Detection of Fall Risk in Multiple Sclerosis by Gait Analysis—An Innovative Approach Using Feature Selection Ensemble and Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sets
2.3. Data Preprocessing
2.4. Feature Selection Ensemble
- Union: A feature was selected for the final subset if this feature was present in at least one of the filter subsets.
- Union 2: A feature was selected in the final subset if this feature was in at least two of the filter subsets.
- Union 3: A feature was selected in the final subset if this feature was in at least three of the filter subsets.
- Intersection: A feature was selected in the final subset if this feature was in all of the filter subsets.
2.5. Classification Models
3. Results
3.1. Subject’s Characteristics
3.2. Feature Selection Ensemble and Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameters | Baseline | Threshold 10% | Threshold 25% | Threshold 50% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Union | Union2 | Union3 | Inter-section | Union | Union2 | Union3 | Inter-section | Union | Union2 | Union3 | Inter-section | |||
All data set | ||||||||||||||
DT | Criterion: | Entropy | Entropy | Gini | Entropy | Gini | Gini | Entropy | Gini | Entropy | Gini | Entropy | Gini | Entropy |
Maximum depth: | 8 | 8 | 4 | 6 | 4 | 6 | 10 | 7 | 7 | 8 | 3 | 2 | 9 | |
Minimum: | 10 | 15 | 6 | 11 | 29 | 16 | 10 | 6 | 9 | 5 | 22 | 15 | 13 | |
kNN | Weights: | Distance | Distance | Distance | Distance | Uniform | Distance | Distance | Distance | Distance | Distance | Uniform | Uniform | Uniform |
Distance metric: | Eucl. | Eucl. | Eucl. | Eucl. | Manh. | Eucl. | Eucl. | Eucl. | Manh. | Eucl. | Eucl. | Eucl. | Eucl. | |
No. neighbors: | 2 | 10 | 6 | 10 | 3 | 2 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | |
SVM | Regularization C: | 10 | 10 | 10 | 100 | 100 | 100 | 100 | 100 | 10 | 100 | 100 | 100 | 100 |
Kernel coefficient γ: | 0.001 | 0.01 | 0.01 | 0.01 | 0.1 | 0.001 | 0.001 | 0.01 | 0.1 | 0.001 | 0.001 | 0.001 | 0.01 | |
Basic data set | ||||||||||||||
DT | Criterion: | Gini | Entropy | Gini | Gini | - | Gini | Entropy | Gini | - | Gini | Gini | Entropy | Gini |
Maximum depth: | 7 | 7 | 5 | 5 | - | 4 | 6 | 5 | - | 7 | 10 | 10 | 2 | |
Minimum: | 20 | 14 | 5 | 5 | - | 21 | 19 | 5 | - | 20 | 9 | 5 | 5 | |
kNN | Weights: | Distance | Uniform | Uniform | Uniform | - | Distance | Uniform | Uniform | - | Distance | Distance | Distance | Uniform |
Distance metric: | Manh. | Eucl. | Eucl. | Eucl. | - | Manh. | Eucl. | Eucl. | - | Manh. | Eucl. | Manh. | Eucl. | |
No. neighbors: | 2 | 3 | 3 | 3 | - | 3 | 5 | 3 | - | 2 | 2 | 2 | 9 | |
SVM | Regularization C: | 100 | 100 | 1 | 1 | - | 100 | 100 | 1 | - | 100 | 100 | 100 | 0.1 |
Kernel coefficient γ: | 0.1 | 1 | 1 | 1 | - | 0.1 | 1 | 1 | - | 0.1 | 0.1 | 1 | 0.0001 | |
EDSS data set | ||||||||||||||
DT | Criterion: | Gini | Entropy | Gini | Gini | - | Gini | Entropy | Gini | - | Gini | Gini | Entropy | Gini |
Maximum depth: | 6 | 7 | 5 | 5 | - | 8 | 6 | 5 | - | 6 | 6 | 8 | 2 | |
Minimum: | 21 | 14 | 5 | 5 | - | 12 | 19 | 5 | - | 21 | 21 | 7 | 5 | |
kNN | Weights: | Distance | Uniform | Uniform | Uniform | Uniform | Uniform | Uniform | - | Distance | Distance | Distance | Uniform | |
Distance metric: | Eucl. | Eucl. | Eucl. | Eucl. | - | Eucl. | Manh. | Eucl. | - | Eucl. | Eucl. | Eucl. | Eucl. | |
No. neighbors: | 2 | 3 | 3 | 3 | - | 5 | 3 | 3 | - | 2 | 3 | 3 | 9 | |
SVM | Regularization C: | 100 | 100 | 1 | 1 | - | 100 | 100 | 1 | - | 100 | 10 | 100 | 0.1 |
Kernel coefficient γ: | 0.1 | 1 | 1 | 1 | - | 1 | 1 | 1 | - | 0.1 | 1 | 1 | 0.0001 | |
GR_N data set | ||||||||||||||
DT | Criterion: | Entropy | Gini | Entropy | Entropy | - | Entropy | Gini | Gini | Entropy | Entropy | Gini | Entropy | Gini |
Maximum depth: | 10 | 7 | 10 | 10 | - | 9 | 9 | 5 | 8 | 10 | 10 | 9 | 5 | |
Minimum: | 11 | 9 | 7 | 9 | - | 11 | 17 | 30 | 11 | 12 | 14 | 15 | 24 | |
kNN | Weights: | Distance | Uniform | Distance | Distance | - | Distance | Distance | Distance | Distance | Distance | Distance | Distance | Distance |
Distance metric: | Manh. | Manh. | Eucl. | Manh. | - | Eucl. | Manh. | Manh. | Manh. | Manh. | Manh. | Manh. | Manh. | |
No. neighbors: | 2 | 3 | 2 | 3 | - | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | |
SVM | Regularization C: | 10 | 100 | 100 | 100 | - | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Kernel coefficient γ: | 0.01 | 0.01 | 1 | 1 | - | 0.01 | 0.01 | 1 | 1 | 0.01 | 0.01 | 0.1 | 1 | |
GR_D data set | ||||||||||||||
DT | Criterion: | Entropy | Gini | Entropy | Entropy | - | Entropy | Entropy | Entropy | Gini | Entropy | Entropy | Gini | Gini |
Maximum depth: | 8 | 9 | 10 | 10 | - | 6 | 9 | 10 | 10 | 10 | 10 | 8 | 9 | |
Minimum: | 17 | 9 | 9 | 5 | - | 22 | 5 | 9 | 5 | 21 | 6 | 10 | 8 | |
kNN | Weights: | Uniform | Distance | Uniform | Distance | - | Distance | Distance | Uniform | uniform | Distance | Distance | Distance | Uniform |
Distance metric: | Manh. | Manh. | Eucl. | Eucl. | - | Eucl. | Manh. | Manh. | Eucl. | Manh. | Eucl. | Eucl. | Manh. | |
No. neighbors: | 5 | 2 | 2 | 2 | - | 5 | 2 | 3 | 3 | 2 | 2 | 2 | 3 | |
SVM | Regularization C: | 10 | 10 | 100 | 100 | - | 100 | 10 | 100 | 100 | 100 | 100 | 100 | 100 |
Kernel coefficient γ: | 0.01 | 0.1 | 0.1 | 1 | - | 0.01 | 0.1 | 1 | 1 | 0.01 | 0.01 | 0.01 | 0.1 | |
ML_N data set | ||||||||||||||
DT | Criterion: | Entropy | Gini | Gini | Gini | - | Gini | Gini | Gini | Entropy | Gini | Gini | Gini | Entropy |
Maximum depth: | 6 | 2 | 4 | 9 | - | 2 | 2 | 5 | 7 | 5 | 2 | 9 | 3 | |
Minimum: | 8 | 11 | 18 | 8 | - | 14 | 30 | 13 | 14 | 11 | 11 | 7 | 30 | |
kNN | Weights: | Distance | Distance | Distance | Uniform | - | Distance | Distance | Uniform | Distance | Distance | Distance | Distance | Distance |
Distance metric: | Manh. | Eucl. | Eucl. | Eucl. | - | Manh. | Eucl. | Eucl. | Manh. | Eucl. | Eucl. | Eucl. | Eucl. | |
No. neighbors: | 2 | 2 | 2 | 3 | - | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | |
SVM | Regularization C: | 10 | 100 | 100 | 1 | - | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Kernel coefficient γ: | 0.01 | 0.01 | 0.1 | 1 | - | 0.01 | 0.1 | 0.1 | 1 | 0.01 | 0.01 | 0.01 | 0.1 | |
ML_D data set | ||||||||||||||
DT | Criterion: | Entropy | Gini | Gini | Entropy | Gini | Gini | Entropy | Gini | Gini | Entropy | Entropy | Gini | Entropy |
Maximum depth: | 6 | 6 | 6 | 10 | 9 | 10 | 6 | 6 | 6 | 5 | 5 | 6 | 7 | |
Minimum: | 15 | 5 | 17 | 7 | 10 | 5 | 14 | 16 | 9 | 15 | 15 | 15 | 11 | |
kNN | Weights: | Distance | Distance | Distance | Distance | Distance | Distance | Distance | Distance | Distance | Distance | Distance | Distance | Uniform |
Distance metric: | Eucl. | Manh. | Manh. | Manh. | Eucl. | Eucl. | Manh. | Manh. | Eucl. | Eucl. | Eucl. | Manh. | Manh. | |
No. neighbors: | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | |
SVM | Regularization C: | 100 | 10 | 100 | 100 | 10 | 100 | 10 | 100 | 100 | 100 | 100 | 100 | 100 |
Kernel coefficient γ: | 0.01 | 0.1 | 0.0001 | 0.0001 | 1 | 0.01 | 0.1 | 0.1 | 1 | 0.01 | 0.01 | 0.01 | 0.1 | |
