CaMKIIα as a Promising Drug Target for Ischemic Grey Matter
Abstract
:1. Introduction
2. CaMKII
2.1. CaMKII Structure and Activity Regulation
2.2. Emerging Functional Roles of the CaMKII Hub Domain
2.3. CaMKII in Physiological Glutamate Signaling
3. Disturbances in CaMKIIα Signaling after Ischemic Stroke
3.1. Pathophysiology of Ischemic Stroke
3.2. CaMKII Dysregulation after Ischemia
3.2.1. Increased Autophosphorylation
3.2.2. Self-Association
3.2.3. GluN2B Co-Localization
3.2.4. Calpain-Mediated Proteolytic Processing
3.2.5. Potential Downstream Effectors
4. Targeting CaMKIIα after Ischemia
4.1. CaMKII Inhibitors
4.2. The Kinase Domain as a Target for Neuroprotection
4.3. Ligands Targeting the CaMKIIα Hub Domain
4.4. The CaMKIIα Hub Domain as a Target for Neuroprotection
A Longer Treatment Window via Targeting of the CaMKIIα Hub?
5. Concluding Remarks on Targeting CaMKIIα after Ischemia
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018, 3238165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapuwa, D.; Musuka, M.; Wilton, S.; Traboulsi, M. Diagnosis and Management of Acute Ischemic Stroke: Speed Is Critical. Cmaj 2015, 187, 887–893. [Google Scholar]
- Doyle, K.P.; Simon, R.P.; Stenzel-Poore, M.P. Mechanisms of Ischemic Brain Damage. Neuropharmacology 2008, 55, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Moskowitz, M.A.; Lo, E.H.; Iadecola, C. The Science of Stroke: Mechanisms in Search of Treatments. Neuron 2010, 67, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Szydlowska, K.; Tymianski, M. Calcium, Ischemia and Excitotoxicity. Cell Calcium 2010, 47, 122–129. [Google Scholar] [CrossRef]
- Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of Ischaemic Stroke: An Integrated View. Trends Neurosci. 1999, 22, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Heiss, W.-D.; Rosner, G. Functional Recovery of Cortical Neurons as Related to Degree and Duration of Ischemia. Ann. Neurol. 1983, 14, 294–301. [Google Scholar] [CrossRef]
- The National Institute of Neurological Disorders and Stroke Rt-PA Stroke Study Group. Tissue Plasminogen Activator for Acute Ischemic Stroke. N. Engl. J. Med. 1995, 333, 1581–1587. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2018, 378, 11–21. [Google Scholar] [CrossRef]
- De Los Ríos La Rosa, F.; Khoury, J.; Kissela, B.M.; Flaherty, M.L.; Alwell, K.; Moomaw, C.J.; Khatri, P.; Adeoye, O.; Woo, D.; Ferioli, S.; et al. Eligibility for Intravenous Recombinant Tissue-Type Plasminogen Activator within a Population: The Effect of the European Cooperative Acute Stroke Study (ECASS) III Trial. Stroke 2012, 43, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Grefkes, C.; Fink, G.R. Recovery from Stroke: Current Concepts and Future Perspectives. Neurol. Res. Pract. 2020, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Vanacker, P.; Lambrou, D.; Eskandari, A.; Mosimann, P.J.; Maghraoui, A.; Michel, P. Eligibility and Predictors for Acute Revascularization Procedures in a Stroke Center. Stroke 2016, 47, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, W.N.; Emberson, J.; Lees, K.R.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Risk of Intracerebral Haemorrhage with Alteplase after Acute Ischaemic Stroke: A Secondary Analysis of an Individual Patient Data Meta-Analysis. Lancet Neurol. 2016, 15, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regenhardt, R.W.; Takase, H.; Lo, E.H.; Lin, D.J. Translating Concepts of Neural Repair after Stroke: Structural and Functional Targets for Recovery. Restor. Neurol. Neurosci. 2020, 38, 67–92. [Google Scholar] [CrossRef]
- Lyden, P.; Buchan, A.; Boltze, J.; Fisher, M. Top Priorities for Cerebroprotective Studies-A Paradigm Shift: Report from STAIR XI. Stroke 2021, 52, 3063–3071. [Google Scholar] [CrossRef]
- Fisher, M.; Savitz, S.I. Pharmacological Brain Cytoprotection in Acute Ischaemic Stroke—Renewed Hope in the Reperfusion Era. Nat. Rev. Neurol. 2022, 18, 193–202. [Google Scholar] [CrossRef]
- Hill, M.D.; Goyal, M.; Menon, B.K.; Nogueira, R.G.; McTaggart, R.A.; Demchuk, A.M.; Poppe, A.Y.; Buck, B.H.; Field, T.S.; Dowlatshahi, D.; et al. Efficacy and Safety of Nerinetide for the Treatment of Acute Ischaemic Stroke (ESCAPE-NA1): A Multicentre, Double-Blind, Randomised Controlled Trial. Lancet 2020, 395, 878–887. [Google Scholar] [CrossRef]
- Aarts, M.; Liu, Y.; Liu, L.; Besshoh, S.; Arundine, M.; Gurd, J.W.; Wang, Y.T.; Salter, M.W.; Tymianski, M. Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor-PSD-95 Protein Interactions. Science 2002, 298, 846–850. [Google Scholar] [CrossRef]
- Silva, A.J.; Stevens, C.F.; Tonegawa, S.; Wang, Y. Deficient Hippocampal Long-Term Potentiation in α-Calcium-Calmodulin Kinase Mutant Mice. Science 1992, 257, 201–206. [Google Scholar] [CrossRef]
