Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency
Abstract
:1. Introduction
2. Case History
3. Investigations and Results
4. Treatment and Outcome
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nimmo, G.A.M.; Ejaz, R.; Cordeiro, D.; Kannu, P.; Mercimek-Andrews, S. Riboflavin transporter deficiency mimicking mitochondrial myopathy caused by complex II deficiency. Am. J. Med. Genet. Part A 2018, 176, 399–403. [Google Scholar] [CrossRef]
- Davenport, R.; Mumford, C. The Brown-Vialetto-van Laere syndrome: A case report and literature review. Eur. J. Neurol. 1994, 1, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Francis, D.A.; Ponsford, J.R.; Wiles, C.M.; Thomas, P.K.; Duchen, L.W. Brown-Vialetto-Van Laere syndrome. Neuropathol. Appl. Neurobiol. 1993, 19, 91–94. [Google Scholar] [CrossRef]
- Cali, E.; Dominik, N.; Manole, A.; Houlden, H. Riboflavin Transporter Deficiency; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; GeneReviews: Seattle, WA, USA, 1993. [Google Scholar]
- O’Callaghan, B.; Bosch, A.M.; Houlden, H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J. Inherit. Metab. Dis. 2019, 42, 598–607. [Google Scholar] [CrossRef]
- Haack, T.B.; Makowski, C.; Yao, Y.; Graf, E.; Hempel, M.; Wieland, T.; Tauer, U.; Ahting, U.; Mayr, J.A.; Freisinger, P.; et al. Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome. J. Inherit. Metab. Dis. 2012, 35, 943–948. [Google Scholar] [CrossRef] [Green Version]
- Console, L.; Tolomeo, M.; Cosco, J.; Massey, K.; Barile, M.; Indiveri, C. Impact of natural mutations on the riboflavin transporter 2 and their relevance to human riboflavin transporter deficiency 2. IUBMB Life 2022, 74, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Colasuonno, F.; Marioli, C.; Tartaglia, M.; Bertini, E.; Compagnucci, C.; Moreno, S. New Insights into the Neurodegeneration Mechanisms Underlying Riboflavin Transporter Deficiency (RTD): Involvement of Energy Dysmetabolism and Cytoskeletal Derangement. Biomedicines 2022, 10, 1329. [Google Scholar] [CrossRef]
- Gorcenco, S.; Vaz, F.M.; Tracewska-Siemiatkowska, A.; Tranebjaerg, L.; Cremers, F.P.M.; Ygland, E.; Kicsi, J.; Rendtorff, N.D.; Möller, C.; Kjellström, U.; et al. Oral therapy for riboflavin transporter deficiency—What is the regimen of choice? Park. Relat. Disord. 2019, 61, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Fogel, B.L. Successful treatment of a genetic childhood ataxia due to riboflavin transporter deficiency. Cerebellum Ataxias 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeger, B.; Bosch, A.M. Clinical presentation and outcome of riboflavin transporter deficiency: Mini review after five years of experience. J. Inherit. Metab. Dis. 2016, 39, 559–564. [Google Scholar] [CrossRef]
- Bhagavan, N.V.; Ha, C.-E. Chapter 19, Contractile Systems. In Essentials of Medical Biochemistry, 2nd ed.; Elsevier Academic Press: Cambridge, MA, USA, 2015; pp. 339–361. [Google Scholar]
- Arinze, I.J. Facilitating understanding of the purine nucleotide cycle and the one-carbon pool: Part I: The purine nucleotide cycle. Biochem. Mol. Biol. Educ. 2005, 33, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Snow, R.J.; Stathis, C.G.; Febbraio, M.A.; Carey, M.F. Muscle adenine nucleotide metabolism during and in recovery from maximal exercise in humans. J. Appl. Physiol. 2000, 88, 1513–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morisaki, T.; Gross, M.; Morisaki, H.; Pongratz, D.; Zollner, N.; Holmes, E.W. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc. Natl. Acad. Sci. USA 1992, 89, 6457–6461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanisch, F.; Joshi, P.; Zierz, S. AMP deaminase deficiency in skeletal muscle is unlikely to be of clinical relevance. J. Neurol. 2008, 255, 318–322. [Google Scholar] [CrossRef]