ML_S_EO data set | ||||||||||||||
DT | Criterion: | Gini | Entropy | Gini | Entropy | - | Gini | Gini | Entropy | - | Entropy | Entropy | Gini | - |
Maximum depth: | 10 | 8 | 10 | 6 | - | 6 | 9 | 9 | - | 7 | 10 | 9 | - | |
Minimum: | 16 | 6 | 7 | 7 | - | 17 | 14 | 7 | - | 14 | 10 | 7 | - | |
kNN | Weights: | Distance | Distance | Distance | Uniform | - | Distance | Distance | Distance | - | Distance | Distance | Distance | - |
Distance metric: | Manh. | Eucl. | Eucl. | Eucl. | - | Manh. | Eucl. | Eucl. | - | Manh. | Eucl. | Manh. | - | |
No. neighbors: | 2 | 3 | 2 | 9 | - | 6 | 2 | 4 | - | 4 | 2 | 2 | - | |
SVM | Regularization C: | 100 | 10 | 100 | 100 | - | 100 | 100 | 100 | - | 10 | 100 | 100 | - |
Kernel coefficient γ: | 0.1 | 1 | 1 | 1 | - | 0.1 | 1 | 1 | - | 0.1 | 0.1 | 1 | - | |
ML_S_EC data set | ||||||||||||||
DT | Criterion: | Entropy | Gini | Gini | - | - | Entropy | Gini | Gini | - | Gini | Gini | Gini | Gini |
Maximum depth: | 9 | 5 | 5 | - | - | 7 | 7 | 3 | - | 5 | 7 | 7 | 9 | |
Minimum: | 7 | 7 | 21 | - | - | 7 | 6 | 21 | - | 20 | 10 | 15 | 5 | |
kNN | Weights: | Uniform | Distance | Distance | - | - | Distance | Distance | Uniform | - | Distance | Distance | Uniform | Distance |
Distance metric: | Eucl. | Eucl. | Manh. | - | - | Eucl. | Manh. | Eucl. | - | Eucl. | Eucl. | Manh. | Manh. | |
No. neighbors: | 3 | 2 | 4 | - | - | 2 | 2 | 3 | - | 3 | 2 | 3 | 2 | |
SVM | Regularization C: | 100 | 100 | 10 | - | - | 100 | 100 | 10 | - | 100 | 100 | 100 | 10 |
Kernel coefficient γ: | 0.1 | 0.1 | 1 | - | - | 0.1 | 1 | 1 | - | 0.1 | 0.1 | 1 | 1 | |
MSWS-12 data set | ||||||||||||||
DT | Criterion: | Entropy | Entropy | Gini | Gini | - | Entropy | Entropy | Gini | Gini | Entropy | Gini | Gini | Gini |
Maximum depth: | 7 | 5 | 2 | 2 | - | 4 | 6 | 2 | 2 | 4 | 4 | 3 | 2 | |
Minimum: | 24 | 14 | 5 | 5 | - | 7 | 5 | 5 | 5 | 7 | 5 | 5 | 5 | |
kNN | Weights: | Uniform | Uniform | Uniform | Uniform | - | Uniform | Uniform | Uniform | Uniform | Uniform | Distance | Distance | Uniform |
Distance metric: | Manh. | Eucl. | Eucl. | Eucl. | - | Manh. | Manh. | Eucl. | Eucl. | Eucl. | Eucl. | Manh. | Eucl. | |
No. neighbors: | 3 | 3 | 3 | 3 | - | 3 | 9 | 3 | 3 | 7 | 10 | 3 | 3 | |
SVM | Regularization C: | 100 | 1 | 0.1 | 0.1 | - | 100 | 100 | 0.1 | 0.1 | 100 | 100 | 10 | 0.1 |
Kernel coefficient γ: | 0.1 | 1 | 0.0001 | 0.0001 | - | 0.1 | 0.1 | 0.0001 | 0.0001 | 0.1 | 0.1 | 1 | 0.0001 | |
EMIQ data set | ||||||||||||||
DT | Criterion: | Gini | Gini | Gini | Gini | - | Entropy | Gini | Gini | - | gini | gini | Gini | gini |
Maximum depth: | 2 | 4 | 3 | 3 | - | 7 | 6 | 3 | - | 2 | 2 | 2 | 3 | |
Minimum: | 7 | 27 | 5 | 5 | - | 13 | 5 | 5 | - | 7 | 15 | 15 | 5 | |
kNN | Weights: | Distance | Uniform | Uniform | Uniform | - | Uniform | Uniform | Uniform | - | Uniform | Uniform | Uniform | Distance |
Distance metric: | Manh. | Eucl. | Eucl. | Eucl. | - | Eucl. | Eucl. | Eucl. | - | Manh. | Manh. | Manh. | Eucl. | |
No. neighbors: | 7 | 7 | 9 | 9 | - | 3 | 5 | 9 | - | 9 | 9 | 9 | 5 | |
SVM | Regularization C: | 10 | 100 | 1 | 1 | - | 10 | 10 | 1 | - | 10 | 10 | 10 | 10 |
Kernel coefficient γ: | 0.1 | 0.1 | 1 | 1 | - | 1 | 1 | 1 | - | 0.1 | 1 | 1 | 1 |
Appendix B
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 428 | 0.44 ± 0.01 | 50.9 ± 1.0 | 38.1 ± 0.8 | 86.9 ± 0.3 | 0.33 ± 0.01 | 0.001 |
50% | Union | 345 | 0.44 ± 0.01 | 50.7 ± 0.8 | 38.4 ± 0.7 | 87.1 ± 0.3 | 0.33 ± 0.01 | 0.001 | |
Union 2 | 246 | 0.45 ± 0.01 | 51.8 ± 0.6 | 40.1 ± 0.7 | 87.7 ± 0.3 | 0.35 ± 0.01 | 0.001 | ||
Union 3 | 191 | 0.45 ± 0.00 | 51.6 ± 0.8 | 39.9 ± 0.4 | 87.7 ± 0.2 | 0.35 ± 0.01 | 0.001 | ||
Intersection | 74 | 0.43 ± 0.00 | 53.6 ± 0.7 | 36.2 ± 0.4 | 85.1 ± 0.2 | 0.32 ± 0.01 | 0.001 | ||
25% | Union | 224 | 0.45 ± 0.00 | 54.4 ± 0.7 | 38.6 ± 0.3 | 86.3 ± 0.2 | 0.35 ± 0.00 | 0.001 | |
Union 2 | 116 | 0.48 ± 0.01 | 59.1 ± 0.6 | 40.1 ± 0.6 | 86.0 ± 0.3 | 0.38 ± 0.01 | 0.001 | ||
Union 3 | 71 | 0.49 ± 0.00 | 63.6 ± 0.6 | 39.7 ± 0.2 | 84.7 ± 0.1 | 0.39 ± 0.00 | 0.001 | ||
Intersection | 17 | 0.53 ± 0.00 | 74.4 ± 0.4 | 41.2 ± 0.2 | 83.2 ± 0.1 | 0.43 ± 0.00 | 0.001 | ||
10% | Union | 94 | 0.48 ± 0.00 | 63.6 ± 0.6 | 38.9 ± 0.4 | 84.2 ± 0.2 | 0.38 ± 0.01 | 0.001 | |
Union 2 | 44 | 0.53 ± 0.01 | 72.9 ± 0.8 | 41.5 ± 0.4 | 83.7 ± 0.2 | 0.43 ± 0.01 | 0.001 | ||
Union 3 | 25 | 0.52 ± 0.00 | 73.8 ± 0.5 | 40.4 ± 0.3 | 82.8 ± 0.2 | 0.42 ± 0.00 | 0.001 | ||
Intersection | 9 | 0.53 ± 0.00 | 74.0 ± 0.0 | 41.0 ± 0.3 | 83.1 ± 0.2 | 0.43 ± 0.00 | 0.001 | ||
DT | 100% | - | 428 | 0.30 ± 0.02 | 28.9 ± 2.0 | 30.6 ± 3.1 | 89.5 ± 1.4 | 0.19 ± 0.03 | 0.001 |
50% | Union | 345 | 0.30 ± 0.05 | 28.4 ± 5.1 | 31.7 ± 4.1 | 90.3 ± 1.0 | 0.20 ± 0.05 | 0.001 | |
Union 2 | 246 | 0.27 ± 0.04 | 20.9 ± 4.0 | 38.9 ± 1.4 | 94.8 ± 1.0 | 0.19 ± 0.03 | 0.001 | ||
Union 3 | 191 | 0.28 ± 0.10 | 22.4 ± 10.7 | 40.8 ± 3.6 | 95.0 ± 2.2 | 0.21 ± 0.08 | 0.001 | ||
Intersection | 74 | 0.32 ± 0.04 | 27.2 ± 3.9 | 37.6 ± 3.7 | 92.8 ± 1.0 | 0.23 ± 0.04 | 0.001 | ||
25% | Union | 224 | 0.29 ± 0.02 | 25.2 ± 2.7 | 35.4 ± 2.9 | 92.7 ± 1.2 | 0.20 ± 0.02 | 0.001 | |
Union 2 | 116 | 0.32 ± 0.02 | 30.2 ± 2.7 | 34.5 ± 3.1 | 90.9 ± 1.2 | 0.22 ± 0.03 | 0.001 | ||
Union 3 | 71 | 0.33 ± 0.03 | 29.1 ± 3.5 | 37.4 ± 2.9 | 92.2 ± 1.0 | 0.24 ± 0.03 | 0.001 | ||
Intersection | 17 | 0.33 ± 0.04 | 28.3 ± 4.1 | 41.3 ± 3.8 | 93.6 ± 1.1 | 0.25 ± 0.04 | 0.001 | ||
10% | Union | 94 | 0.33 ± 0.04 | 29.8 ± 5.1 | 38.5 ± 3.6 | 92.5 ± 0.9 | 0.25 ± 0.04 | 0.001 | |
Union 2 | 44 | 0.32 ± 0.02 | 26.1 ± 2.4 | 43.1 ± 2.8 | 94.5 ± 0.6 | 0.25 ± 0.02 | 0.001 | ||
Union 3 | 25 | 0.30 ± 0.05 | 24.9 ± 5.7 | 39.1 ± 3.2 | 93.9 ± 1.3 | 0.22 ± 0.04 | 0.001 | ||
Intersection | 9 | 0.36 ± 0.03 | 27.7 ± 2.7 | 50.5 ± 3.1 | 95.7 ± 0.3 | 0.29 ± 0.03 | 0.001 | ||
kNN | 100% | - | 428 | 0.33 ± 0.02 | 32.3 ± 2.2 | 34.1 ± 1.3 | 90.1 ± 0.5 | 0.23 ± 0.02 | 0.001 |
50% | Union | 345 | 0.32 ± 0.03 | 25.5 ± 2.6 | 41.5 ± 3.0 | 94.3 ± 0.6 | 0.24 ± 0.03 | 0.001 | |
Union 2 | 246 | 0.36 ± 0.03 | 29.8 ± 3.2 | 45.2 ± 4.6 | 94.2 ± 0.8 | 0.28 ± 0.04 | 0.001 | ||
Union 3 | 191 | 0.37 ± 0.03 | 31.7 ± 3.3 | 43.6 ± 3.7 | 93.5 ± 0.8 | 0.28 ± 0.04 | 0.001 | ||
Intersection | 74 | 0.34 ± 0.02 | 29.1 ± 2.3 | 41.8 ± 2.1 | 93.6 ± 0.6 | 0.26 ± 0.02 | 0.001 | ||
25% | Union | 224 | 0.34 ± 0.02 | 33.1 ± 2.3 | 34.9 ± 1.5 | 90.2 ± 0.6 | 0.24 ± 0.02 | 0.001 | |
Union 2 | 116 | 0.38 ± 0.03 | 33.5 ± 2.7 | 43.5 ± 3.4 | 93.1 ± 0.7 | 0.29 ± 0.03 | 0.001 | ||
Union 3 | 71 | 0.40 ± 0.01 | 37.5 ± 1.2 | 43.6 ± 1.7 | 92.3 ± 0.5 | 0.32 ± 0.01 | 0.001 | ||
Intersection | 17 | 0.35 ± 0.03 | 32.0 ± 3.1 | 38.7 ± 2.2 | 92.0 ± 0.5 | 0.26 ± 0.03 | 0.001 | ||
10% | Union | 94 | 0.40 ± 0.02 | 31.7 ± 2.2 | 52.5 ± 3.1 | 95.4 ± 0.4 | 0.33 ± 0.03 | 0.001 | |
Union 2 | 44 | 0.43 ± 0.02 | 39.4 ± 2.8 | 48.1 ± 1.8 | 93.3 ± 0.3 | 0.35 ± 0.03 | 0.001 | ||
Union 3 | 25 | 0.38 ± 0.02 | 32.1 ± 2.3 | 47.8 ± 2.5 | 94.4 ± 0.4 | 0.31 ± 0.02 | 0.001 | ||
Intersection | 9 | 0.35 ± 0.03 | 32.1 ± 2.5 | 38.9 ± 2.7 | 92.0 ± 0.4 | 0.26 ± 0.03 | 0.001 | ||
