.; Deelman, B.G.; Stehmann-Saris, F.C.; Kinebanian, A. A diagnostic test for apraxia in stroke patients: Internal consistency and diagnostic value. Clin. Neuropsychol. 1999, 13, 182–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baird, A.E.; Benfield, A.; Schlaug, G.; Siewert, B.; Lövblad, K.O.; Edelman, R.R.; Warach, S. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann. Neurol. 1997, 41, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Schwamm, L.H.; Koroshetz, W.J.; Sorensen, A.G.; Wang, B.; Copen, W.A.; Budzik, R.; Rordorf, G.; Buonanno, F.S.; Schaefer, P.W.; Gonzalez, R.G. Time course of lesion development in patients with acute stroke: Serial diffusion- and hemodynamic-weighted magnetic resonance imaging. Stroke 1998, 29, 2268–2276. [Google Scholar] [CrossRef] [Green Version]
- Puig, J.; Blasco, G.; Daunis-I-Estadella, J.; Thomalla, G.; Castellanos, M.; Figueras, J.; Remollo, S.; van Eendenburg, C.; Sánchez-González, J.; Serena, J.; et al. Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. Stroke 2013, 44, 2016–2018. [Google Scholar] [CrossRef] [Green Version]
- Puig, J.; Pedraza, S.; Blasco, G.; Daunis-I-Estadella, J.; Prats, A.; Prados, F.; Boada, I.; Castellanos, M.; Sánchez-González, J.; Remollo, S.; et al. Wallerian degeneration in the corticospinal tract evaluated by diffusion tensor imaging correlates with motor deficit 30 days after middle cerebral artery ischemic stroke. Am. J. Neuroradiol. 2010, 31, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Takenobu, Y.; Hayashi, T.; Moriwaki, H.; Nagatsuka, K.; Naritomi, H.; Fukuyama, H. Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke. Neuroimage Clin. 2014, 4, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. FSL. Neuroimage 2012, 62, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Woolrich, M.W.; Jbabdi, S.; Patenaude, B.; Chappell, M.; Makni, S.; Behrens, T.; Beckmann, C.; Jenkinson, M.; Smith, S.M. Bayesian analysis of neuroimaging data in FSL. Neuroimage 2009, 45, S173–S186. [Google Scholar] [CrossRef]
- Andersson, J.L.R.; Skare, S.; Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. Neuroimage 2003, 20, 870–888. [Google Scholar] [CrossRef]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.J.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004, 23, S208–S219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, J.L.R.; Sotiropoulos, S.N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016, 125, 1063–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkinson, M.; Bannister, P.; Brady, J.M.; Smith, S.M. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Smith, S. A global optimisation method for robust affine registration of brain images. Medical Image Analysis. 2001, 5, 143–156. [Google Scholar] [CrossRef]
- Warrington, S.; Bryant, K.L.; Khrapitchev, A.A.; Sallet, J.; Charquero-Ballester, M.; Douaud, G.; Jbabdi, S.; Mars, R.B.; Sotiropoulos, S.N. XTRACT—Standardised protocols for automated tractography in the human and macaque brain. Neuroimage 2020, 217, 116923. [Google Scholar] [CrossRef]
- Rorden, C.; Karnath, H.O.; Bonilha, L. Improving lesion-symptom mapping. J. Cogn. Neurosci. 2007, 19, 1081–1088. [Google Scholar] [CrossRef]
- Dukelow, S.P.; Herter, T.M.; Moore, K.D.; Demers, M.J.; Glasgow, J.I.; Bagg, S.D.; Norman, K.E.; Scott, S.H. Quantitative assessment of limb position sense following stroke. Neurorehabil. Neural. Repair. 2010, 24, 178–187. [Google Scholar] [CrossRef]
- Dexterit-E 3.9 Addendum: Kinarm Standard Tests Summary; BKIN Technologies Ltd: Kingston, ON, Canada, 2021; Available online: https://kinarm.com/download/kst-summary-analysis-version-3-9/ (accessed on 25 March 2021).