- Coultrap, S.J.; Vest, R.S.; Ashpole, N.M.; Hudmon, A.; Bayer, K.U. CaMKII in Cerebral Ischemia. Acta Pharmacol. Sin. 2011, 32, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Kool, M.J.; Onori, M.P.; Borgesius, N.Z.; van de Bree, J.E.; Elgersma-Hooisma, M.; Nio, E.; Bezstarosti, K.; Buitendijk, G.H.S.; Aghadavoud Jolfaei, M.; Demmers, J.A.A.; et al. CAMK2-Dependent Signaling in Neurons Is Essential for Survival. J. Neurosci. 2019, 39, 5424–5439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, L.S.; Bers, D.M. Role of Ca2+/Calmodulin-Dependent Protein Kinase (CaMK) in Excitation-Contraction Coupling in the Heart. Cardiovasc. Res. 2007, 73, 631–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vest, R.S.; O’Leary, H.; Coultrap, S.J.; Kindy, M.S.; Bayer, K.U. Effective Post-Insult Neuroprotection by a Novel Ca2+/ Calmodulin-Dependent Protein Kinase II (CaMKII) Inhibitor. J. Biol. Chem. 2010, 285, 20675–20682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leurs, U.; Klein, A.B.; McSpadden, E.D.; Griem-Krey, N.; Solbak, S.M.Ø.; Houlton, J.; Villumsen, I.S.; Vogensen, S.B.; Hamborg, L.; Gauger, S.J.; et al. GHB Analogs Confer Neuroprotection through Specific Interaction with the CaMKIIα Hub Domain. Proc. Natl. Acad. Sci. USA 2021, 118, e2108079118. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Orfila, J.E.; Dietz, R.M.; Moreno-Garcia, M.; Rodgers, K.M.; Coultrap, S.J.; Quillinan, N.; Traystman, R.J.; Bayer, K.U.; Herson, P.S. Autonomous CaMKII Activity as a Drug Target for Histological and Functional Neuroprotection after Resuscitation from Cardiac Arrest. Cell Rep. 2017, 18, 1109–1117. [Google Scholar] [CrossRef]
- Gaido, O.E.R.; Nkashama, L.J.; Schole, K.L.; Wang, Q.; Umapathi, P.; Mesubi, O.O.; Konstantinidis, K.; Luczak, E.D.; Anderson, M.E. CaMKII as a Therapeutic Target in Cardiovascular Disease. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 1–62. [Google Scholar] [CrossRef]
- Miller, S.G.; Kennedy, M.B. Distinct Forebrain and Cerebellar Isozymes of Type II Ca2+/Calmodulin-Dependent Protein Kinase Associate Differently with the Postsynaptic Density Fraction. J. Biol. Chem. 1985, 260, 9039–9046. [Google Scholar] [CrossRef]
- Giese, K.P.; Fedorov, N.B.; Filipkowski, R.K.; Silva, A.J. Autophosphorylation at Thr286 of the α Calcium-Calmodulin Kinase II in LTP and Learning. Science 1998, 279, 870–873. [Google Scholar] [CrossRef]
- Hell, J.W. CaMKII: Claiming Center Stage in Postsynaptic Function and Organization. Neuron 2014, 81, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, R.; Hayashi, Y.; Hell, J.W. CaMKII: A Central Molecular Organizer of Synaptic Plasticity, Learning and Memory. Nat. Rev. Neurosci. 2022, 23, 666–682. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, M.; Karandur, D.; Kuriyan, J. Structural Insights into the Regulation of Ca2+/Calmodulin-Dependent Protein Kinase II (Camkii). Cold Spring Harb. Perspect. Biol. 2020, 12, a035147. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, O.S.; Deindl, S.; Comolli, L.R.; Downing, K.H.; Nairn, A.C.; Kuriyan, J. Oligomerization States of the Association Domain and the Holoenyzme of Ca2+/CaM Kinase II. FEBS J. 2006, 273, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.H.; Stratton, M.M.; Lee, I.H.; Rosenberg, O.S.; Levitz, J.; Mandell, D.J.; Kortemme, T.; Groves, J.T.; Schulman, H.; Kuriyan, J. A Mechanism for Tunable Autoinhibition in the Structure of a Human Ca2+/Calmodulin-Dependent Kinase II Holoenzyme. Cell 2011, 146, 732–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colbran, R.J.; Smith, M.K.; Schworer, C.M.; Fong, Y.L.; Soderling, T.R. Regulatory Domain of Calcium/Calmodulin-Dependent Protein Kinase II. J. Biol. Chem. 1989, 264, 4800–4804. [Google Scholar] [CrossRef]
- Lisman, J.; Schulman, H.; Cline, H. The Molecular Basis of CaMKII Function in Synaptic and Behavioural Memory. Nat. Rev. Neurosci. 2002, 3, 175–190. [Google Scholar] [CrossRef]
- Yang, E.; Schulman, H. Structural Examination of Autoregulation of Multifunctional Calcium/Calmodulin-Dependent Protein Kinase II. J. Biol. Chem. 1999, 274, 26199–26208. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.G.; Kennedy, M.B. Regulation of Brain Type II Ca2+/Calmodulin- Dependent Protein Kinase by Autophosphorylation: A Ca2+-Triggered Molecular Switch. Cell 1986, 44, 861–870. [Google Scholar] [CrossRef]
- Saitoh, T.; Schwartz, J.H. Phosphorylation-Dependent Subcellular Translocation of a Ca2+/Calmodulin-Dependent Protein Kinase Produces an Autonomous Enyzme in Aplysia Neurons. J. Cell Biol. 1985, 100, 835–842. [Google Scholar] [CrossRef]
- Coultrap, S.J.; Buard, I.; Kulbe, J.R.; Acqua, M.L.D.; Bayer, K.U. CaMKII Autonomy Is Substrate-Dependent and Further Stimulated by Ca2+/Calmodulin. J. Biol. Chem. 2010, 285, 17930–17937. [Google Scholar] [CrossRef] [Green Version]
- Coultrap, S.J.; Bayer, K.U. CaMKII Regulation in Information Processing and Storage. Trends Neurosci. 2012, 35, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Hanson, P.I.; Stryer, L.; Schulman, H. Calmodulin Trapping by Calcium-Calmodulin-Dependent Protein Kinase. Science 1992, 256, 1199–1202. [Google Scholar] [CrossRef] [PubMed]
- Lou, L.L.; Schulman, H. Distinct Autophosphorylation Sites Sequentially Produce Autonomy and Inhibition of the Multifunctional Ca2+/Calmodulin-Dependent Protein Kinase. J. Neurosci. 1989, 9, 2020–2032. [Google Scholar] [CrossRef] [PubMed]