SVM | 100% | - | 428 | 0.26 ± 0.02 | 20.4 ± 1.9 | 35.5 ± 2.7 | 94.1 ± 0.6 | 0.18 ± 0.02 | 0.001 |
50% | Union | 345 | 0.29 ± 0.04 | 27.1 ± 4.8 | 32.1 ± 4.2 | 91.0 ± 0.9 | 0.19 ± 0.05 | 0.001 | |
Union 2 | 246 | 0.31 ± 0.02 | 28.0 ± 2.4 | 36.0 ± 2.6 | 92.1 ± 0.6 | 0.22 ± 0.03 | 0.001 | ||
Union 3 | 191 | 0.34 ± 0.02 | 28.9 ± 2.2 | 41.0 ± 2.8 | 93.4 ± 0.5 | 0.25 ± 0.03 | 0.001 | ||
Intersection | 74 | 0.35 ± 0.03 | 32.3 ± 3.1 | 38.6 ± 2.8 | 91.9 ± 0.6 | 0.26 ± 0.03 | 0.001 | ||
25% | Union | 224 | 0.33 ± 0.02 | 31.3 ± 2.7 | 35.7 ± 2.3 | 91.1 ± 0.5 | 0.24 ± 0.03 | 0.001 | |
Union 2 | 116 | 0.36 ± 0.03 | 30.2 ± 2.2 | 46.2 ± 3.9 | 94.4 ± 0.7 | 0.29 ± 0.03 | 0.001 | ||
Union 3 | 71 | 0.38 ± 0.02 | 34.6 ± 2.7 | 41.9 ± 1.8 | 92.4 ± 0.3 | 0.29 ± 0.02 | 0.001 | ||
Intersection | 17 | 0.33 ± 0.02 | 28.3 ± 1.9 | 39.9 ± 3.1 | 93.2 ± 0.6 | 0.25 ± 0.03 | 0.001 | ||
10% | Union | 94 | 0.39 ± 0.03 | 32.1 ± 2.9 | 48.4 ± 4.2 | 94.6 ± 0.5 | 0.31 ± 0.04 | 0.001 | |
Union 2 | 44 | 0.41 ± 0.02 | 33.3 ± 2.3 | 51.9 ± 3.2 | 95.1 ± 0.6 | 0.33 ± 0.03 | 0.001 | ||
Union 3 | 25 | 0.42 ± 0.04 | 37.5 ± 4.3 | 48.2 ± 4.2 | 93.6 ± 0.7 | 0.34 ± 0.05 | 0.001 | ||
Intersection | 9 | 0.33 ± 0.02 | 30.9 ± 2.3 | 35.9 ± 1.4 | 91.3 ± 0.4 | 0.24 ± 0.02 | 0.001 |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 11 | 0.47 ± 0.01 | 57.6 ± 0.9 | 39.4 ± 0.4 | 85.7 ± 0.2 | 0.36 ± 0.01 | 0.001 |
50% | Union | 11 | 0.47 ± 0.01 | 57.6 ± 0.9 | 39.4 ± 0.4 | 85.7 ± 0.2 | 0.36 ± 0.01 | 0.001 | |
Union 2 | 8 | 0.43 ± 0.01 | 49.2 ± 0.8 | 38.1 ± 0.5 | 87.1 ± 0.1 | 0.32 ± 0.01 | 0.001 | ||
Union 3 | 4 | 0.43 ± 0.01 | 46.9 ± 0.7 | 39.1 ± 0.4 | 88.2 ± 0.1 | 0.32 ± 0.01 | 0.001 | ||
Intersection | 1 | 0.05 ± 0.00 | 2.9 ± 0.0 | 42.0 ± 1.2 | 99.4 ± 0.0 | 0.04 ± 0.00 | 0.001 | ||
25% | Union | 7 | 0.46 ± 0.00 | 57.1 ± 0.5 | 37.9 ± 0.3 | 84.9 ± 0.1 | 0.35 ± 0.00 | 0.001 | |
Union 2 | 4 | 0.45 ± 0.00 | 48.4 ± 0.6 | 42.4 ± 0.4 | 89.4 ± 0.1 | 0.36 ± 0.01 | 0.001 | ||
Union 3 | 1 | 0.37 ± 0.00 | 32.0 ± 0.0 | 42.6 ± 0.0 | 93.1 ± 0.0 | 0.28 ± 0.00 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.38 ± 0.00 | 33.1 ± 0.0 | 44.7 ± 0.3 | 93.4 ± 0.1 | 0.30 ± 0.00 | 0.001 | |
Union 2 | 1 | 0.37 ± 0.00 | 32.0 ± 0.0 | 42.6 ± 0.0 | 93.1 ± 0.0 | 0.28 ± 0.00 | 0.001 | ||
Union 3 | 1 | 0.37 ± 0.00 | 32.0 ± 0.0 | 42.6 ± 0.0 | 93.1 ± 0.0 | 0.28 ± 0.00 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 11 | 0.27 ± 0.03 | 20.4 ± 3.5 | 42.0 ± 1.8 | 95.5 ± 0.7 | 0.20 ± 0.03 | 0.001 |
50% | Union | 11 | 0.27 ± 0.03 | 20.4 ± 3.5 | 42.0 ± 1.8 | 95.5 ± 0.7 | 0.20 ± 0.03 | 0.001 | |
Union 2 | 8 | 0.29 ± 0.02 | 22.3 ± 2.1 | 41.7 ± 4.0 | 94.9 ± 0.7 | 0.21 ± 0.03 | 0.001 | ||
Union 3 | 4 | 0.29 ± 0.04 | 21.7 ± 3.2 | 44.5 ± 4.7 | 95.6 ± 0.8 | 0.22 ± 0.04 | 0.001 | ||
Intersection | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 0.995 | ||
25% | Union | 7 | 0.23 ± 0.03 | 15.2 ± 2.6 | 44.0 ± 5.7 | 96.9 ± 0.5 | 0.17 ± 0.03 | 0.001 | |
Union 2 | 4 | 0.18 ± 0.04 | 12.2 ± 3.1 | 38.4 ± 4.1 | 96.9 ± 0.5 | 0.13 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.16 ± 0.03 | 10.0 ± 2.1 | 42.5 ± 4.3 | 97.8 ± 0.4 | 0.11 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.20 ± 0.03 | 13.5 ± 2.3 | 39.8 ± 3.6 | 96.7 ± 0.6 | 0.14 ± 0.03 | 0.001 | |
Union 2 | 1 | 0.16 ± 0.03 | 10.0 ± 2.1 | 42.5 ± 4.3 | 97.8 ± 0.4 | 0.11 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.16 ± 0.03 | 10.0 ± 2.1 | 42.5 ± 4.3 | 97.8 ± 0.4 | 0.11 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 11 | 0.26 ± 0.02 | 25.2 ± 2.1 | 26.0 ± 2.0 | 88.4 ± 0.5 | 0.14 ± 0.02 | 0.001 |
50% | Union | 11 | 0.26 ± 0.02 | 25.2 ± 2.1 | 26.0 ± 2.0 | 88.4 ± 0.5 | 0.14 ± 0.02 | 0.001 | |
Union 2 | 8 | 0.25 ± 0.01 | 25.8 ± 1.8 | 25.1 ± 1.3 | 87.6 ± 0.7 | 0.13 ± 0.02 | 0.001 | ||
Union 3 | 4 | 0.33 ± 0.01 | 31.9 ± 1.3 | 34.2 ± 1.5 | 90.1 ± 0.5 | 0.23 ± 0.02 | 0.001 | ||
Intersection | 1 | 0.07 ± 0.08 | 4.7 ± 5.2 | 21.1 ± 14.9 | 98.4 ± 1.7 | 0.04 ± 0.05 | 0.001 | ||
25% | Union | 7 | 0.28 ± 0.02 | 23.4 ± 1.5 | 34.5 ± 2.4 | 92.8 ± 0.6 | 0.19 ± 0.02 | 0.001 | |
Union 2 | 4 | 0.24 ± 0.02 | 18.3 ± 1.9 | 37.1 ± 3.6 | 95.0 ± 0.6 | 0.17 ± 0.02 | 0.001 | ||
Union 3 | 1 | 0.24 ± 0.06 | 21.7 ± 1.0 | 32.1 ± 7.3 | 91.7 ± 4.9 | 0.15 ± 0.04 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.26 ± 0.03 | 21.0 ± 3.6 | 34.8 ± 7.4 | 93.1 ± 2.8 | 0.17 ± 0.04 | 0.001 | |
Union 2 | 1 | 0.24 ± 0.06 | 21.7 ± 1.0 | 32.1 ± 7.3 | 91.7 ± 4.9 | 0.15 ± 0.04 | 0.001 | ||
Union 3 | 1 | 0.24 ± 0.06 | 21.7 ± 1.0 | 32.1 ± 7.3 | 91.7 ± 4.9 | 0.15 ± 0.04 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 11 | 0.26 ± 0.02 | 24.8 ± 2.3 | 27.3 ± 2.2 | 89.3 ± 0.6 | 0.15 ± 0.02 | 0.001 |
50% | Union | 11 | 0.26 ± 0.02 | 24.8 ± 2.3 | 27.3 ± 2.2 | 89.3 ± 0.6 | 0.15 ± 0.02 | 0.001 | |
Union 2 | 8 | 0.21 ± 0.02 | 15.5 ± 1.5 | 34.2 ± 3.4 | 95.2 ± 0.4 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 4 | 0.29 ± 0.03 | 22.7 ± 3.0 | 41.9 ± 3.5 | 94.9 ± 0.4 | 0.22 ± 0.03 | 0.001 | ||
Intersection | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 1.000 | ||
25% | Union | 7 | 0.26 ± 0.02 | 19.8 ± 2.2 | 36.9 ± 1.8 | 94.6 ± 0.4 | 0.18 ± 0.02 | 0.001 | |
Union 2 | 4 | 0.20 ± 0.02 | 14.0 ± 1.8 | 36.8 ± 3.5 | 96.1 ± 0.6 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 1 | 0.08 ± 0.03 | 4.4 ± 1.7 | 37.8 ± 4.1 | 98.9 ± 0.3 | 0.05 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.17 ± 0.02 | 11.7 ± 1.9 | 34.4 ± 3.1 | 96.4 ± 0.6 | 0.11 ± 0.02 | 0.001 | |
Union 2 | 1 | 0.08 ± 0.03 | 4.4 ± 1.7 | 37.8 ± 4.1 | 98.9 ± 0.3 | 0.05 ± 0.02 | 0.001 | ||
Union 3 | 1 | 0.08 ± 0.03 | 4.4 ± 1.7 | 37.8 ± 4.1 | 98.9 ± 0.3 | 0.05 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 9 | 0.48 ± 0.00 | 64.6 ± 0.3 | 38.2 ± 0.2 | 83.1 ± 0.1 | 0.37 ± 0.00 | 0.001 |
50% | Union | 9 | 0.48 ± 0.00 | 64.6 ± 0.3 | 38.2 ± 0.2 | 83.1 ± 0.1 | 0.37 ± 0.00 | 0.001 | |
Union 2 | 6 | 0.45 ± 0.00 | 56.8 ± 0.5 | 37.2 ± 0.5 | 84.5 ± 0.3 | 0.34 ± 0.01 | 0.001 | ||
Union 3 | 4 | 0.44 ± 0.01 | 50.5 ± 1.2 | 39.3 ± 0.8 | 87.4 ± 0.4 | 0.34 ± 0.01 | 0.001 | ||
Intersection | 1 | 0.05 ± 0.00 | 2.9 ± 0.0 | 42.0 ± 1.2 | 99.4 ± 0.0 | 0.04 ± 0.00 | 0.001 | ||
25% | Union | 4 | 0.44 ± 0.00 | 43.5 ± 0.3 | 43.6 ± 0.3 | 90.9 ± 0.0 | 0.35 ± 0.00 | 0.001 | |
Union 2 | 3 | 0.43 ± 0.00 | 42.4 ± 0.0 | 43.3 ± 0.1 | 91.0 ± 0.0 | 0.34 ± 0.00 | 0.001 | ||
Union 3 | 1 | 0.37 ± 0.00 | 32.0 ± 0.0 | 42.6 ± 0.0 | 93.1 ± 0.0 | 0.28 ± 0.00 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.38 ± 0.00 | 33.1 ± 0.0 | 44.7 ± 0.3 | 93.4 ± 0.1 | 0.30 ± 0.00 | 0.001 | |
Union 2 | 1 | 0.37 ± 0.00 | 32.0 ± 0.0 | 42.6 ± 0.0 | 93.1 ± 0.0 | 0.28 ± 0.00 | 0.001 | ||
Union 3 | 1 | 0.37 ± 0.00 | 32.0 ± 0.0 | 42.6 ± 0.0 | 93.1 ± 0.0 | 0.28 ± 0.00 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 9 | 0.24 ± 0.03 | 16.5 ± 2.1 | 41.4 ± 5.0 | 96.2 ± 0.6 | 0.17 ± 0.03 | 0.001 |
50% | Union | 9 | 0.24 ± 0.03 | 16.5 ± 2.1 | 41.4 ± 5.0 | 96.2 ± 0.6 | 0.17 ± 0.03 | 0.001 | |
Union 2 | 6 | 0.25 ± 0.02 | 17.6 ± 2.1 | 43.8 ± 3.0 | 96.3 ± 0.5 | 0.19 ± 0.02 | 0.001 | ||
Union 3 | 4 | 0.24 ± 0.02 | 14.3 ± 1.9 | 38.7 ± 2.2 | 96.3 ± 0.7 | 0.14 ± 0.02 | 0.001 | ||