- Simmatis, L.E.R.; Early, S.; Moore, K.D.; Appaqaq, S.; Scott, S.H. Statistical measures of motor, sensory and cognitive performance across repeated robot-based testing. J. Neuroeng. Rehabil. 2020, 17, 1–12. [Google Scholar] [CrossRef]
- Gowland, C.; Stratford, P.; Ward, M.; Moreland, J.; Torresin, W.; Van Hullenaar, S.; Sanford, J.; Barreca, S.; Vanspall, B.; Plews, N. Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 1993, 24, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.; Cockburn, J.; Halligan, P. Development of a behavioral test of visuospatial neglect. Arch. Phys. Med. Rehabil. 1987, 68, 98–102. [Google Scholar]
- Keith, R.A.; Granger, C.V.; Hamilton, B.B.; Sherwin, F.S. The functional independence measure: A new tool for rehabilitation. Adv. Clin. Rehabil. 1987, 1, 6–18. [Google Scholar] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Molinaro, A.M.; Simon, R.; Pfeiffer, R.M. Prediction error estimation: A comparison of resampling methods. Bioinformatics 2005, 21, 3301–3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radovanovic, S.; Korotkov, A.; Ljubisavljevic, M.; Lyskov, E.; Thunberg, J.; Kataeva, G.; Danko, S.; Roudoas, M.; Pakhomov, S.; Medvedev, S.; et al. Comparison of brain activity during different types of proprioceptive inputs: A positron emission tomography study. Exp. Brain Res. 2002, 143, 276–285. [Google Scholar] [CrossRef]
- van de Winckel, A.; Wenderoth, N.; de Weerdt, W.; Sunaert, S.; Peeters, R.; Van Hecke, W.; Thijs, V.; Swinnen, S.P.; Perfetti, C.; Feys, H. Frontoparietal involvement in passively guided shape and length discrimination: A comparison between subcortical stroke patients and healthy controls. Exp. Brain Res. 2012, 220, 179–189. [Google Scholar] [CrossRef]
- Naito, E.; Morita, T.; Saito, D.N.; Ban, M.; Shimada, K.; Okamoto, Y.; Kosaka, H.; Okazawa, H.; Asada, M. Development of right-hemispheric dominance of inferior parietal lobule in proprioceptive illusion task. Cerebral Cortex 2017, 27, 5385–5397. [Google Scholar] [CrossRef] [Green Version]
- Romaiguere, P.; Anton, J.-L.; Roth, M.; Casini, L.; Roll, J.P. Motor and parietal cortical areas both underlie kinaesthesia. Cogn. Brain Res. 2003, 16, 74–82. [Google Scholar] [CrossRef]
- Goble, D.J.; Coxon, J.P.; van Impe, A.; Guerts, M.; Van Hecke, W.; Sunaert, S.; Wenderoth, N.; Swinnen, S.P. The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen. Hum. Brain Mapp. 2012, 33, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Ehrsson, H.; Fagergren, A.; Jonsson, T.; Westling, G.; Johansson, R.S.; Forssberg, H. Cortical activity in precision-versus power-grip tasks: An fMRI study. J. Neurophysiol. 2000, 83, 528–536. [Google Scholar] [CrossRef]
- Brozzoli, C.; Gentile, G.; Henrik Ehrsson, H. That’s near my hand! Parietal and premotor coding of hand-centered space contributes to localization and self-attribution of the hand. J. Neurosci. 2012, 32, 14573–14582. [Google Scholar] [CrossRef]
- Galati, G.; Committeri, G.; Sanes, J.N.; Pizzamiglio, L. Spatial coding of visual and somatic sensory information in body-centred coordinates. Eur. J. Neurosci. 2001, 14, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Kamali, A.; Flanders, A.E.; Brody, J.; Hunter, J.V.; Hasan, K.M. Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct. Funct. 2014, 219, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Luppino, G.; Murata, A.; Govoni, P.; Matelli, M. Largely segregated parietofrontal connections linking rostralintraparietal cortex (areas AIP and VIP) and the ventral premotorcortex (areas F5 and F4). Exp. Brain Res. 1999, 128, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M.V.; Zhong, A.; Turken, A.; Baldo, J.V.; Dronkers, N.F. Functional contributions of the arcuate fasciculus to language processing. Front. Hum. Neurosci. 2021, 15, 672665. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, G.; Karnath, H.O. The neural basis of imitation is body part specific. J. Neurosci. 2006, 26, 6282–6287. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, M.W.; Buxbaum, L.J.; Wong, A.L. Proprioception-based movement goals support imitation and are disrupted in apraxia. Cortex 2022, 147, 140–156. [Google Scholar] [CrossRef]
- Suchan, J.; Umarova, R.; Schnell, S.; Himmelbach, M.; Weiller, C.; Karnath, H.O.; Saur, D. Fiber pathways connecting cortical areas relevant for spatial orienting and exploration. Hum. Brain Mapp. 2014, 35, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Doricchi, F.; Tomaiuolo, F. The anatomy of neglect without hemianopia: A key role for parietal-frontal disconnection? Neuroreport 2003, 14, 2239–2243. [Google Scholar] [CrossRef]