- Baucum, A.J. Proteomic Analysis of Postsynaptic Protein Complexes Underlying Neuronal Plasticity. ACS Chem. Neurosci. 2017, 8, 689–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migues, P.V.; Lehmann, I.T.; Fluechter, L.; Cammarota, M.; Gurd, J.W.; Sim, A.T.R.; Dickson, P.W.; Rostas, J.A.P. Phosphorylation of CaMKII at Thr253 Occurs in Vivo and Enhances Binding to Isolated Postsynaptic Densities. J. Neurochem. 2006, 98, 289–299. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Lee, Y.K.; Muratcioglu, S.; Qiu, B.; Nyayapati, P.; Schulman, H.; Groves, J.T.; Kuriyan, J. Flexible Linkers in CaMKII Control the Balance between Activating and Inhibitory Autophosphorylation. Elife 2020, 9, e53670. [Google Scholar] [CrossRef] [Green Version]
- Strack, S.; Barban, M.A.; Wadzinski, B.E.; Coibran, R.J. Differential Inactivation of Postsynaptic Density-Associated and Soluble Ca2+/Calmodulin-Dependent Protein Kinase II by Protein Phosphatases 1 and 2A. J. Neurochem. 1997, 68, 2119–2128. [Google Scholar] [CrossRef] [Green Version]
- Tombes, R.M.; Faison, M.O.; Turbeville, J.M. Organization and Evolution of Multifunctional Ca2+/CaM- Dependent Protein Kinase Genes. Gene 2003, 322, 17–31. [Google Scholar] [CrossRef]
- Sloutsky, R.; Dziedzic, N.; Dunn, M.J.; Bates, R.M.; Torres-Ocampo, A.P.; Boopathy, S.; Page, B.; Weeks, J.G.; Chao, L.H.; Stratton, M.M. Heterogeneity in Human Hippocampal CaMKII Transcripts Reveals Allosteric Hub-Dependent Regulation. Sci. Signal. 2020, 13, eaaz0240. [Google Scholar] [CrossRef]
- Cook, S.G.; Bourke, A.M.; O’Leary, H.; Zaegel, V.; Lasda, E.; Mize-Berge, J.; Quillinan, N.; Tucker, C.L.; Coultrap, S.J.; Herson, P.S.; et al. Analysis of the CaMKIIα and β Splice-Variant Distribution among Brain Regions Reveals Isoform-Specific Differences in Holoenzyme Formation. Sci. Rep. 2018, 8, 5448. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, H.; Lasda, E.; Bayer, K.U. CaMKIIb Association with the Actin Cytoskeleton Is Regulated by Alternative Splicing. Mol. Biol. Cell 2006, 17, 4656–4665. [Google Scholar] [CrossRef] [PubMed]
- Brocke, L.; Chiang, L.W.; Wagner, P.D.; Schulman, H. Functional Implications of the Subunit Composition of Neuronal CaM Kinase II. J. Biol. Chem. 1999, 274, 22713–22722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lantsman, K.; Tombes, R.M. CaMK-II Oligomerization Potential Determined Using CFP/YFP FRET. Biochim. Biophys. Acta-Mol. Cell Res. 2005, 1746, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelz, A.; Nairn, A.C.; Kuriyan, J. Crystal Structure of a Tetradecameric Assembly of the Association Domain of Ca2+/Calmodulin-Dependent Kinase II. Mol. Cell 2003, 11, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- De Koninck, P.; Schulman, H. Sensitivity of CaM Kinase II to the Frequency of Ca2+ Oscillations. Science 1998, 279, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudmon, A.; Schulman, H. Neuronal Ca2+/Calmodulin-Dependent Protein Kinase II: The Role of Structure and Autoregulation in Cellular Function. Annu. Rev. Biochem. 2002, 71, 473–510. [Google Scholar] [CrossRef] [PubMed]
- Chia, P.H.; Zhong, F.L.; Niwa, S.; Bonnard, C.; Utami, K.H.; Zeng, R.; Lee, H.; Eskin, A.; Nelson, S.F.; Xie, W.H.; et al. A Homozygous Loss-of-Function CAMK2A Mutation Causes Growth Delay, Frequent Seizures and Severe Intellectual Disability. Elife 2018, 7, e32451. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Stratton, M.M.; Going, C.C.; McSpadden, E.D.; Huang, Y.; Susa, A.C.; Elleman, A.; Cao, Y.M.; Pappireddi, N.; Burkhardt, P.; et al. Molecular Mechanism of Activation-Triggered Subunit Exchange in Ca2+/Calmodulin-Dependent Protein Kinase II. Elife 2016, 5, e13405. [Google Scholar] [CrossRef]
- Stratton, M.; Lee, I.H.; Bhattacharyya, M.; Christensen, S.M.; Chao, L.H.; Schulman, H.; Groves, J.T.; Kuriyan, J. Activation-Triggered Subunit Exchange between CaMKII Holoenzymes Facilitates the Spread of Kinase Activity. Elife 2014, 3, e01610. [Google Scholar] [CrossRef]
- Karandur, D.; Bhattacharyya, M.; Xia, Z.; Lee, Y.K.; Muratcioglu, S.; McAffee, D.; McSpadden, E.D.; Qiu, B.; Groves, J.T.; Williams, E.R.; et al. Breakage of the Oligomeric CaMKII Hub by the Regulatory Segment of the Kinase. Elife 2020, 9, e57784. [Google Scholar] [CrossRef]
- Lučić, I.; Héluin, L.; Jiang, P.-L.; Castro Scalise, A.G.; Wang, C.; Franz, A.; Wahl, M.; Liu, F.; Plested, A.J.R. CaMKII Activity Spreads by Inter-Holoenzyme Phosphorylation. bioRxiv 2022, 1–35. [Google Scholar] [CrossRef]
- Torres-Ocampo, A.P.; Özden, C.; Hommer, A.; Gardella, A.; Lapinskas, E.; Samkutty, A.; Esposito, E.; Garman, S.; Stratton, M. Characterization of CaMKIIα Holoenzyme Stability. Protein Sci. 2020, 29, 1524–1534. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Raghavachari, S.; Lisman, J. Quantitative Estimates of the Cytoplasmic, PSD, and NMDAR-Bound Pools of CaMKII in Dendritic Spines. Brain Res. 2011, 1419, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayer, K.U.; De Koninck, P.; Leonard, A.S.; Hell, J.W.; Schulman, H. Interaction with the NMDA Receptor Locks CaMKII in an Active Conformation. Nature 2001, 411, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Elgersma, Y.; Fedorov, N.B.; Ikonen, S.; Choi, E.S.; Elgersma, M.; Carvalho, O.M.; Giese, K.P.; Silva, A.J. Inhibitory Autophosphorylation of CaMKII Controls PSD Association, Plasticity, and Learning. Neuron 2002, 36, 493–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strack, S.; Choi, S.; Lovinger, D.M.; Colbran, R.J. Translocation of Autophosphorylated Calcium/Calmodulin-Dependent Protein Kinase II to the Postsynaptic Density. J. Biol. Chem. 1997, 272, 13467–13470. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.; Meyer, T. Dynamic Control of CaMKII Translocation and Localization in Hippocampal Neurons by NMDA Receptor Stimulation. Science 1999, 284, 162–166. [Google Scholar] [CrossRef]