Intersection | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 0.995 | ||
25% | Union | 4 | 0.20 ± 0.03 | 13.3 ± 2.5 | 43.3 ± 4.6 | 97.2 ± 0.5 | 0.15 ± 0.03 | 0.001 | |
Union 2 | 3 | 0.20 ± 0.04 | 13.1 ± 3.2 | 40.6 ± 3.8 | 97.0 ± 0.4 | 0.14 ± 0.04 | 0.001 | ||
Union 3 | 1 | 0.16 ± 0.03 | 10.0 ± 2.1 | 42.5 ± 4.3 | 97.8 ± 0.4 | 0.11 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.20 ± 0.03 | 13.5 ± 2.3 | 39.8 ± 3.6 | 96.7 ± 0.6 | 0.14 ± 0.03 | 0.001 | |
Union 2 | 1 | 0.16 ± 0.03 | 10.0 ± 2.1 | 42.5 ± 4.3 | 97.8 ± 0.4 | 0.11 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.16 ± 0.03 | 10.0 ± 2.1 | 42.5 ± 4.3 | 97.8 ± 0.4 | 0.11 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 9 | 0.28 ± 0.02 | 27.5 ± 1.6 | 29.2 ± 1.6 | 89.2 ± 0.5 | 0.17 ± 0.02 | 0.001 |
50% | Union | 9 | 0.28 ± 0.02 | 27.5 ± 1.6 | 29.2 ± 1.6 | 89.2 ± 0.5 | 0.17 ± 0.02 | 0.001 | |
Union 2 | 6 | 0.28 ± 0.03 | 24.8 ± 3.2 | 32.6 ± 3.9 | 91.7 ± 0.9 | 0.18 ± 0.04 | 0.001 | ||
Union 3 | 4 | 0.28 ± 0.03 | 23.1 ± 3.1 | 36.4 ± 3.5 | 93.5 ± 0.7 | 0.20 ± 0.03 | 0.001 | ||
Intersection | 1 | 0.07 ± 0.08 | 4.7 ± 5.2 | 21.1 ± 14.9 | 98.4 ± 1.7 | 0.04 ± 0.05 | 0.001 | ||
25% | Union | 4 | 0.23 ± 0.02 | 17.3 ± 1.9 | 36.5 ± 2.7 | 95.1 ± 0.3 | 0.16 ± 0.02 | 0.001 | |
Union 2 | 3 | 0.25 ± 0.02 | 19.9 ± 1.7 | 33.8 ± 3.8 | 93.6 ± 0.9 | 0.16 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.24 ± 0.06 | 21.7 ± 1.0 | 32.1 ± 7.3 | 91.7 ± 4.9 | 0.15 ± 0.04 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.26 ± 0.03 | 21.0 ± 3.6 | 34.8 ± 7.4 | 93.1 ± 2.8 | 0.17 ± 0.04 | 0.001 | |
Union 2 | 1 | 0.24 ± 0.06 | 21.7 ± 1.0 | 32.1 ± 7.3 | 91.7 ± 4.9 | 0.15 ± 0.04 | 0.001 | ||
Union 3 | 1 | 0.24 ± 0.06 | 21.7 ± 1.0 | 32.1 ± 7.3 | 91.7 ± 4.9 | 0.15 ± 0.04 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 9 | 0.27 ± 0.02 | 24.1 ± 2.0 | 30.5 ± 2.8 | 91.1 ± 0.6 | 0.17 ± 0.03 | 0.001 |
50% | Union | 9 | 0.27 ± 0.02 | 24.1 ± 2.0 | 30.5 ± 2.8 | 91.1 ± 0.6 | 0.17 ± 0.03 | 0.001 | |
Union 2 | 6 | 0.24 ± 0.02 | 18.9 ± 2.0 | 33.7 ± 2.7 | 94.0 ± 0.5 | 0.16 ± 0.02 | 0.001 | ||
Union 3 | 4 | 0.26 ± 0.03 | 19.4 ± 2.2 | 39.5 ± 4.0 | 95.2 ± 0.4 | 0.19 ± 0.03 | 0.001 | ||
Intersection | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 1.000 | ||
25% | Union | 4 | 0.20 ± 0.02 | 14.5 ± 1.3 | 32.7 ± 2.2 | 95.2 ± 0.4 | 0.13 ± 0.02 | 0.001 | |
Union 2 | 3 | 0.18 ± 0.03 | 12.7 ± 2.3 | 34.3 ± 3.8 | 96.1 ± 0.5 | 0.12 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.08 ± 0.03 | 4.4 ± 1.7 | 37.8 ± 4.1 | 98.9 ± 0.3 | 0.05 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.17 ± 0.02 | 11.7 ± 1.9 | 34.4 ± 3.1 | 96.4 ± 0.6 | 0.11 ± 0.02 | 0.001 | |
Union 2 | 1 | 0.08 ± 0.03 | 4.4 ± 1.7 | 37.8 ± 4.1 | 98.9 ± 0.3 | 0.05 ± 0.02 | 0.001 | ||
Union 3 | 1 | 0.08 ± 0.03 | 4.4 ± 1.7 | 37.8 ± 4.1 | 98.9 ± 0.3 | 0.05 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 82 | 0.35 ± 0.01 | 28.7 ± 0.9 | 43.3 ± 0.9 | 94.0 ± 0.2 | 0.26 ± 0.01 | 0.001 |
50% | Union | 75 | 0.34 ± 0.01 | 27.7 ± 0.8 | 42.4 ± 1.0 | 93.9 ± 0.2 | 0.25 ± 0.01 | 0.001 | |
Union 2 | 52 | 0.35 ± 0.01 | 29.9 ± 0.8 | 43.2 ± 1.0 | 93.6 ± 0.2 | 0.27 ± 0.01 | 0.001 | ||
Union 3 | 30 | 0.36 ± 0.01 | 31.3 ± 0.6 | 42.6 ± 0.7 | 93.2 ± 0.2 | 0.28 ± 0.01 | 0.001 | ||
Intersection | 7 | 0.42 ± 0.00 | 45.4 ± 0.6 | 38.4 ± 0.3 | 88.3 ± 0.1 | 0.31 ± 0.00 | 0.001 | ||
25% | Union | 43 | 0.35 ± 0.01 | 29.1 ± 0.7 | 42.5 ± 0.7 | 93.7 ± 0.1 | 0.26 ± 0.01 | 0.001 | |
Union 2 | 25 | 0.38 ± 0.01 | 35.1 ± 0.6 | 41.6 ± 0.6 | 92.1 ± 0.2 | 0.29 ± 0.01 | 0.001 | ||
Union 3 | 13 | 0.40 ± 0.01 | 41.0 ± 0.7 | 38.2 ± 0.9 | 89.3 ± 0.3 | 0.29 ± 0.01 | 0.001 | ||
Intersection | 3 | 0.39 ± 0.00 | 37.7 ± 0.4 | 40.9 ± 0.4 | 91.2 ± 0.1 | 0.30 ± 0.00 | 0.001 | ||
10% | Union | 20 | 0.40 ± 0.01 | 40.7 ± 1.5 | 39.9 ± 1.1 | 90.1 ± 0.2 | 0.31 ± 0.01 | 0.001 | |
Union 2 | 8 | 0.42 ± 0.00 | 46.8 ± 0.6 | 38.0 ± 0.4 | 87.7 ± 0.2 | 0.31 ± 0.01 | 0.001 | ||
Union 3 | 4 | 0.41 ± 0.01 | 42.3 ± 0.6 | 40.2 ± 0.5 | 89.9 ± 0.1 | 0.31 ± 0.01 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 82 | 0.24 ± 0.03 | 21.3 ± 3.2 | 28.1 ± 2.9 | 91.3 ± 0.6 | 0.14 ± 0.03 | 0.001 |
50% | Union | 75 | 0.25 ± 0.03 | 21.4 ± 3.0 | 29.6 ± 2.4 | 91.9 ± 0.7 | 0.15 ± 0.03 | 0.001 | |
Union 2 | 52 | 0.22 ± 0.02 | 17.3 ± 2.6 | 29.3 ± 2.4 | 93.3 ± 1.0 | 0.13 ± 0 02 | 0.001 | ||
Union 3 | 30 | 0.22 ± 0.02 | 17.1 ± 2.5 | 31.2 ± 1.8 | 93.9 ± 0.8 | 0.14 ± 0.02 | 0.001 | ||
Intersection | 7 | 0.26 ± 0.03 | 18.8 ± 2.7 | 43.7 ± 3.7 | 96.1 ± 0.6 | 0.19 ± 0.03 | 0.001 | ||
25% | Union | 43 | 0.23 ± 0.03 | 20.4 ± 2.2 | 27.3 ± 4.0 | 91.1 ± 1.3 | 0.13 ± 0.03 | 0.001 | |
Union 2 | 25 | 0.22 ± 0.02 | 17.0 ± 1.8 | 31.9 ± 3.6 | 94.1 ± 0.9 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 13 | 0.23 ± 0.04 | 16.4 ± 3.2 | 42.1 ± 4.6 | 96.4 ± 0.6 | 0.17 ± 0.04 | 0.001 | ||
Intersection | 3 | 0.25 ± 0.03 | 18.2 ± 2.8 | 40.1 ± 4.6 | 95.5 ± 1.0 | 0.18 ± 0.03 | 0.001 | ||
10% | Union | 20 | 0.21 ± 0.02 | 17.1 ± 2.5 | 28.4 ± 2.8 | 93.0 ± 1.1 | 0.12 ± 0.02 | 0.001 | |
Union 2 | 8 | 0.25 ± 0.03 | 20.1 ± 3.2 | 33.0 ± 4.4 | 93.4 ± 1.0 | 0.16 ± 0.04 | 0.001 | ||
Union 3 | 4 | 0.25 ± 0.03 | 19.2 ± 3.2 | 35.2 ± 2.6 | 94.3 ± 0.7 | 0.17 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 82 | 0.20 ± 0.01 | 19.6 ± 0.9 | 20.9 ± 1.3 | 88.0 ± 0.7 | 0.08 ± 0.01 | 0.015 |
50% | Union | 75 | 0.20 ± 0.02 | 19.5 ± 1.8 | 21.5 ± 1.5 | 88.6 ± 0.4 | 0.08 ± 0.02 | 0.010 | |
Union 2 | 52 | 0.26 ± 0.01 | 24.3 ± 1.5 | 27.1 ± 1.5 | 89.4 ± 0.7 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 30 | 0.24 ± 0.02 | 23.6 ± 1.8 | 24.8 ± 1.9 | 88.5 ± 0.5 | 0.12 ± 0.02 | 0.001 | ||
Intersection | 7 | 0.26 ± 0.02 | 25.1 ± 1.6 | 26.3 ± 1.7 | 88.7 ± 0.3 | 0.14 ± 0.02 | 0.002 | ||
25% | Union | 43 | 0.20 ± 0.01 | 19.3 ± 1.2 | 21.5 ± 1.0 | 88.7 ± 0.4 | 0.08 ± 0.01 | 0.005 | |
Union 2 | 25 | 0.25 ± 0.02 | 24.7 ± 1.7 | 25.4 ± 1.8 | 88.3 ± 0.8 | 0.13 ± 0.02 | 0.001 | ||
Union 3 | 13 | 0.22 ± 0.02 | 20.7 ± 1.9 | 22.8 ± 1.4 | 88.8 ± 0.5 | 0.10 ± 0.02 | 0.001 | ||
Intersection | 3 | 0.27 ± 0.02 | 21.6 ± 1.8 | 36.3 ± 2.5 | 93.9 ± 0.6 | 0.19 ± 0.02 | 0.001 | ||
10% | Union | 20 | 0.25 ± 0.02 | 19.3 ± 1.4 | 34.0 ± 2.0 | 93.9 ± 0.4 | 0.16 ± 0.02 | 0.001 | |
Union 2 | 8 | 0.25 ± 0.02 | 24.0 ± 2.4 | 25.2 ± 2.2 | 88.6 ± 0.6 | 0.13 ± 0.03 | 0.001 | ||
Union 3 | 4 | 0.30 ± 0.02 | 24.2 ± 1.9 | 39.5 ± 2.4 | 94.1 ± 0.4 | 0.22 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 82 | 0.21 ± 0.03 | 13.9 ± 2.4 | 41.5 ± 5.2 | 96.9 ± 0.3 | 0.15 ± 0.03 | 0.001 |
50% | Union | 75 | 0.24 ± 0.02 | 19.0 ± 1.8 | 33.3 ± 1.6 | 93.9 ± 0.4 | 0.16 ± 0.02 | 0.001 | |
Union 2 | 52 | 0.26 ± 0.03 | 18.5 ± 2.3 | 43.5 ± 4.2 | 96.1 ± 0.4 | 0.19 ± 0.03 | 0.001 | ||
Union 3 | 30 | 0.18 ± 0.02 | 13.2 ± 2.1 | 26.9 ± 3.3 | 94.2 ± 0.6 | 0.09 ± 0.02 | 0.001 | ||
Intersection | 7 | 0.20 ± 0.03 | 14.8 ± 2.2 | 33.6 ± 5.2 | 95.3 ± 0.6 | 0.13 ± 0.03 | 0.001 | ||
25% | Union | 43 | 0.26 ± 0.04 | 18.5 ± 2.9 | 42.4 ± 4.9 | 96.0 ± 0.4 | 0.19 ± 0.04 | 0.001 | |