- Fischer, H.; Esbjörnsson, M.; Sabina, R.; Strömberg, A.; Peyrard-Janvid, M.; Norman, B. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. J. Appl. Physiol. 2007, 103, 315–322. [Google Scholar] [CrossRef] [Green Version]
- De Ruiter, C.J.; Van Engelen, B.G.M.; Wevers, R.A.; De Haan, A. Muscle function during fatigue in myoadenylate deaminase-deficient Dutch subjects. Clin. Sci. 2000, 98, 579–585. [Google Scholar] [CrossRef]
- Operti, M.-G.; Vincent, M.-F.; Brucher, J.-M.; Berghe, G.V.D. Muscle Purine Nucleotide Cycle Enzymes in Exercise Intolerance. In Advances in Experimental Medicine and Biology; Springer Nature: Cham, Switzerland, 1998; Volume 431, pp. 205–209. [Google Scholar]
- Mercelis, R.; Martin, J.-J.; De Barsy, T.; Berghe, G.V.D. Myoadenylate deaminase deficiency: Absence of correlation with exercise intolerance in 452 muscle biopsies. J. Neurol. 1987, 234, 385–389. [Google Scholar] [CrossRef]
- Sabina, R.L.; Swain, J.L.; Olanow, C.W.; Bradley, W.G.; Fishbein, W.N.; DiMauro, S.; Holmes, E.W. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J. Clin. Investig. 1984, 73, 720–730. [Google Scholar] [CrossRef]
- Fishbein, W.N. Myoadenylate deaminase deficiency: Inherited and acquired forms. Biochem. Med. 1985, 33, 158–169. [Google Scholar] [CrossRef]
- Mosegaard, S.; DiPace, G.; Bross, P.; Carlsen, J.; Gregersen, N.; Olsen, R.K.J. Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020, 21, 3847. [Google Scholar] [CrossRef]
- Roughead, Z.K.; McCormick, D.B. Qualitative and quantitative assessment of flavins in cow’s milk. J. Nutr. 1990, 120, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Koop, J.; Monschein, S.; Macheroux, E.P.; Knaus, T.; Macheroux, P. Determination of free and bound riboflavin in cow’s milk using a novel flavin-binding protein. Food Chem. 2014, 146, 94–97. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Dietary Reference Values for riboflavin. EFSA J. 2017, 15, e04919. [Google Scholar] [PubMed]
- Yazaki, Y.; Muhlestein, J.B.; Carlquist, J.F.; Bair, T.L.; Horne, B.D.; Renlund, D.G.; Anderson, J.L. A common variant of the AMPD1 gene predicts improved survival in patients with ischemic left ventricular dysfunction. J. Card. Fail. 2004, 10, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Kalsi, K.K.; Yuen, A.H.Y.; Rybakowska, I.M.; Johnson, P.H.; Slominska, E.; Birks, E.J.; Kaletha, K.; Yacoub, M.H.; Smolenski, R.T. Decreased cardiac activity of AMP deaminase in subjects with the AMPD1 mutation--a potential mechanism of protection in heart failure. Cardiovasc. Res. 2003, 59, 678–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, A.; Terata, K.; Miura, H.; Toyama, K.; Loberiza, F.R.; Hatoum, O.A.; Saito, T.; Sakuma, I.; Gutterman, D.D. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am. J. Physiol. Circ. Physiol. 2005, 288, H1633–H1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommerschild, H.T.; Kirkebøen, K.A. Adenosine and cardioprotection during ischaemia and reperfusion—An overview. Acta Anaesthesiol. Scand. 2000, 44, 1038–1055. [Google Scholar] [CrossRef] [PubMed]
- Rannou, F.; Scotet, V.; Marcorelles, P.; Monnoyer, R.; Le Marechal, C. Effects of AMPD1 common mutation on the metabolic-chronotropic relationship: Insights from patients with myoadenylate. PLoS ONE 2017, 12, e0187266. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Thyagarajan, D. Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency. Brain Sci. 2022, 12, 1605. https://doi.org/10.3390/brainsci12121605
Zhang L, Thyagarajan D. Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency. Brain Sciences. 2022; 12(12):1605. https://doi.org/10.3390/brainsci12121605
Chicago/Turabian StyleZhang, Lin, and Dominic Thyagarajan. 2022. "Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency" Brain Sciences 12, no. 12: 1605. https://doi.org/10.3390/brainsci12121605
APA StyleZhang, L., & Thyagarajan, D. (2022). Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency. Brain Sciences, 12(12), 1605. https://doi.org/10.3390/brainsci12121605