- Bayer, K.U.; Schulman, H. Regulation of Signal Transduction by Protein Targeting: The Case for CaMKII. Biochem. Biophys. Res. Commun. 2001, 289, 917–923. [Google Scholar] [CrossRef]
- Özden, C.; Sloutsky, R.; Mitsugi, T.; Santos, N.; Agnello, E.; Gaubitz, C.; Foster, J.; Lapinskas, E.; Esposito, E.A.; Saneyoshi, T.; et al. CaMKII Binds Both Substrates and Activators at the Active Site. Cell Rep. 2022, 40, 111064. [Google Scholar] [CrossRef]
- Hayashi, Y.; Shi, S.; Esteban, J.A.; Piccini, A.; Poncer, J.-C.; Malinow, R. Driving AMPA Receptors into Synapses by LTP and CaMKII: Requirement for GluR1 and PDZ Domain Interaction. Science 2000, 287, 2262–2268. [Google Scholar] [CrossRef] [Green Version]
- Derkach, V.; Barria, A.; Soderling, T.R. Ca2+/Calmodulin-Kinase II Enhances Channel Conductance of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionate Type Glutamate Receptors. Proc. Natl. Acad. Sci. USA 1999, 96, 3269–3274. [Google Scholar] [CrossRef] [PubMed]
- Borgesius, N.Z.; van Woerden, G.M.; Buitendijk, G.H.S.; Keijzer, N.; Jaarsma, D.; Hoogenraad, C.C.; Elgersma, Y. ΒCaMKII Plays a Nonenzymatic Role in Hippocampal Synaptic Plasticity and Learning by Targeting ACaMKII to Synapses. J. Neurosci. 2011, 31, 10141–10148. [Google Scholar] [CrossRef] [PubMed]
- Halt, A.R.; Dallapiazza, R.F.; Zhou, Y.; Stein, I.S.; Qian, H.; Juntti, S.; Wojcik, S.; Brose, N.; Silva, A.J.; Hell, J.W. CaMKII Binding to GluN2B Is Critical during Memory Consolidation. EMBO J. 2012, 31, 1203–1216. [Google Scholar] [CrossRef] [PubMed]
- Jourdain, P.; Fukunaga, K.; Muller, D. Calcium/Calmodulin-Dependent Protein Kinase II Contributes to Activity-Dependent Filopodia Growth and Spine Formation. J. Neurosci. 2003, 23, 10645–10649. [Google Scholar] [CrossRef] [Green Version]
- Pratt, K.G.; Watt, A.J.; Griffith, L.C.; Nelson, S.B.; Turrigiano, G.G. Activity-Dependent Remodeling of Presynaptic Inputs by Postsynaptic Expression of Activated CaMKII. Neuron 2003, 39, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Coultrap, S.J.; Freund, R.K.; O’Leary, H.; Sanderson, J.L.; Roche, K.W.; Dell’Acqua, M.L.; Bayer, K.U. Autonomous CaMKII Mediates Both LTP and LTD Using a Mechanism for Differential Substrate Site Selection. Cell Rep. 2014, 6, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Bayer, K.U.; Schulman, H. CaM Kinase: Still Inspiring at 40. Neuron 2019, 2, 380–394. [Google Scholar] [CrossRef]
- Cook, S.G.; Buonarati, O.R.; Coultrap, S.J.; Bayer, K.U. CaMKII Holoenzyme Mechanisms That Govern the LTP versus LTD Decision. Sci. Adv. 2021, 7, eabe2300. [Google Scholar] [CrossRef]
- Ginsberg, M.D. Current Status of Neuroprotection for Cerebral Ischemia Synoptic Overview. Stroke 2009, 40, S111–S114. [Google Scholar] [CrossRef] [Green Version]
- Kostandy, B.B. The Role of Glutamate in Neuronal Ischemic Injury: The Role of Spark in Fire. Neurol. Sci. 2012, 33, 223–237. [Google Scholar] [CrossRef]
- Astrup, J.; Symon, L.; Branston, N.M.; Lassen, N.A. Cortical Evoked Potential and Extracellular K+ and H+ at Critical Levels of Brain Ischemia. Stroke 1977, 8, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Kunz, A.; Dirnagl, U.; Mergenthaler, P. Acute Pathophysiological Processes after Ischaemic and Traumatic Brain Injury. Best Pract. Res. Clin. Anaesthesiol. 2010, 24, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Bevers, M.B.; Neumar, R.W. Mechanistic Role of Calpains in Postischemic Neurodegeneration. J. Cereb. Blood Flow Metab. 2008, 28, 655–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhardt, J.; Hayward, K.S.; Kwakkel, G.; Ward, N.S.; Wolf, S.L.; Borschmann, K.; Krakauer, J.W.; Boyd, L.A.; Carmichael, S.T.; Corbett, D.; et al. Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabil. Neural Repair 2017, 31, 793–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joy, M.T.; Carmichael, S.T. Encouraging an Excitable Brain State: Mechanisms of Brain Repair in Stroke. Nat. Rev. Neurosci. 2021, 22, 38–53. [Google Scholar] [CrossRef]
- Murphy, T.H.; Corbett, D. Plasticity during Stroke Recovery: From Synapse to Behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, A.N.; López-Valdés, H.E.; Overman, J.J.; Charles, A.C.; Brennan, K.C.; Thomas Carmichael, S. Multimodal Examination of Structural and Functional Remapping in the Mouse Photothrombotic Stroke Model. J. Cereb. Blood Flow Metab. 2013, 33, 716–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmichael, S.T. Cellular and Molecular Mechanisms of Neural Repair after Stroke: Making Waves. Ann. Neurol. 2006, 59, 735–742. [Google Scholar] [CrossRef]
- Hagemann, G.; Redecker, C.; Neumann-Haefelin, T.; Freund, H.J.; Witte, O.W. Increased Long-Term Potentiation in the Surround of Experimentally Induced Focal Cortical Infarction. Ann. Neurol. 1998, 44, 255–258. [Google Scholar] [CrossRef]