Union 2 | 25 | 0.18 ± 0.02 | 11.5 ± 1.3 | 47.2 ± 3.6 | 97.9 ± 0.1 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 13 | 0.17 ± 0.01 | 15.7 ± 1.4 | 18.9 ± 1.2 | 89.1 ± 0.8 | 0.05 ± 0.01 | 0.093 | ||
Intersection | 3 | 0.16 ± 0.02 | 9.8 ± 1.5 | 45.2 ± 5.3 | 98.1 ± 0.3 | 0.12 ± 0.02 | 0.001 | ||
10% | Union | 20 | 0.15 ± 0.03 | 9.5 ± 1.9 | 39.5 ± 6.6 | 97.7 ± 0.4 | 0.10 ± 0.03 | 0.001 | |
Union 2 | 8 | 0.20 ± 0.02 | 16.4 ± 1.8 | 25.3 ± 2.1 | 92.2 ± 0.8 | 0.10 ± 0.02 | 0.002 | ||
Union 3 | 4 | 0.19 ± 0.02 | 11.9 ± 1.6 | 44.9 ± 5.1 | 97.7 ± 0.2 | 0.14 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 82 | 0.33 ± 0.01 | 33.2 ± 1.0 | 32.2 ± 1.0 | 89.1 ± 0.4 | 0.22 ± 0.01 | 0.001 |
50% | Union | 67 | 0.34 ± 0.01 | 34.4 ± 0.8 | 33.5 ± 0.7 | 89.3 ± 0.2 | 0.23 ± 0.01 | 0.001 | |
Union 2 | 48 | 0.34 ± 0.00 | 35.5 ± 0.6 | 32.8 ± 0.4 | 88.6 ± 0.2 | 0.23 ± 0.00 | 0.001 | ||
Union 3 | 33 | 0.33 ± 0.01 | 35.1 ± 0.9 | 32.0 ± 0.5 | 88.4 ± 0.2 | 0.23 ± 0.01 | 0.001 | ||
Intersection | 16 | 0.37 ± 0.00 | 46.1 ± 0.7 | 30.7 ± 0.3 | 83.8 ± 0.2 | 0.25 ± 0.00 | 0.001 | ||
25% | Union | 44 | 0.34 ± 0.01 | 36.2 ± 0.8 | 31.9 ± 0.5 | 88.0 ± 0.2 | 0.23 ± 0.01 | 0.001 | |
Union 2 | 25 | 0.36 ± 0.00 | 41.9 ± 0.4 | 31.7 ± 0.3 | 85.9 ± 0.2 | 0.24 ± 0.00 | 0.001 | ||
Union 3 | 11 | 0.38 ± 0.00 | 44.5 ± 0.7 | 32.7 ± 0.4 | 85.7 ± 0.2 | 0.26 ± 0.01 | 0.001 | ||
Intersection | 4 | 0.38 ± 0.01 | 41.0 ± 0.8 | 35.7 ± 0.4 | 88.5 ± 0.1 | 0.28 ± 0.01 | 0.001 | ||
10% | Union | 20 | 0.36 ± 0.01 | 41.0 ± 0.7 | 32.0 ± 0.6 | 86.4 ± 0.2 | 0.24 ± 0 01 | 0.001 | |
Union 2 | 10 | 0.38 ± 0.00 | 43.8 ± 0.5 | 34.0 ± 0.4 | 86.7 ± 0.2 | 0.27 ± 0.00 | 0.001 | ||
Union 3 | 2 | 0.31 ± 0.00 | 26.0 ± 0.5 | 39.1 ± 0.5 | 93.7 ± 0.1 | 0.23 ± 0.01 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 82 | 0.24 ± 0.05 | 19.8 ± 4.9 | 29.7 ± 4.2 | 92.8 ± 0.8 | 0.15 ± 0.05 | 0.001 |
50% | Union | 67 | 0.22 ± 0.03 | 17.1 ± 2.9 | 29.9 ± 3.7 | 93.7 ± 1.0 | 0.13 ± 0.03 | 0.001 | |
Union 2 | 48 | 0.20 ± 0.03 | 18.0 ± 2.8 | 23.7 ± 3.8 | 90.8 ± 1.7 | 0.10 ± 0.03 | 0.001 | ||
Union 3 | 33 | 0.22 ± 0.02 | 18.0 ± 2.2 | 29.8 ± 3.3 | 93.3 ± 1.1 | 0.14 ± 0.02 | 0.001 | ||
Intersection | 16 | 0.18 ± 0.02 | 14.0 ± 2.2 | 24.9 ± 2.9 | 93.4 ± 0 8 | 0.09 ± 0.02 | 0.001 | ||
25% | Union | 44 | 0.18 ± 0.04 | 12.8 ± 3.1 | 31.7 ± 4.9 | 95.6 ± 1.3 | 0.11 ± 0.03 | 0.001 | |
Union 2 | 25 | 0.23 ± 0.02 | 19.9 ± 2.2 | 27.4 ± 2.6 | 91.7 ± 1.0 | 0.13 ± 0.02 | 0.001 | ||
Union 3 | 11 | 0.21 ± 0.02 | 17.1 ± 2.2 | 27.3 ± 3.1 | 92.9 ± 0.9 | 0.12 ± 0.02 | 0.001 | ||
Intersection | 4 | 0.23 ± 0.03 | 18.4 ± 2.5 | 29.7 ± 3.6 | 93.2 ± 0.7 | 0.14 ± 0.03 | 0.001 | ||
10% | Union | 20 | 0.24 ± 0.04 | 20.1 ± 4.0 | 29.2 ± 4.9 | 92.4 ± 1.0 | 0.14 ± 0.04 | 0.001 | |
Union 2 | 10 | 0.23 ± 0.02 | 18.7 ± 2.1 | 29.0 ± 3.0 | 92.8 ± 1.0 | 0.13 ± 0.02 | 0.001 | ||
Union 3 | 2 | 0.22 ± 0.03 | 17.8 ± 2.3 | 30.7 ± 3.2 | 93.7 ± 0.7 | 0.14 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 82 | 0.20 ± 0.03 | 13.2 ± 2.1 | 42.1 ± 4.1 | 97.2 ± 0.2 | 0.15 ± 0.03 | 0.001 |
50% | Union | 67 | 0.21 ± 0.03 | 20.9 ± 2.9 | 21.9 ± 2.5 | 88.4 ± 0.4 | 0.09 ± 0.03 | 0.001 | |
Union 2 | 48 | 0.25 ± 0.02 | 24.1 ± 2.6 | 26.4 ± 1.9 | 89.5 ± 0.7 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 33 | 0.26 ± 0.02 | 25.4 ± 2.0 | 26.4 ± 1.6 | 88.9 ± 0.5 | 0.15 ± 0 02 | 0.001 | ||
Intersection | 16 | 0.21 ± 0.01 | 14.5 ± 1.2 | 35.6 ± 2.3 | 95.9 ± 0.4 | 0.14 ± 0.01 | 0.001 | ||
25% | Union | 44 | 0.25 ± 0.02 | 18.5 ± 1.7 | 40.4 ± 3.4 | 95.7 ± 0.5 | 0.18 ± 0.02 | 0.001 | |
Union 2 | 25 | 0.22 ± 0.02 | 20.7 ± 2.2 | 22.9 ± 1.9 | 89.1 ± 0.6 | 0.10 ± 0 02 | 0.001 | ||
Union 3 | 11 | 0.25 ± 0.02 | 18.8 ± 1.5 | 35.6 ± 2.7 | 94.7 ± 0.4 | 0.17 ± 0.02 | 0.001 | ||
Intersection | 4 | 0.18 ± 0.02 | 14.3 ± 2.2 | 25.8 ± 2.9 | 93.6 ± 0.5 | 0.10 ± 0.03 | 0.001 | ||
10% | Union | 20 | 0.26 ± 0.03 | 24.8 ± 3.2 | 28.1 ± 2.5 | 90.1 ± 0.4 | 0.16 ± 0.03 | 0.001 | |
Union 2 | 10 | 0.28 ± 0.02 | 28.6 ± 2.0 | 27.1 ± 1.2 | 88.0 ± 0.4 | 0.16 ± 0.02 | 0.001 | ||
Union 3 | 2 | 0.27 ± 0.02 | 25.9 ± 2.5 | 27.3 ± 2.2 | 89.2 ± 0.5 | 0.15 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 82 | 0.20 ± 0.02 | 16.3 ± 2.2 | 26.0 ± 2.4 | 92.8 ± 0.6 | 0.11 ± 0.02 | 0.001 |
50% | Union | 67 | 0.22 ± 0.02 | 17.7 ± 2.5 | 28.9 ± 2.5 | 93.2 ± 0.5 | 0.13 ± 0.02 | 0.001 | |
Union 2 | 48 | 0.23 ± 0.03 | 16.0 ± 2.0 | 40.4 ± 4.6 | 96.3 ± 0.3 | 0.16 ± 0.03 | 0.001 | ||
Union 3 | 33 | 0.19 ± 0.02 | 12.1 ± 1.5 | 42.5 ± 6.9 | 97.4 ± 0.6 | 0.14 ± 0.03 | 0.001 | ||
Intersection | 16 | 0.20 ± 0.03 | 15.1 ± 2.1 | 28.0 ± 4.1 | 93.9 ± 0.5 | 0.11 ± 0.03 | 0.008 | ||
25% | Union | 44 | 0.24 ± 0.02 | 17.4 ± 1.8 | 37.3 ± 2.3 | 95.4 ± 0.4 | 0.17 ± 0.02 | 0.001 | |
Union 2 | 25 | 0.21 ± 0.02 | 14.5 ± 1.9 | 36.3 ± 3.4 | 96.0 ± 0.5 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 11 | 0.16 ± 0.01 | 15.1 ± 1.3 | 17.7 ± 1.0 | 89.0 ± 0.8 | 0.04 ± 0.01 | 0.061 | ||
Intersection | 4 | 0.13 ± 0.01 | 7.8 ± 1.0 | 36.1 ± 3.4 | 97.8 ± 0.2 | 0.08 ± 0.01 | 0.001 | ||
10% | Union | 20 | 0.24 ± 0.02 | 16.8 ± 1.7 | 41.0 ± 2.7 | 96.2 ± 0.5 | 0.17 ± 0.02 | 0.001 | |
Union 2 | 10 | 0.21 ± 0.02 | 14.6 ± 1.5 | 37.3 ± 2.2 | 96.2 ± 0.3 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 2 | 0.14 ± 0.02 | 8.4 ± 1.5 | 47.6 ± 4.1 | 98.6 ± 0.2 | 0.11 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 84 | 0.41 ± 0.00 | 43.1 ± 0.7 | 38.2 ± 0.3 | 88.6 ± 0.2 | 0.30 ± 0.00 | 0.001 |
50% | Union | 72 | 0.41 ± 0.01 | 43.5 ± 0.9 | 38.7 ± 0.8 | 88.8 ± 0.2 | 0.31 ± 0.01 | 0.001 | |
Union 2 | 48 | 0.40 ± 0.01 | 41.0 ± 0.9 | 38.3 ± 0.6 | 89.2 ± 0.2 | 0.29 ± 0.01 | 0.001 | ||
Union 3 | 36 | 0.39 ± 0.01 | 40.4 ± 0.8 | 38.7 ± 0.4 | 89.6 ± 0.1 | 0.29 ± 0.01 | 0.001 | ||
Intersection | 12 | 0.41 ± 0.00 | 44.3 ± 0.4 | 38.8 ± 0.6 | 88.6 ± 0.2 | 0.31 ± 0.01 | 0.001 | ||
25% | Union | 50 | 0.40 ± 0.01 | 42.4 ± 0.9 | 38.5 ± 0.6 | 88.9 ± 0.3 | 0.30 ± 0.01 | 0.001 | |
Union 2 | 21 | 0.41 ± 0.01 | 42.4 ± 1.0 | 39.8 ± 0.7 | 89.5 ± 0.2 | 0.31 ± 0.01 | 0.001 | ||
Union 3 | 11 | 0.42 ± 0.00 | 44.8 ± 0.4 | 39.5 ± 0.3 | 88.8 ± 0.1 | 0.32 ± 0.00 | 0.001 | ||
Intersection | 2 | 0.36 ± 0.01 | 32.2 ± 1.1 | 39.6 ± 1.1 | 92.0 ± 0.1 | 0.26 ± 0.01 | 0.001 | ||
10% | Union | 22 | 0.42 ± 0.01 | 46.0 ± 0.7 | 38.9 ± 0.8 | 88.2 ± 0.3 | 0.32 ± 0.01 | 0.001 | |
Union 2 | 8 | 0.43 ± 0.01 | 42.9 ± 0.6 | 43.1 ± 0.7 | 90.8 ± 0.2 | 0.34 ± 0.01 | 0.001 | ||
Union 3 | 2 | 0.37 ± 0.01 | 33.6 ± 0.8 | 42.4 ± 0.6 | 92.6 ± 0.1 | 0.29 ± 0.01 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 84 | 0.22 ± 0.04 | 17.1 ± 3.3 | 29.7 ± 4.6 | 93.4 ± 1.2 | 0.13 ± 0.04 | 0.001 |
50% | Union | 72 | 0.25 ± 0.03 | 19.2 ± 2.3 | 34.4 ± 3.4 | 94.0 ± 0.6 | 0.16 ± 0.03 | 0.001 | |
Union 2 | 48 | 0.23 ± 0.05 | 17.3 ± 5.2 | 36.8 ± 3.0 | 95.2 ± 1.0 | 0.16 ± 0.04 | 0.001 | ||
Union 3 | 36 | 0.24 ± 0.03 | 21.4 ± 3.0 | 26.8 ± 3.3 | 90.4 ± 1.3 | 0.13 ± 0.03 | 0.001 | ||
Intersection | 12 | 0.23 ± 0.04 | 15.6 ± 3.6 | 42.5 ± 6.1 | 96.6 ± 0.6 | 0.16 ± 0.04 | 0.001 | ||
25% | Union | 50 | 0.19 ± 0.05 | 13.5 ± 4.4 | 36.5 ± 4.7 | 96.2 ± 1.2 | 0.13 ± 0.04 | 0.001 | |
Union 2 | 21 | 0.23 ± 0.03 | 16.8 ± 3.3 | 39.7 ± 2.6 | 95.8 ± 0.8 | 0.17 ± 0.03 | 0.001 | ||