- Karnath, H.O.; Ferber, S.; Himmelback, M. Spatial awareness is a function of the temporal not posterior parietal lobe. Nature 2001, 411, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Rengachary, J.; He, B.J.; Shulman, G.L.; Corbetta, M. A behavioral analysis of spatial neglect and its recovery after stroke. Front. Hum. Neurosci. 2011, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Karnath, H.O.; Rorden, C.; Ticini, L.F. Damage to white matter fiber tracts in acute spatial neglect. Cerebral Cortex 2009, 19, 2331–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karnath, H.O.; Rorden, C. The anatomy of spatial neglect. Neuropsychologia 2012, 50, 1010–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karnath, H.O. A right perisylvian neural network for human spatial orienting. In The Cognitive Neurosciences IV; Gazzaniga, M.S., Ed.; MIT Press: Cambridge, UK, 2009; pp. 259–268. [Google Scholar]
- Tremblay, P.; Perron, M.; Deschamps, I.; Kennedy-Higgins, D.; Houde, J.C.; Dick, A.S.; Descoteaux, M. The role of the arcuate and middle longitudinal fasciculi in speech perception in noise in adulthood. Hum. Brain Mapp. 2019, 40, 226–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garraway, W.M.; Akhtar, A.J.; Gore, S.M.; Prescott, R.J.; Smith, R.G. Observer variation in the clinical assessment of stroke. Age Ageing 1976, 5, 233–240. [Google Scholar] [CrossRef]
- Carey, L.M.; Oke, L.E.; Matyas, T.A. Impaired limb position sense after stroke: A quantitative test for clinical use. Arch. Phys. Med. Rehabil. 1996, 77, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
Stroke | Controls | |
---|---|---|
Age (mean ± sd) | 63.0 ± 13.4 | 62.1 ± 6.2 |
Sex n[M,F] | [16, 10] | [3, 4] |
Handedness n[L,A,R] | [0, 1, 25] | [0, 0, 7] |
Lesioned Hemisphere n[L,R] | [7, 19] | N/A |
Affected Arm n[L,R] | [19, 7] | N/A |
Lesion Volume (mean ± sd) | 11.97 cc ± 16.60 cc | N/A |
BIT (median:range) | 143: 100–146 | N/A |
FIM (median: range) * | 101: 70–126 | N/A |
CMSA affected arm n [1,2,3,4,5,6,7] | [0, 3, 4, 3, 6, 5, 5] | N/A |
CMSA unaffected arm n [1,2,3,4,5,6,7] | [0, 0, 0, 0, 1, 3, 22] | N/A |
MoCA (median: range) $ | 25: 15–30 | N/A |
Days from Stroke to Imaging (mean ± sd) | 27.1 ± 11.2 | N/A |
Days from Stroke to Clinical (mean ± sd) | 21.3 ± 11.0 | N/A |
Days from Stroke to Robot time (mean ± sd) | 22.6 ± 11.9 | N/A |
Intercept | Coefficient | p-Value | |
---|---|---|---|
SLF I | |||
FA | 4.96 | −6.61 | 0.52 |
MD | 3.31 | −691.86 | 0.90 |
Tract Volume | 3.46 | −0.067 × 10−3 | 0.35 |
SLF II | |||
FA | 8.31 | −17.50 | 0.033 |
MD | −3.13 | 6573.40 | 0.26 |
Tract Volume | 2.54 | 0.015 × 10−3 | 0.76 |
SLF III | |||
FA | 9.22 | −21.15 | 0.0087 |
MD | −5.86 | 9171.67 | 0.078 |
Tract Volume | 2.99 | −0.024 × 10−3 | 0.74 |
AF | |||
FA | 11.11 | −25.27 | 0.021 |
MD | −1.99 | 5444.11 | 0.42 |
Tract Volume | 4.12 | −0.034 × 10−3 | 0.18 |
MdLF | |||
FA | 9.68 | −19.03 | 0.036 |
MD | 2.70 | −6.81 | 1.00 |
Tract Volume | 5.61 | −0.012 × 10−2 | 0.14 |
Model | Accuracy | Precision | Recall | F1-Score | # of Features Included |
---|---|---|---|---|---|
Logistic Regression | |||||
All Features model (10-fold) | 63.3% | 76.7% | 73.3% | 0.647 | 38 |
Univariate Feature Selection model (10-fold) | 78.3% | 86.7% | 80% | 0.747 | 26 |
Recursive Feature Elimination model (10-fold) | 90.0% | 86.7% | 100% | 0.913 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilvers, M.J.; Low, T.A.; Dukelow, S.P. Beyond the Dorsal Column Medial Lemniscus in Proprioception and Stroke: A White Matter Investigation. Brain Sci. 2022, 12, 1651. https://doi.org/10.3390/brainsci12121651
Chilvers MJ, Low TA, Dukelow SP. Beyond the Dorsal Column Medial Lemniscus in Proprioception and Stroke: A White Matter Investigation. Brain Sciences. 2022; 12(12):1651. https://doi.org/10.3390/brainsci12121651
Chicago/Turabian StyleChilvers, Matthew J., Trevor A. Low, and Sean P. Dukelow. 2022. "Beyond the Dorsal Column Medial Lemniscus in Proprioception and Stroke: A White Matter Investigation" Brain Sciences 12, no. 12: 1651. https://doi.org/10.3390/brainsci12121651
APA StyleChilvers, M. J., Low, T. A., & Dukelow, S. P. (2022). Beyond the Dorsal Column Medial Lemniscus in Proprioception and Stroke: A White Matter Investigation. Brain Sciences, 12(12), 1651. https://doi.org/10.3390/brainsci12121651