- Brown, C.E.; Li, P.; Boyd, J.D.; Delaney, K.R.; Murphy, T.H. Extensive Turnover of Dendritic Spines and Vascular Remodeling in Cortical Tissues Recovering from Stroke. J. Neurosci. 2007, 27, 4101–4109. [Google Scholar] [CrossRef] [Green Version]
- Rostas, J.A.P.; Spratt, N.J.; Dickson, P.W.; Skelding, K.A. The Role of Ca2+-Calmodulin Stimulated Protein Kinase II in Ischaemic Stroke—A Potential Target for Neuroprotective Therapies. Neurochem. Int. 2017, 107, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Ashpole, N.M.; Hudmon, A. Excitotoxic Neuroprotection and Vulnerability with CaMKII Inhibition. Mol. Cell. Neurosci. 2011, 46, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Otmakhov, N.; Gorbacheva, E.V.; Regmi, S.; Yasuda, R.; Hudmon, A.; Lisman, J. Excitotoxic Insult Results in a Long-Lasting Activation of CaMKIIα and Mitochondrial Damage in Living Hippocampal Neurons. PLoS ONE 2015, 10, e0120881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skelding, K.A.; Spratt, N.J.; Fluechter, L.; Dickson, P.W.; Rostas, J.A.P. ACaMKII Is Differentially Regulated in Brain Regions That Exhibit Differing Sensitivities to Ischemia and Excitotoxicity. J. Cereb. Blood Flow Metab. 2012, 32, 2181–2192. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S.; Shamloo, M.; Isshiki, A.; Wieloch, T. Persistent Phosphorylation of Synaptic Proteins Following Middle Cerebral Artery Occlusion. J. Cereb. Blood Flow Metab. 2002, 22, 1107–1113. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S.; Shamloo, M.; Matsumoto, E.; Isshiki, A.; Wieloch, T. Protein Kinase C-γ and Calcium/Calmodulin-Dependent Protein Kinase II-α Are Persistently Translocated to Cell Membranes of the Rat Brain during and after Middle Cerebral Artery Occlusion. J. Cereb. Blood Flow Metab. 2004, 24, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Gurd, J.W.; Rawof, S.; Zhen Huo, J.; Dykstra, C.; Bissoon, N.; Teves, L.; Wallace, M.C.; Rostas, J.A.P. Ischemia and Status Epilepitcus Result in Enhanced Phosphorylation of Calcium and Calmodulin-Stimulated Protein Kinase II on Threonine 253. Brain Res. 2008, 1218, 158–165. [Google Scholar] [CrossRef]
- Shamloo, M.; Kamme, F.; Wieloch, T. Subcellular Distribution and Autophosphorylation of Calcium/Calmodulin- Dependent Protein Kinase II-α in Rat Hippocampus in a Model of Ischemic Tolerance. Neuroscience 2000, 96, 665–674. [Google Scholar] [CrossRef]
- Meng, F.; Guo, J.; Zhang, Q.; Song, B.; Zhang, G. Autophosphorylated Calcium/Calmodulin-Dependent Protein Kinase IIa (CaMKIIa) Reversibly Targets to and Phosphorylates N-Methyl-D-Aspartate Receptor Subunit 2B (NR2B) in Cerebral Ischemia and Reperfusion in Hippocampus of Rats. Brain Res. 2003, 967, 161–169. [Google Scholar] [CrossRef]
- Kirino, T.; Tamura, A.; Sano, K. Selective Vulnerability of the Hippocampus to Ischemia—Reversible and Irreversible Types of Ischemic Cell Damage. Prog. Brain Res. 1985, 63, 39–58. [Google Scholar] [CrossRef]
- Mangus, D.B.; Huang, L.; Applegate, P.M.; Gatling, J.W.; Zhang, J.; Applegate, R.L. A Systematic Review of Neuroprotective Strategies after Cardiac Arrest: From Bench to Bedside (Part I-Protection via Specific Pathways). Med. Gas Res. 2014, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Hanson, S.; Grotta, J.; Waxham, M.; Aronowski, J.; Ostrow, P. Calcium/Calmodulin-Dependent Protein Kinase II Activity in Focal Ischemia with Reperfusion in Rats. Stroke 1994, 25, 466–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronowski, J.; Grotta, J.C.; Waxham, M.N. Ischemia-Induced Translocation of Ca2+/Calmodulin-Dependent Protein Kinase II: Potential Role in Neuronal Damage. J. Neurochem. 1992, 58, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Westgate, S.A.; Brown, J.; Aronowski, J.; Waxham, M.N. Activity of Ca2+/Calmodulin-Dependent Protein Kinase II Following Ischemia: A Comparison Between CA1 and Dentate Gyrus in a Hippocampal Slice Model. J. Neurochem. 1994, 63, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Kolb, S.J.; Hudmon, A.; Waxham, M.N. Ca2+/Calmodulin Kinase II Translocates in a Hippocampal Slice Model of Ischemia. J. Neurochem. 1995, 64, 2147–2152. [Google Scholar] [CrossRef]
- Mengesdorf, T.; Althausen, S.; Mies, G.; Olah, L.; Paschen, W. Phosphorylation State, Solubility and Activity of Calcium/Calmodulin-Dependent Protein Kinase IIa in Transient Focal Ischemia in Mouse Brain. Neurochem. Res. 2002, 27, 477–484. [Google Scholar] [CrossRef]
- Hudmon, A.; Kim, S.A.; Kolb, S.J.; Stoops, J.K.; Neal Waxham, M. Light Scattering and Transmission Electron Microscopy Studies Reveal a Mechanism for Calcium/Calmodulin-Dependent Protein Kinase II Self-Association. J. Neurochem. 2001, 76, 1364–1375. [Google Scholar] [CrossRef]
- Dosemeci, A.; Reese, T.S.; Petersen, J.; Tao-Cheng, J.-H. A Novel Particulate Form of Ca2+/Calmodulin-Dependent Protein Kinase II in Neurons. J. Neurosci. 2000, 20, 3076–3084. [Google Scholar] [CrossRef] [Green Version]
- Buonarati, O.R.; Miller, A.P.; Coultrap, S.J.; Bayer, K.U.; Reichow, S.L. Conserved and Divergent Features of Neuronal CaMKII Holoenzyme Structure, Function, and High-Order Assembly. Cell Rep. 2021, 37, 110168. [Google Scholar] [CrossRef]
- Hudmon, A.; Aronowski, J.; Kolb, S.; Waxham, M. Inactivation and Self-Association of Ca2+/Calmodulin-Dependent Protein Kinase II during Autophosphorylation. J. Biol. Chem. 1996, 271, 8800–8808. [Google Scholar] [CrossRef] [Green Version]