Union 3 | 11 | 0.26 ± 0.03 | 19.6 ± 2.9 | 37.2 ± 3.2 | 94.6 ± 0.5 | 0.18 ± 0.03 | 0.001 | ||
Intersection | 2 | 0.23 ± 0.02 | 16.0 ± 1.3 | 43.1 ± 3.4 | 96.5 ± 0.6 | 0.17 ± 0.02 | 0.001 | ||
10% | Union | 22 | 0.23 ± 0.07 | 17.4 ± 7.1 | 37.6 ± 5.5 | 95.4 ± 1.5 | 0.16 ± 0.06 | 0.001 | |
Union 2 | 8 | 0.24 ± 0.03 | 16.4 ± 2.6 | 42.5 ± 3.9 | 96.4 ± 0.5 | 0.17 ± 0.03 | 0.001 | ||
Union 3 | 2 | 0.24 ± 0.03 | 17.0 ± 2.2 | 43.1 ± 3.5 | 96.3 ± 0.5 | 0.18 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 84 | 0.22 ± 0.02 | 21.6 ± 2.8 | 22.8 ± 2.1 | 88.2 ± 0.6 | 0.10 ± 0.03 | 0.001 |
50% | Union | 72 | 0.25 ± 0.03 | 25.0 ± 3.0 | 24.5 ± 2.5 | 87.4 ± 0.7 | 0.12 ± 0.03 | 0.006 | |
Union 2 | 48 | 0.26 ± 0.01 | 26.3 ± 1.7 | 26.5 ± 1.4 | 88.1 ± 0.4 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 36 | 0.26 ± 0 01 | 25.2 ± 1.2 | 26.3 ± 1.4 | 88.5 ± 0.7 | 0.14 ± 0.01 | 0.023 | ||
Intersection | 12 | 0.22 ± 0.02 | 21.3 ± 2.4 | 23.0 ± 2.1 | 88.4 ± 0.5 | 0.10 ± 0.02 | 0.005 | ||
25% | Union | 50 | 0.24 ± 0.02 | 22.0 ± 1.8 | 27.1 ± 1.4 | 90.4 ± 0.4 | 0.13 ± 0.02 | 0.002 | |
Union 2 | 21 | 0.21 ± 0.01 | 20.5 ± 1.3 | 21.9 ± 1.3 | 88.1 ± 0.6 | 0.09 ± 0.01 | 0.021 | ||
Union 3 | 11 | 0.21 ± 0.02 | 15.6 ± 1.9 | 32.2 ± 3.9 | 94.6 ± 0.5 | 0.13 ± 0.03 | 0.001 | ||
Intersection | 2 | 0.21 ± 0.02 | 21.0 ± 2.5 | 21.5 ± 2.0 | 87.5 ± 0.7 | 0.09 ± 0.02 | 0.019 | ||
10% | Union | 22 | 0.31 ± 0.02 | 30.1 ± 1.9 | 32.2 ± 2.1 | 89.6 ± 0.8 | 0.20 ± 0.02 | 0.001 | |
Union 2 | 8 | 0.26 ± 0.03 | 25.1 ± 3.1 | 28.1 ± 2.5 | 89.5 ± 0.6 | 0.15 ± 0.03 | 0.001 | ||
Union 3 | 2 | 0.21 ± 0.03 | 17.1 ± 2.6 | 28.9 ± 3.5 | 93.2 ± 0.6 | 0.12 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 84 | 0.17 ± 0.02 | 11.8 ± 1.5 | 29.2 ± 2.2 | 95.4 ± 0.4 | 0.09 ± 0.02 | 0.001 |
50% | Union | 72 | 0.20 ± 0.02 | 17.3 ± 1.6 | 24.2 ± 2.3 | 91.1 ± 0.8 | 0.10 ± 0.02 | 0.001 | |
Union 2 | 48 | 0.27 ± 0.01 | 21.1 ± 1.3 | 36.9 ± 2.5 | 94.1 ± 0.6 | 0.18 ± 0.02 | 0.001 | ||
Union 3 | 36 | 0.22 ± 0.02 | 15.5 ± 1.9 | 36.4 ± 3.5 | 95.6 ± 0.3 | 0.15 ± 0.03 | 0.001 | ||
Intersection | 12 | 0.22 ± 0.02 | 18.7 ± 2.5 | 26.2 ± 2.8 | 91.4 ± 1.0 | 0.11 ± 0.03 | 0.001 | ||
25% | Union | 50 | 0.23 ± 0.04 | 20.8 ± 3.4 | 27.1 ± 3.6 | 90.9 ± 0.5 | 0.13 ± 0.04 | 0.001 | |
Union 2 | 21 | 0.21 ± 0.02 | 17.9 ± 2.3 | 24.6 ± 1.7 | 91.1 ± 0.5 | 0.10 ± 0.02 | 0.002 | ||
Union 3 | 11 | 0.27 ± 0.02 | 21.3 ± 1.9 | 36.9 ± 2.3 | 94.1 ± 0.6 | 0.19 ± 0.02 | 0.001 | ||
Intersection | 2 | 0.19 ± 0.02 | 11.8 ± 1.6 | 55.5 ± 4.3 | 98.5 ± 0.3 | 0.15 ± 0.02 | 0.001 | ||
10% | Union | 22 | 0.28 ± 0.02 | 20.1 ± 1.9 | 46.9 ± 4.1 | 96.3 ± 0.6 | 0.22 ± 0.02 | 0.001 | |
Union 2 | 8 | 0.17 ± 0.03 | 11.2 ± 2.2 | 36.2 ± 4.0 | 96.8 ± 0.3 | 0.11 ± 0.03 | 0.001 | ||
Union 3 | 2 | 0.06 ± 0.02 | 3.1 ± 0.9 | 44.5 ± 7.1 | 99.3 ± 0.3 | 0.04 ± 0.01 | 0.001 | ||
Intersection | - | - | - | - | - | - | - |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 84 | 0.36 ± 0.01 | 44.9 ± 0.9 | 30.2 ± 0.5 | 83.6 ± 0.3 | 0.24 ± 0.01 | 0.001 |
50% | Union | 61 | 0.37 ± 0.00 | 45.5 ± 0.5 | 31.2 ± 0.4 | 84.1 ± 0.1 | 0.25 ± 0.00 | 0.001 | |
Union 2 | 45 | 0.35 ± 0.00 | 43.1 ± 0.4 | 29.9 ± 0.4 | 83.9 ± 0.3 | 0.23 ± 0.00 | 0.001 | ||
Union 3 | 39 | 0.36 ± 0.01 | 43.7 ± 0.7 | 30.1 ± 0.5 | 83.9 ± 0.3 | 0.23 ± 0.01 | 0.001 | ||
Intersection | 23 | 0.36 ± 0.00 | 42.5 ± 0.6 | 31.5 ± 0.4 | 85.3 ± 0.2 | 0.24 ± 0.01 | 0.001 | ||
25% | Union | 44 | 0.36 ± 0.00 | 44.2 ± 0.5 | 30.9 ± 0.5 | 84.3 ± 0.3 | 0.24 ± 0.01 | 0.001 | |
Union 2 | 23 | 0.38 ± 0.00 | 44.9 ± 0.5 | 32.8 ± 0.3 | 85.4 ± 0.2 | 0.26 ± 0.00 | 0.001 | ||
Union 3 | 13 | 0.39 ± 0.01 | 45.3 ± 0.6 | 33.7 ± 0.5 | 85.9 ± 0.2 | 0.27 ± 0.01 | 0.001 | ||
Intersection | 4 | 0.39 ± 0.00 | 40.7 ± 0.6 | 37.4 ± 0.5 | 89.2 ± 0.1 | 0.29 ± 0.01 | 0.001 | ||
10% | Union | 21 | 0.37 ± 0.01 | 43.6 ± 0.8 | 31.6 ± 0.5 | 85.0 ± 0.2 | 0.25 ± 0.01 | 0.001 | |
Union 2 | 7 | 0.37 ± 0.00 | 42.1 ± 0.5 | 33.2 ± 0.4 | 86.6 ± 0.1 | 0.26 ± 0.00 | 0.001 | ||
Union 3 | 3 | 0.38 ± 0.01 | 36.0 ± 0.7 | 39.4 ± 0.6 | 91.2 ± 0.1 | 0.28 ± 0.01 | 0.001 | ||
Intersection | 1 | 0.20 ± 0.01 | 12.7 ± 0.7 | 42.8 ± 2.4 | 97.3 ± 0.2 | 0.14 ± 0.01 | 0.001 | ||
DT | 100% | - | 84 | 0.21 ± 0.03 | 16.9 ± 2.4 | 26.9 ± 4.1 | 92.6 ± 1.0 | 0.11 ± 0.03 | 0.001 |
50% | Union | 61 | 0.18 ± 0.04 | 13.9 ± 3.5 | 26.9 ± 4.6 | 94.0 ± 1.3 | 0.10 ± 0.04 | 0.001 | |
Union 2 | 45 | 0.20 ± 0.03 | 15.6 ± 2.8 | 30.3 ± 3.7 | 94.3 ± 1.0 | 0.12 ± 0.03 | 0.001 | ||
Union 3 | 39 | 0.21 ± 0.02 | 16.5 ± 2.4 | 29.5 ± 4.2 | 93.6 ± 1.5 | 0.12 ± 0.03 | 0.001 | ||
Intersection | 23 | 0.21 ± 0.05 | 16.8 ± 5.2 | 28.6 ± 5.4 | 93.3 ± 1.7 | 0.12 ± 0.05 | 0.001 | ||
25% | Union | 44 | 0.21 ± 0.03 | 20.3 ± 4.0 | 22.3 ± 2.9 | 88.8 ± 1.4 | 0.09 ± 0.03 | 0.001 | |
Union 2 | 23 | 0.23 ± 0.03 | 17.4 ± 2.8 | 34.0 ± 5.9 | 94.5 ± 1.2 | 0.15 ± 0.04 | 0.001 | ||
Union 3 | 13 | 0.20 ± 0.02 | 15.0 ± 2.0 | 32.2 ± 3.1 | 95.0 ± 0.7 | 0.13 ± 0.02 | 0.001 | ||
Intersection | 4 | 0.21 ± 0.04 | 15.9 ± 3.3 | 31.6 ± 5.2 | 94.5 ± 0.9 | 0.13 ± 0.04 | 0.001 | ||
10% | Union | 21 | 0.22 ± 0.03 | 17.8 ± 3.8 | 28.1 ± 2.7 | 92.8 ± 1.1 | 0.12 ± 0.03 | 0.001 | |
Union 2 | 7 | 0.25 ± 0.03 | 18.2 ± 2.8 | 38.0 ± 4.5 | 95.3 ± 0.7 | 0.17 ± 0.03 | 0.001 | ||
Union 3 | 3 | 0.28 ± 0.03 | 22.4 ± 3.0 | 36.5 ± 3.5 | 93.8 ± 0.4 | 0.19 ± 0.03 | 0.001 | ||
Intersection | 1 | 0.18 ± 0.03 | 11.8 ± 2.6 | 35.7 ± 5.2 | 96.6 ± 0.6 | 0.12 ± 0.03 | 0.001 | ||
kNN | 100% | - | 84 | 0.18 ± 0.02 | 17.4 ± 2.0 | 18.8 ± 1.8 | 88.1 ± 0.9 | 0.06 ± 0.02 | 0.045 |
50% | Union | 61 | 0.20 ± 0.02 | 18.3 ± 2.8 | 21.6 ± 2.0 | 89.5 ± 0.7 | 0.08 ± 0.02 | 0.009 | |
Union 2 | 45 | 0.26 ± 0.02 | 25.3 ± 2.2 | 26.4 ± 2.0 | 88.8 ± 0.9 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 39 | 0.18 ± 0.01 | 17.4 ± 1.4 | 19.5 ± 1.4 | 88.6 ± 0.7 | 0.06 ± 0.01 | 0.007 | ||
Intersection | 23 | 0.22 ± 0.02 | 16.5 ± 1.8 | 33.4 ± 4.0 | 94.7 ± 0.7 | 0.14 ± 0.03 | 0.001 | ||
25% | Union | 44 | 0.25 ± 0.02 | 24.3 ± 2.2 | 25.9 ± 1.7 | 89.0 ± 0.4 | 0.14 ± 0.02 | 0.001 | |
Union 2 | 23 | 0.21 ± 0.02 | 19.1 ± 2.5 | 22.9 ± 2.3 | 89.8 ± 0.4 | 0.10 ± 0.03 | 0.006 | ||
Union 3 | 13 | 0.20 ± 0.02 | 18.6 ± 1.5 | 22.1 ± 1.8 | 89.6 ± 0.5 | 0.09 ± 0.02 | 0.028 | ||
Intersection | 4 | 0.21 ± 0.02 | 19.8 ± 1.9 | 23.5 ± 2.0 | 89.8 ± 0.6 | 0.10 ± 0.02 | 0.003 | ||
10% | Union | 21 | 0.24 ± 0.02 | 18.5 ± 1.6 | 35.6 ± 3.5 | 94.7 ± 0.5 | 0.16 ± 0.02 | 0.001 | |
Union 2 | 7 | 0.22 ± 0.01 | 20.4 ± 1.5 | 22.9 ± 1.5 | 89.1 ± 0.5 | 0.10 ± 0.02 | 0.038 | ||
Union 3 | 3 | 0.24 ± 0.02 | 23.1 ± 2.3 | 25.4 ± 2.5 | 89.2 ± 0.9 | 0.13 ± 0.03 | 0.001 | ||
Intersection | 1 | 0.19 ± 0 03 | 16.8 ± 2.6 | 22.4 ± 3.5 | 90.8 ± 0.7 | 0.08 ± 0.03 | 0.005 | ||
SVM | 100% | - | 84 | 0.19 ± 0.02 | 15.0 ± 1.8 | 24.9 ± 3.1 | 92.8 ± 1.0 | 0.09 ± 0.02 | 0.001 |
50% | Union | 61 | 0.25 ± 0.02 | 21.9 ± 2.3 | 28.6 ± 1.8 | 91.3 ± 0 6 | 0.15 ± 0.02 | 0.001 | |
Union 2 | 45 | 0.22 ± 0.03 | 18.5 ± 2.5 | 27.4 ± 3.3 | 92.2 ± 0.6 | 0.12 ± 0.03 | 0.001 | ||
Union 3 | 39 | 0.21 ± 0.03 | 15.9 ± 2.3 | 29.2 ± 3.1 | 93.9 ± 0.4 | 0.12 ± 0.03 | 0.002 | ||