- Buonarati, O.R.; Cook, S.G.; Goodell, D.J.; Chalmers, N.E.; Rumian, N.L.; Tullis, J.E.; Restrepo, S.; Coultrap, S.J.; Quillinan, N.; Herson, P.S.; et al. CaMKII versus DAPK1 Binding to GluN2B in Ischemic Neuronal Cell Death after Resuscitation from Cardiac Arrest. Cell Rep. 2020, 30, 1–8.e4. [Google Scholar] [CrossRef] [PubMed]
- Tullis, J.E.; Buonarati, O.R.; Coultrap, S.J.; Bourke, A.M.; Tiemeier, E.L.; Kennedy, M.J.; Herson, P.S.; Bayer, K.U. GluN2B S1303 Phosphorylation by CaMKII or DAPK1: No Indication for Involvement in Ischemia or LTP. iScience 2021, 24, 103214. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.S.; Griem-Krey, N.; Dufour, A.; Hossain, M.I.; Hoque, A.; Sturgeon, S.; Nandurkar, H.; Draxler, D.F.; Medcalf, R.L.; Kamaruddin, M.A.; et al. N-Terminomic Changes of Neurons During Excitotoxicity Reveals Proteolytic Events Associated with Synaptic Dysfunctions and Potential Targets for Neuroprotection. bioRxiv 2022. [Google Scholar] [CrossRef]
- Cruzalegui, F.H.; Kapilofft, M.S.; Morfint, J.; Kemp, B.E.; Rosenfeldt, M.G.; Means, A.R. Regulation of Intrasteric Inhibition of the Multifunctional Calcium/Calmodulin-Dependent Protein Kinase. Proc. Natl. Acad. Sci. USA 1992, 89, 12127–12131. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, Y.; Czernik, A.J.; Greengard, P. Active Catalytic Fragment of Ca2+/Calmodulin-Dependent Protein Kinase II: Purification, Characterization, and Structural Analysis. J. Biol. Chem. 1991, 266, 15391–15397. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, A.P.; King, M.M. Autophosphorylation of the Type II Calmodulin-Dependent Protein Kinase Is Essential for Formation of a Proteolytic Fragment with Catalytic Activity. Implications for Long-Term Synaptic Potentiation. Biochemistry 1989, 28, 5380–5385. [Google Scholar] [CrossRef]
- Rich, D.P.; Schworer, C.M.; Colbran, R.J.; Soderling, T.R. Proteolytic Activation of Calcium/Calmodulin-Dependent Protein Kinase II: Putative Function in Synaptic Plasticity. Mol. Cell. Neurosci. 1990, 1, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Nomura, T.; Yamauchi, T. Purification and Characterization of Active Fragment of Ca2+/ Calmodulin-Dependent Protein Kinase II from the Post-Synaptic Density in the Rat Forebrain. J. Biochem. 1996, 119, 268–273. [Google Scholar] [CrossRef]
- Gascón, S.; Sobrado, M.; Roda, J.M.; Rodríguez-Pẽa, A.; Díaz-Guerra, M. Excitotoxicity and Focal Cerebral Ischemia Induce Truncation of the NR2A and NR2B Subunits of the NMDA Receptor and Cleavage of the Scaffolding Protein PSD-95. Mol. Psychiatry 2008, 13, 99–114. [Google Scholar] [CrossRef]
- Hossain, M.I.; Roulston, C.L.; Kamaruddin, M.A.; Chu, P.W.Y.; Ng, D.C.H.; Dusting, G.J.; Bjorge, J.D.; Williamson, N.A.; Fujita, D.J.; Cheung, S.N.; et al. A Truncated Fragment of Src Protein Kinase Generated by Calpain-Mediated Cleavage Is a Mediator of Neuronal Death in Excitotoxicity. J. Biol. Chem. 2013, 288, 9696–9709. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wong, T.P.; Chery, N.; Gaertner, T.; Wang, Y.T.; Baudry, M. Calpain-Mediated MGluR1α Truncation: A Key Step in Excitotoxicity. Neuron 2007, 53, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Barria, A.; Muller, D.; Derkach, V.; Griffith, L.C.; Soderling, T.R. Regulatory Phosphorylation of AMPA-Type Glutamate Receptors by CaM-KII during Long-Term Potentiation. Science 1997, 276, 2042–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.Z.; Zhang, Q.G.; Meng, F.J.; Zhang, G.Y. NMDA Receptor-Mediated Immediate Ser831 Phosphorylation of GluR1 through CaMKIIα in Rat Hippocampus during Early Global Ischemia. Neurosci. Res. 2004, 48, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Guetg, N.; Aziz, S.A.; Holbro, N.; Turecek, R.; Rose, T.; Seddik, R.; Gassmann, M.; Moes, S.; Jenoe, P.; Oertner, T.G.; et al. NMDA Receptor-Dependent GABAB Receptor Internalization via CaMKII Phosphorylation of Serine 867 in GABAB1. Proc. Natl. Acad. Sci. USA 2010, 107, 13924–13929. [Google Scholar] [CrossRef] [Green Version]
- Hleihil, M.; Vaas, M.; Bhat, M.A.; Balakrishnan, K.; Benke, D. Sustained Baclofen-Induced Activation of GABAB Receptors After Cerebral Ischemia Restores Receptor Expression and Function and Limits Progressing Loss of Neurons. Front. Mol. Neurosci. 2021, 14, 188. [Google Scholar] [CrossRef]
- Hudmon, A.; Schulman, H.; Kim, J.; Maltez, J.M.; Tsien, R.W.; Pitt, G.S. CaMKII Tethers to L-Type Ca2+ Channels, Establishing a Local and Dedicated Integrator of Ca2+ Signals for Facilitation. J. Cell Biol. 2005, 171, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Alev, C.; Urscheld, S.; Sonntag, S.; Zoidl, G.; Fort, A.G.; Höher, T.; Matsubara, M.; Willecke, K.; Spray, D.C.; Dermietzel, R. The Neuronal Connexin36 Interacts with and Is Phosphorylated by CaMKII in a Way Similar to CaMKII Interaction with Glutamate Receptors. Proc. Natl. Acad. Sci. USA 2008, 105, 20964–20969. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Duan, B.; Wang, D.G.; Deng, X.H.; Zhang, G.Y.; Xu, L.; Xu, T. Le Coupling between NMDA Receptor and Acid-Sensing Ion Channel Contributes to Ischemic Neuronal Death. Neuron 2005, 48, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Osuka, K.; Watanabe, Y.; Usuda, N.; Atsuzawa, K.; Takayasu, M. Phosphorylation of Neuronal Nitric Oxide Synthase at Ser1412 in the Dentate Gyrus of Rat Brain after Transient Forebrain Ischemia. Neurochem. Int. 2013, 63, 269–274. [Google Scholar] [CrossRef]
- Wheeler, D.G.; Barrett, C.F.; Groth, R.D.; Safa, P.; Tsien, R.W. CaMKII Locally Encodes L-Type Channel Activity to Signal to Nuclear CREB in Excitation-Transcription Coupling. J. Cell Biol. 2008, 183, 849–863. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, J.; Starr, C.; Mohns, E.J.; Li, Y.; Chen, E.P.; Yoon, Y.; Kellner, C.P.; Tanaka, K.; Wang, H.; et al. Preservation of Vision after CaMKII-Mediated Protection of Retinal Ganglion Cells. Cell 2021, 184, 4299–4314.e12. [Google Scholar] [CrossRef]
- Mabuchi, T.; Kitagawa, K.; Kuwabara, K.; Takasawa, K.; Ohtsuki, T.; Xia, Z.; Storm, D.; Yanagihara, T.; Hori, M.; Matsumoto, M. Phosphorylation of CAMP Response Element-Binding Protein in Hippocampal Neurons as a Protective Response after Exposure to Glutamate in Vitro and Ischemia in Vivo. J. Neurosci. 2001, 21, 9204–9213. [Google Scholar] [CrossRef] [Green Version]
- Waxham, M.N.; Grotta, J.C.; Silva, A.J.; Strong, R.; Aronowski, J. Ischemia-Induced Neuronal Damage: A Role for Calcium/Calmodulin-Dependent Protein Kinase II. J. Cereb. Blood Flow Metab. 1996, 16, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumian, N.L.; Chalmers, N.E.; Tullis, J.E.; Herson, P.S.; Bayer, K.U. CaMKIIα Knockout Protects from Ischemic Neuronal Cell Death after Resuscitation from Cardiac Arrest. Brain Res. 2021, 1773, 147699. [Google Scholar] [CrossRef] [PubMed]
- Sumi, M.; Kiuchi, K.; Ishikawa, T.; Ishii, A.; Hagiwara, M.; Nagatsu, T.; Hidaka, H. The Newly Synthesized Selective Ca2+ calmodulin Dependent Protein Kinase II Inhibitor KN-93 Reduces Dopamine Contents in PC12h Cells. Biochem. Biophys. Res. Commun. 1991, 181, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Vest, R.S.; Davies, K.D.; O’Leary, H.; Port, J.D.; Bayer, K.U. Dual Mechanism of a Natural CaMKII Inhibitor. Mol. Biol. Cell 2007, 18, 5024–5033. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.H.; Samal, A.B.; Lee, M.; Vlach, J.; Novikov, N.; Niedziela-Majka, A.; Feng, J.Y.; Koltun, D.O.; Brendza, K.M.; Kwon, H.J.; et al. The KN-93 Molecule Inhibits Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity by Binding to Ca2+/CaM. J. Mol. Biol. 2019, 431, 1440–1459. [Google Scholar] [CrossRef]
- Enslen, H.; Sun, P.; Brickey, D.; Soderling, S.H.; Klamo, E.; Soderling, T.R. Characterization of Ca2+/Calmodulin-Dependent Protein Kinase IV. Role in Transcriptional Regulation. J. Biol. Chem. 1994, 269, 15520–15527. [Google Scholar] [CrossRef]
- Ledoux, J.; Chartier, D.; Leblanc, N. Inhibitors of Calmodulin-Dependent Protein Kinase Are Nonspecific Blockers of Voltage-Dependent K+ Channels in Vascular Myocytes. J. Pharmacol. Exp. Ther. 1999, 290, 1165–1174. [Google Scholar]
- Li, G.; Hidaka, H.; Wollheim, C.B. Inhibition of Voltage-Gated Ca2+ Channels and Insulin Secretion in HIT Cells by the Ca2+/Calmodulin-Dependent Protein Kinase II Inhibitor KN-62: Comparison with Antagonists of Calmodulin and L-Type Ca2+ Channels. Mol. Pharmacol. 1992, 42, 488–489. [Google Scholar]
- Coultrap, S.J.; Bayer, K.U. Improving a Natural CaMKII Inhibitor by Random and Rational Design. PLoS ONE 2011, 6, e25245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goold, C.P.; Nicoll, R.A. Single-Cell Optogenetic Excitation Drives Homeostatic Synaptic Depression. Neuron 2010, 68, 512–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.E.; Dong, Y.; Lu, Y.; Tucker, D.; Wang, R.; Zhang, Q. Beneficial Effects of a CaMKIIα Inhibitor TatCN21 Peptide in Global Cerebral Ischemia. J. Mol. Neurosci. 2017, 61, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Rostas, J.A.P.; Hoffman, A.; Murtha, L.A.; Pepperall, D.; Mcleod, D.D.; Dickson, P.W.; Spratt, N.J.; Skelding, K.A. Ischaemia- and Excitotoxicity-Induced CaMKII-Mediated Neuronal Cell Death: The Relative Roles of CaMKII Autophosphorylation at T286 and T253. Neurochem. Int. 2017, 104, 6–10. [Google Scholar] [CrossRef]
- Griem-krey, N.; Klein, A.B.; Clausen, B.H.; Namini, M.R.J.; Pernille, V. The GHB Analogue HOCPCA Improves Sensorimotor Function after MCAO via CaMKII A. bioRxiv 2022, 1–26. [Google Scholar] [CrossRef]
- Ottani, A.; Saltini, S.; Bartiromo, M.; Zaffe, D.; Renzo Botticelli, A.; Ferrari, A.; Bertolini, A.; Genedani, S. Effect of γ-Hydroxybutyrate in Two Rat Models of Focal Cerebral Damage. Brain Res. 2003, 986, 181–190. [Google Scholar] [CrossRef]
- Gao, B.; Kilic, E.; Baumann, C.R.; Hermann, D.M.; Bassetti, C.L. γ-Hydroxybutyrate Accelerates Functional Recovery after Focal Cerebral Ischemia. Cerebrovasc. Dis. 2008, 26, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Bay, T.; Eghorn, L.F.; Klein, A.B.; Wellendorph, P. GHB Receptor Targets in the CNS: Focus on High-Affinity Binding Sites. Biochem. Pharmacol. 2014, 87, 220–228. [Google Scholar] [CrossRef]
- Maitre, M.; Hechler, V.; Vayer, P.; Gobaille, S.; Cash, C.D.; Schmitt, M.; Bourguignon, J.J. A Specific γ-Hydroxybutyrate Receptor Ligand Possesses Both Antagonistic and Anticonvulsant Properties. J. Pharmacol. Exp. Ther. 1990, 255, 657–663. [Google Scholar]
- Wellendorph, P.; Høg, S.; Greenwood, J.R.; de Lichtenberg, A.; Nielsen, B.; Frølund, B.; Brehm, L.; Clausen, R.P.; Bräuner-Osborne, H. Novel Cyclic γ-Hydroxybutyrate (GHB) Analogs with High Affinity and Stereoselectivity of Binding to GHB Sites in Rat Brain. J. Pharmacol. Exp. Ther. 2005, 315, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Krall, J.; Jensen, C.H.; Bavo, F.; Falk-Petersen, C.B.; Haugaard, A.S.; Vogensen, S.B.; Tian, Y.; Nittegaard-Nielsen, M.; Sigurdardóttir, S.B.; Kehler, J.; et al. Molecular Hybridization of Potent and Selective γ-Hydroxybutyric Acid (GHB) Ligands: Design, Synthesis, Binding Studies, and Molecular Modeling of Novel 3-Hydroxycyclopent-1-Enecarboxylic Acid (HOCPCA) and Trans-γ-Hydroxycrotonic Acid (T-HCA) Analogs. J. Med. Chem. 2017, 60, 9022–9039. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Shehata, M.A.; Gauger, S.J.; Hamborg, L.; Thiesen, L.; Bruus-Jensen, J.; Leurs, U.; Larsen, A.S.G.; Veronesi, C.; Krall, J.; et al. Exploring the NCS-382 Scaffold for CaMKIIα Modulation: Synthesis, Pharmacology and Biophysical Characterization of Ph-HTBA as a Novel High-Affinity Brain-Penetrant Stabilizer for the CaMKIIα Hub Domain. J. Med. Chem. 2022, 65, 15066–15084. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Shehata, M.A.; Gauger, S.J.; Ng, C.K.L.; Solbak, S.; Thiesen, L.; Bruus-Jensen, J.; Krall, J.; Gibson, K.M.; Wellendorph, P.; et al. Discovery and Optimization of 5-Hydroxy-Diclofenac toward a New Class of Ligands with Nanomolar Affinity for the CaMKIIα Hub Domain. J. Med. Chem. 2022, 65, 6656–6676. [Google Scholar] [CrossRef]
- Thiesen, L.; Kehler, J.; Clausen, R.P.; Frølund, B.; Bundgaard, C.; Wellendorph, P. In Vitro and in Vivo Evidence for Active Brain Uptake of the GHB Analog HOCPCA by the Monocarboxylate Transporter Subtype 1. J. Pharmacol. Exp. Ther. 2015, 354, 166–174. [Google Scholar] [CrossRef]
- Vogensen, S.B.; Marek, A.; Bay, T.; Wellendorph, P.; Kehler, J.; Frølund, B.; Pedersen, M.H.F.; Clausen, R.P. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites. J. Med. Chem. 2013, 56, 8201–8205. [Google Scholar] [CrossRef] [Green Version]
- Buard, I.; Coultrap, S.J.; Freund, R.K.; Lee, Y.S.; Dell’Acqua, M.L.; Silva, A.J.; Bayer, K.U. CaMKII “Autonomy” Is Required for Initiating but Not for Maintaining Neuronal Long-Term Information Storage. J. Neurosci. 2010, 30, 8214–8220. [Google Scholar] [CrossRef] [Green Version]
- Nassal, D.; Gratz, D.; Hund, T.J. Challenges and Opportunities for Therapeutic Targeting of Calmodulin Kinase II in Heart. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Hleihil, M.; Bhat, M.A.; Ganley, R.P.; Vaas, M.; Klohs, J.; Zeilhofer, H.U.; Benke, D. Targeting the Interaction of GABAB Receptors with CaMKII with an Interfering Peptide Restores Receptor Expression after Cerebral Ischemia and Inhibits Progressive Neuronal Death in Mouse Brain Cells and Slices. Brain Pathol. 2022, e13099. [Google Scholar] [CrossRef]
- Zhang, X.; Connelly, J.; Levitan, E.S.; Sun, D.; Wang, J.Q. Calcium/Calmodulin–Dependent Protein Kinase II in Cerebrovascular Diseases. Transl. Stroke Res. 2021, 12, 513–529. [Google Scholar] [CrossRef] [PubMed]
CN-Peptides | HOCPCA | |
---|---|---|
In vivo Ischemic stroke | 1 mg/kg tat-CN21 at 1 h post tMCAO 1 improves infarct volume in young male mice [24] | 175 mg/kg HOCPCA at 30 min, 3 h, 6, h and 12 h and 90 mg/kg HOCPCA at 3 h post photothrombotic stroke improves infarct size and motor function (cylinder and grid walking task) in young male mice [25] 175 mg/kg HOCPCA at 3 h post photothrombotic stroke improves infarct size and motor function (cylinder and grid walking task) in aged female mice [25] 175 mg/kg HOCPCA at 30 min post pMCAO 1 improves infarct size and motor function (grip strength) in young male mice [145] 175 mg/kg HOCPCA at 3 h post pMCAO improves motor function (grip strength) in young male mice [145] 175 mg/kg HOCPCA at 30 min post thromboembolic stroke improves motor function (grip strength) in young male mice [145] |
In vivo Global ischemia | Intracerebroventricular injection of 50 mg tat-CN21 at 3 h after global ischemia improves neuronal survival in the hippocampus and improved memory function (Barnes maze) [146] 0.01 mg/kg, 0.1 mg/kg and 1 mg/kg of tat-CN19o at 30 min post cardiac arrest and cardiopulmonary resuscitation (CA/CPR) improves neuronal survival in the hippocampus and improved memory function (contextual fear conditioning) [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griem-Krey, N.; Clarkson, A.N.; Wellendorph, P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sci. 2022, 12, 1639. https://doi.org/10.3390/brainsci12121639
Griem-Krey N, Clarkson AN, Wellendorph P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sciences. 2022; 12(12):1639. https://doi.org/10.3390/brainsci12121639
Chicago/Turabian StyleGriem-Krey, Nane, Andrew N. Clarkson, and Petrine Wellendorph. 2022. "CaMKIIα as a Promising Drug Target for Ischemic Grey Matter" Brain Sciences 12, no. 12: 1639. https://doi.org/10.3390/brainsci12121639
APA StyleGriem-Krey, N., Clarkson, A. N., & Wellendorph, P. (2022). CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sciences, 12(12), 1639. https://doi.org/10.3390/brainsci12121639