Intersection | 23 | 0.23 ± 0.03 | 20.4 ± 2.5 | 25.6 ± 2.6 | 90.6 ± 0.4 | 0.12 ± 0.03 | 0.001 | ||
25% | Union | 44 | 0.26 ± 0.02 | 22.5 ± 2.0 | 29.7 ± 2.9 | 91.5 ± 0.6 | 0.16 ± 0.03 | 0.001 | |
Union 2 | 23 | 0.19 ± 0.02 | 13.5 ± 1.7 | 30.2 ± 3.8 | 95.0 ± 0.4 | 0.11 ± 0.02 | 0.001 | ||
Union 3 | 13 | 0.21 ± 0.02 | 17.3 ± 2.4 | 28.1 ± 1.9 | 93.0 ± 0.8 | 0.12 ± 0.02 | 0.001 | ||
Intersection | 4 | 0.21 ± 0.02 | 18.9 ± 1.9 | 24.1 ± 2.2 | 90.6 ± 0.8 | 0.10 ± 0.02 | 0.002 | ||
10% | Union | 21 | 0.22 ± 0.03 | 17.2 ± 2.3 | 31.5 ± 3.6 | 94.1 ± 0.5 | 0.14 ± 0.03 | 0.001 | |
Union 2 | 7 | 0.19 ± 0.03 | 12.7 ± 2.0 | 35.4 ± 4.6 | 96.3 ± 0.5 | 0.12 ± 0.03 | 0.001 | ||
Union 3 | 3 | 0.20 ± 0.03 | 14.6 ± 2.7 | 30.0 ± 3.4 | 94.6 ± 0.5 | 0.12 ± 0.03 | 0.015 | ||
Intersection | 1 | 0.03 ± 0 02 | 1.6 ± 1.1 | 37.0 ± 16.9 | 99.6 ± 0.1 | 0.02 ± 0.02 | 0.024 |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 32 | 0.26 ± 0.01 | 20.3 ± 0.8 | 36.6 ± 1.8 | 94.4 ± 0.2 | 0.18 ± 0.01 | 0.001 |
50% | Union | 31 | 0.26 ± 0.01 | 20.2 ± 0.9 | 36.5 ± 1.6 | 94.4 ± 0.2 | 0.18 ± 0.01 | 0.001 | |
Union 2 | 22 | 0.26 ± 0.02 | 19.3 ± 1.3 | 38.8 ± 2.1 | 95.2 ± 0.2 | 0.18 ± 0.02 | 0.001 | ||
Union 3 | 11 | 0.22 ± 0.01 | 15.7 ± 1.0 | 38.5 ± 1.6 | 96.0 ± 0.2 | 0.16 ± 0.01 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
25% | Union | 21 | 0.24 ± 0.01 | 17.5 ± 0.7 | 36.5 ± 1.3 | 95.2 ± 0.2 | 0.16 ± 0.01 | 0.001 | |
Union 2 | 9 | 0.21 ± 0.01 | 14.1 ± 0.7 | 38.6 ± 1.3 | 96.4 ± 0.2 | 0.14 ± 0.01 | 0.001 | ||
Union 3 | 2 | 0.18 ± 0.01 | 11.0 ± 0.7 | 42.8 ± 1.7 | 97.7 ± 0.1 | 0.13 ± 0.01 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 8 | 0.21 ± 0.01 | 14.8 ± 0.8 | 38.9 ± 1.9 | 96.3 ± 0.2 | 0.15 ± 0.01 | 0.001 | |
Union 2 | 3 | 0.22 ± 0.01 | 15.5 ± 1.0 | 40.9 ± 1.2 | 96.4 ± 0.2 | 0.16 ± 0.01 | 0.001 | ||
Union 3 | 1 | 0.17 ± 0.01 | 11.0 ± 0.6 | 41.9 ± 1.9 | 97.6 ± 0.1 | 0.12 ± 0.01 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 32 | 0.21 ± 0.04 | 16.4 ± 3.9 | 31.3 ± 4.1 | 94.3 ± 0.9 | 0.13 ± 0.04 | 0.001 |
50% | Union | 31 | 0.20 ± 0.04 | 15.8 ± 3.2 | 29.5 ± 4.5 | 93.9 ± 1.1 | 0.12 ± 0.04 | 0.001 | |
Union 2 | 22 | 0.21 ± 0.03 | 17.0 ± 2.8 | 26.9 ± 4.0 | 92.7 ± 0.6 | 0.11 ± 0.04 | 0.001 | ||
Union 3 | 11 | 0.22 ± 0.02 | 18.6 ± 1.8 | 27.3 ± 2.3 | 92.1 ± 0.5 | 0.12 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
25% | Union | 21 | 0.22 ± 0.03 | 15.8 ± 2.5 | 34.4 ± 3.7 | 95.2 ± 0.8 | 0.14 ± 0.03 | 0.001 | |
Union 2 | 9 | 0.21 ± 0.02 | 15.5 ± 1.8 | 33.5 ± 3.5 | 95.0 ± 1.0 | 0.14 ± 0.02 | 0.001 | ||
Union 3 | 2 | 0.25 ± 0.03 | 19.4 ± 2.9 | 34.7 ± 3.1 | 94.2 ± 0.7 | 0.17 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 8 | 0.21 ± 0.02 | 17.5 ± 1.9 | 27.2 ± 2.1 | 92.5 ± 1.0 | 0.12 ± 0.02 | 0.001 | |
Union 2 | 3 | 0.23 ± 0.02 | 17.5 ± 1.7 | 33.4 ± 4.2 | 94.4 ± 1.0 | 0.15 ± 0.02 | 0.001 | ||
Union 3 | 1 | 0.24 ± 0.02 | 15.7 ± 1.7 | 52.2 ± 4.2 | 97.7 ± 0.5 | 0.19 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 32 | 0.23 ± 0.01 | 24.2 ± 0.9 | 22.0 ± 1.2 | 86.4 ± 0.6 | 0.10 ± 0.01 | 0.001 |
50% | Union | 31 | 0.24 ± 0.03 | 18.1 ± 2.2 | 34.8 ± 3.2 | 94.6 ± 0.4 | 0.16 ± 0.03 | 0.001 | |
Union 2 | 22 | 0.24 ± 0.01 | 23.0 ± 1.5 | 24.8 ± 1.2 | 88.9 ± 0.6 | 0.12 ± 0.01 | 0.001 | ||
Union 3 | 11 | 0.25 ± 0.03 | 25.0 ± 2.8 | 24.4 ± 2.3 | 87.7 ± 0.5 | 0.13 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
25% | Union | 21 | 0.20 ± 0.02 | 13.4 ± 1.4 | 38.8 ± 3.5 | 96.6 ± 0.3 | 0.14 ± 0.02 | 0.001 | |
Union 2 | 9 | 0.27 ± 0.02 | 26.7 ± 2.2 | 26.4 ± 2.0 | 88.2 ± 0.4 | 0.15 ± 0.02 | 0.001 | ||
Union 3 | 2 | 0.29 ± 0.02 | 24.8 ± 1.5 | 35.0 ± 1.6 | 92.7 ± 0.3 | 0.20 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 8 | 0.25 ± 0.02 | 19.1 ± 1.9 | 34.7 ± 2.8 | 94.3 ± 0.4 | 0.16 ± 0.02 | 0.001 | |
Union 2 | 3 | 0.22 ± 0.01 | 21.9 ± 1.1 | 22.2 ± 1.5 | 87.8 ± 0.6 | 0.10 ± 0.02 | 0.002 | ||
Union 3 | 1 | 0.23 ± 0.03 | 14.9 ± 1.9 | 53.4 ± 4.2 | 97.9 ± 0.2 | 0.18 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 32 | 0.18 ± 0.02 | 15.6 ± 1.6 | 20.4 ± 2.3 | 90.2 ± 0.6 | 0.07 ± 0.02 | 0.057 |
50% | Union | 31 | 0.14 ± 0.02 | 9.6 ± 1.3 | 28.8 ± 3.8 | 96.2 ± 0.4 | 0.08 ± 0.02 | 0.002 | |
Union 2 | 22 | 0.20 ± 0.01 | 13.5 ± 1.0 | 35.8 ± 4.4 | 96.1 ± 0.6 | 0.13 ± 0.02 | 0.001 | ||
Union 3 | 11 | 0.19 ± 0.03 | 13.5 ± 2.7 | 33.5 ± 3.3 | 95.8 ± 0.3 | 0.12 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
25% | Union | 21 | 0.18 ± 0.01 | 15.8 ± 1.3 | 21.8 ± 1.7 | 90.9 ± 0.9 | 0.08 ± 0.01 | 0.007 | |
Union 2 | 9 | 0.18 ± 0.03 | 13.8 ± 2.4 | 25.5 ± 4.3 | 93.6 ± 0.6 | 0.09 ± 0.03 | 0.001 | ||
Union 3 | 2 | 0.13 ± 0.03 | 7.6 ± 1.8 | 39.9 ± 7.2 | 98.2 ± 0.3 | 0.09 ± 0.03 | 0.005 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 8 | 0.18 ± 0.02 | 13.8 ± 1.7 | 27.9 ± 3.5 | 94.3 ± 0.6 | 0.10 ± 0.02 | 0.001 | |
Union 2 | 3 | 0.09 ± 0.02 | 5.2 ± 1.5 | 27.7 ± 5.2 | 97.9 ± 0.3 | 0.05 ± 0.02 | 0.006 | ||
Union 3 | 1 | 0.09 ± 0.02 | 4.9 ± 1.3 | 66.5 ± 12.9 | 99.6 ± 0.4 | 0.07 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 32 | 0.27 ± 0.01 | 21.5 ± 0.8 | 37.7 ± 1.2 | 94.4 ± 0.1 | 0.19 ± 0.01 | 0.001 |
50% | Union | 30 | 0.28 ± 0.01 | 21.7 ± 0.9 | 38.6 ± 1.1 | 94.6 ± 0.1 | 0.20 ± 0.01 | 0.001 | |
Union 2 | 22 | 0.27 ± 0.01 | 20.1 ± 0.9 | 39.9 ± 1.4 | 95.2 ± 0.1 | 0.19 ± 0.01 | 0.001 | ||
Union 3 | 10 | 0.26 ± 0.01 | 18.5 ± 0.3 | 44.3 ± 2.1 | 96.3 ± 0.3 | 0.20 ± 0.01 | 0.001 | ||
Intersection | 2 | 0.29 ± 0.00 | 20.9 ± 0.4 | 45.3 ± 0.4 | 96.0 ± 0.1 | 0.22 ± 0.00 | 0.001 | ||
25% | Union | 22 | 0.30 ± 0.01 | 23.4 ± 0.9 | 40.8 ± 1.3 | 94.6 ± 0.2 | 0.22 ± 0.01 | 0.001 | |
Union 2 | 9 | 0.26 ± 0.01 | 18.5 ± 0.7 | 46.3 ± 2.2 | 96.6 ± 0.3 | 0.20 ± 0.01 | 0.001 | ||
Union 3 | 1 | 0.26 ± 0.01 | 18.5 ± 0.3 | 44.3 ± 2.1 | 96.3 ± 0.3 | 0.20 ± 0.01 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 10 | 0.26 ± 0.01 | 19.1 ± 0.7 | 41.6 ± 1.2 | 95.8 ± 0.1 | 0.19 ± 0.01 | 0.001 | |
Union 2 | 2 | 0.12 ± 0.01 | 7.2 ± 0.7 | 46.8 ± 2.6 | 98.7 ± 0.1 | 0.09 ± 0.01 | 0.001 | ||
Union 3 | - | - | - | - | - | - | - | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 32 | 0.21 ± 0.04 | 18.1 ± 4.2 | 24.6 ± 2.7 | 91.3 ± 1.0 | 0.11 ± 0.03 | 0.001 |
50% | Union | 30 | 0.22 ± 0.04 | 15.4 ± 3.5 | 37.2 ± 4.8 | 95.9 ± 0.7 | 0.15 ± 0.04 | 0.001 | |
Union 2 | 22 | 0.22 ± 0.04 | 17.0 ± 3.4 | 31.6 ± 3.8 | 94.2 ± 0.8 | 0.14 ± 0.03 | 0.001 | ||
Union 3 | 10 | 0.23 ± 0.04 | 16.5 ± 3.5 | 38.1 ± 5.3 | 95.8 ± 0.7 | 0.16 ± 0.04 | 0.001 | ||
Intersection | 2 | 0.20 ± 0.02 | 15.1 ± 2.1 | 30.2 ± 2.6 | 94.5 ± 0.7 | 0.12 ± 0.02 | 0.001 | ||
25% | Union | 22 | 0.18 ± 0.04 | 13.8 ± 3.6 | 25.6 ± 4.1 | 93.8 ± 0.9 | 0.09 ± 0.04 | 0.001 | |
Union 2 | 9 | 0.20 ± 0.03 | 15.4 ± 2.7 | 28.8 ± 3.6 | 94.0 ± 0.5 | 0.12 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.23 ± 0.04 | 16.5 ± 3.5 | 38.1 ± 5.3 | 95.8 ± 0.7 | 0.16 ± 0.04 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 10 | 0.19 ± 0.04 | 13.6 ± 3.0 | 34.2 ± 5.3 | 95.9 ± 0.8 | 0.13 ± 0.04 | 0.001 | |
Union 2 | 2 | 0.24 ± 0.02 | 16.6 ± 1.3 | 43.9 ± 2.6 | 96.6 ± 0.3 | 0.18 ± 0.02 | 0.001 | ||
Union 3 | - | - | - | - | - | - | - | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 32 | 0.17 ± 0.02 | 12.9 ± 1.6 | 24.2 ± 2.8 | 93.6 ± 0.3 | 0.08 ± 0.02 | 0.001 |
50% | Union | 30 | 0.16 ± 0.02 | 12.0 ± 1.4 | 23.4 ± 2.3 | 93.8 ± 0.4 | 0.07 ± 0.02 | 0.001 | |
Union 2 | 22 | 0.20 ± 0.02 | 20.5 ± 2.4 | 19.8 ± 1.7 | 86.9 ± 0.7 | 0.07 ± 0.02 | 0.002 | ||
Union 3 | 10 | 0.21 ± 0.02 | 16.6 ± 2.0 | 28.8 ± 2.3 | 93.5 ± 0.4 | 0.12 ± 0.02 | 0.001 | ||
Intersection | 2 | 0.22 ± 0.02 | 22.2 ± 2.3 | 21.5 ± 2.2 | 87.2 ± 0.7 | 0.09 ± 0.03 | 0.006 | ||
25% | Union | 22 | 0.24 ± 0.02 | 22.7 ± 1.7 | 24.5 ± 1.7 | 89.0 ± 0.4 | 0.12 ± 0.02 | 0.002 | |
Union 2 | 9 | 0.23 ± 0.02 | 22.2 ± 2.0 | 24.5 ± 1.7 | 89.2 ± 0.4 | 0.12 ± 0 02 | 0.001 | ||
Union 3 | 1 | 0.21 ± 0.02 | 16.6 ± 2.0 | 28.8 ± 2.3 | 93.5 ± 0.4 | 0.12 ± 0.02 | 0.005 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 10 | 0.24 ± 0.01 | 24.0 ± 1.3 | 24.8 ± 1.0 | 88.5 ± 0.5 | 0.13 ± 0.01 | 0.001 | |
Union 2 | 2 | 0.22 ± 0.03 | 17.3 ± 2.2 | 29.7 ± 4.2 | 93.5 ± 0.6 | 0.13 ± 0.03 | 0.001 | ||
Union 3 | - | - | - | - | - | - | - | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 32 | 0.18 ± 0.02 | 16.0 ± 1.8 | 20.8 ± 2.3 | 90.4 ± 0.7 | 0.07 ± 0.02 | 0.002 |
50% | Union | 30 | 0.18 ± 0.01 | 15.6 ± 1.5 | 20.6 ± 1.7 | 90.5 ± 0.6 | 0.07 ± 0.02 | 0.007 | |
Union 2 | 22 | 0.19 ± 0.02 | 14.1 ± 1.6 | 29.8 ± 3.1 | 94.7 ± 0.6 | 0.11 ± 0.02 | 0.001 | ||
Union 3 | 10 | 0.15 ± 0.02 | 10.2 ± 1.2 | 27.4 ± 2.7 | 95.7 ± 0.3 | 0.08 ± 0.02 | 0.001 | ||
Intersection | 2 | 0.10 ± 0.01 | 5.6 ± 0.8 | 37.0 ± 2.2 | 98.5 ± 0.1 | 0.06 ± 0.01 | 0.001 | ||
25% | Union | 22 | 0.18 ± 0.02 | 15.8 ± 2.1 | 21.0 ± 2.5 | 90.6 ± 0.6 | 0.07 ± 0.02 | 0.002 | |
Union 2 | 9 | 0.19 ± 0.02 | 16.0 ± 1.6 | 24.5 ± 2.3 | 92.2 ± 0.6 | 0.10 ± 0.02 | 0.001 | ||
Union 3 | 1 | 0.15 ± 0.02 | 10.2 ± 1.2 | 27.4 ± 2.7 | 95.7 ± 0.3 | 0.08 ± 0.02 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 10 | 0.18 ± 0.03 | 13.2 ± 1.9 | 30.0 ± 4.3 | 95.1 ± 0.4 | 0.11 ± 0.03 | 0.001 | |
Union 2 | 2 | 0.10 ± 0.02 | 5.6 ± 0.9 | 50.6 ± 5.8 | 99.1 ± 0.2 | 0.08 ± 0.01 | 0.001 | ||
Union 3 | - | - | - | - | - | - | - | ||
Intersection | - | - | - | - | - | - | - |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 12 | 0.50 ± 0.00 | 70.9 ± 0.4 | 39.1 ± 0.2 | 82.3 ± 0.1 | 0.40 ± 0.00 | 0.001 |
50% | Union | 10 | 0.51 ± 0.00 | 71.4 ± 0.3 | 39.5 ± 0.1 | 82.5 ± 0.1 | 0.40 ± 0.00 | 0.001 | |
Union 2 | 8 | 0.52 ± 0.00 | 70.8 ± 0.4 | 41.0 ± 0.2 | 83.6 ± 0.1 | 0.42 ± 0.00 | 0.001 | ||
Union 3 | 5 | 0.52 ± 0.00 | 67.5 ± 0.5 | 42.3 ± 0.3 | 85.2 ± 0.2 | 0.42 ± 0.00 | 0.001 | ||
Intersection | 1 | 0.30 ± 0.05 | 23.8 ± 5.5 | 44.2 ± 2.7 | 95.1 ± 1.4 | 0.23 ± 0.04 | 0.001 | ||
25% | Union | 7 | 0.53 ± 0.00 | 71.6 ± 0.4 | 41.8 ± 0.2 | 84.0 ± 0.1 | 0.43 ± 0.00 | 0.001 | |
Union 2 | 3 | 0.54 ± 0.00 | 65.9 ± 0.0 | 45.4 ± 0.1 | 87.3 ± 0.0 | 0.45 ± 0.00 | 0.001 | ||
Union 3 | 1 | 0.30 ± 0.05 | 23.8 ± 5.5 | 44.2 ± 2.7 | 95.1 ± 1.4 | 0.23 ± 0.04 | 0.001 | ||
Intersection | 1 | 0.30 ± 0.05 | 23.8 ± 5.5 | 44.2 ± 2.7 | 95.1 ± 1.4 | 0.23 ± 0.04 | 0.001 | ||
10% | Union | 2 | 0.48 ± 0.00 | 50.2 ± 0.3 | 46.2 ± 0.2 | 90.6 ± 0.1 | 0.39 ± 0.00 | 0.001 | |
Union 2 | 1 | 0.30 ± 0.05 | 23.8 ± 5.5 | 44.2 ± 2.7 | 95.1 ± 1.4 | 0.23 ± 0.04 | 0.001 | ||
Union 3 | 1 | 0.30 ± 0.05 | 23.8 ± 5.5 | 44.2 ± 2.7 | 95.1 ± 1.4 | 0.23 ± 0.04 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 12 | 0.33 ± 0.03 | 24.4 ± 1.9 | 49.8 ± 6.3 | 96.0 ± 1.0 | 0.26 ± 0.03 | 0.001 |
50% | Union | 10 | 0.30 ± 0.07 | 23.3 ± 6.8 | 45.2 ± 5.0 | 95.5 ± 1.3 | 0.23 ± 0.06 | 0.001 | |
Union 2 | 8 | 0.33 ± 0.04 | 26.6 ± 4.9 | 42.8 ± 3.2 | 94.3 ± 1.1 | 0.25 ± 0.04 | 0.001 | ||
Union 3 | 5 | 0.39 ± 0.04 | 31.1 ± 4.3 | 50.9 ± 3.8 | 95.2 ± 0.6 | 0.31 ± 0.04 | 0.001 | ||
Intersection | 1 | 0.01 ± 0.02 | 0.5 ± 1.1 | 6.3 ± 13.5 | 99.8 ± 0.3 | 0.01 ± 0.01 | 1.000 | ||
25% | Union | 7 | 0.33 ± 0.08 | 26.7 ± 8.5 | 43.6 ± 4.2 | 94.6 ± 1.6 | 0.25 ± 0.07 | 0.001 | |
Union 2 | 3 | 0.35 ± 0.03 | 28.3 ± 3.8 | 45.8 ± 2.6 | 94.6 ± 0.7 | 0.27 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.01 ± 0.02 | 0.5 ± 1.1 | 6.3 ± 13.5 | 99.8 ± 0.3 | 0.01 ± 0.01 | 1.000 | ||
Intersection | 1 | 0.01 ± 0.02 | 0.5 ± 1.1 | 6.3 ± 13.5 | 99.8 ± 0.3 | 0.01 ± 0.01 | 1.000 | ||
10% | Union | 2 | 0.22 ± 0.04 | 14.1 ± 3.1 | 55.7 ± 7.1 | 98.1 ± 0.9 | 0.18 ± 0.03 | 0.001 | |
Union 2 | 1 | 0.01 ± 0.02 | 0.5 ± 1.1 | 6.3 ± 13.5 | 99.8 ± 0.3 | 0.01 ± 0.01 | 1.000 | ||
Union 3 | 1 | 0.01 ± 0.02 | 0.5 ± 1.1 | 6.3 ± 13.5 | 99.8 ± 0.3 | 0.01 ± 0.01 | 1.000 | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 12 | 0.37 ± 0.01 | 33.1 ± 1.4 | 41.5 ± 2.0 | 92.5 ± 0.6 | 0.28 ± 0.02 | 0.001 |
50% | Union | 10 | 0.38 ± 0.02 | 32.1 ± 1.6 | 46.9 ± 3.3 | 94.1 ± 0.8 | 0.30 ± 0.02 | 0.001 | |
Union 2 | 8 | 0.35 ± 0.02 | 29.1 ± 1.9 | 45.1 ± 1.8 | 94.3 ± 0.4 | 0.27 ± 0.02 | 0.001 | ||
Union 3 | 5 | 0.31 ± 0.03 | 26.1 ± 2.9 | 36.9 ± 2.6 | 92.8 ± 0.7 | 0.22 ± 0.03 | 0.001 | ||
Intersection | 1 | 0.30 ± 0.07 | 24.8 ± 7.8 | 41.1 ± 5.5 | 93.8 ± 3.0 | 0.22 ± 0.05 | 0.001 | ||
25% | Union | 7 | 0.37 ± 0.03 | 32.3 ± 2.5 | 42.6 ± 3.3 | 93.0 ± 0.5 | 0.28 ± 0.03 | 0.001 | |
Union 2 | 3 | 0.38 ± 0.02 | 31.2 ± 2.1 | 47.6 ± 2.4 | 94.5 ± 0.4 | 0.30 ± 0.02 | 0.001 | ||
Union 3 | 1 | 0.30 ± 0.07 | 24.8 ± 7.8 | 41.1 ± 5.5 | 93.8 ± 3.0 | 0.22 ± 0.05 | 0.001 | ||
Intersection | 1 | 0.30 ± 0.07 | 24.8 ± 7.8 | 41.1 ± 5.5 | 93.8 ± 3.0 | 0.22 ± 0.05 | 0.001 | ||
10% | Union | 2 | 0.37 ± 0.06 | 32.9 ± 8.2 | 43.6 ± 5.8 | 93.1 ± 1.9 | 0.29 ± 0.06 | 0.001 | |
Union 2 | 1 | 0.30 ± 0.07 | 24.8 ± 7.8 | 41.1 ± 5.5 | 93.8 ± 3.0 | 0.22 ± 0.05 | 0.001 | ||
Union 3 | 1 | 0.30 ± 0.07 | 24.8 ± 7.8 | 41.1 ± 5.5 | 93.8 ± 3.0 | 0.22 ± 0.05 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 12 | 0.36 ± 0.02 | 34.2 ± 2.1 | 37.2 ± 2.1 | 90.7 ± 0.7 | 0.26 ± 0.02 | 0.001 |
50% | Union | 10 | 0.37 ± 0.02 | 35.9 ± 2.5 | 38.0 ± 2.0 | 90.6 ± 0.4 | 0.27 ± 0.02 | 0.001 | |
Union 2 | 8 | 0.37 ± 0.02 | 35.7 ± 2.1 | 38.7 ± 1.8 | 90.9 ± 0.7 | 0.27 ± 0.02 | 0.001 | ||
Union 3 | 5 | 0.30 ± 0.03 | 24.1 ± 2.6 | 39.7 ± 2.7 | 94.1 ± 0.4 | 0.22 ± 0.03 | 0.001 | ||
Intersection | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 1.000 | ||
25% | Union | 7 | 0.37 ± 0.02 | 33.8 ± 2.6 | 42.0 ± 2.4 | 92.5 ± 0.5 | 0.29 ± 0.03 | 0.001 | |
Union 2 | 3 | 0.29 ± 0.04 | 21.4 ± 3.8 | 45.7 ± 4.6 | 95.9 ± 0.4 | 0.22 ± 0.04 | 0.001 | ||
Union 3 | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 1.000 | ||
Intersection | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 1.000 | ||
10% | Union | 2 | 0.24 ± 0.02 | 15.1 ± 1.4 | 57.6 ± 6.1 | 98.2 ± 0.4 | 0.19 ± 0.02 | 0.001 | |
Union 2 | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 1.000 | ||
Union 3 | 1 | 0.00 ± 0.00 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.0 ± 0.0 | 0.00 ± 0.00 | 1.000 | ||
Intersection | - | - | - | - | - | - | - |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
GNB | 100% | - | 9 | 0.54 ± 0.03 | 71.3 ± 0.3 | 43.1 ± 0.3 | 84.8 ± 0.2 | 0.44 ± 0.00 | 0.001 |
50% | Union | 8 | 0.54 ± 0.00 | 70.2 ± 0.2 | 44.1 ± 0.3 | 85.7 ± 0.1 | 0.45 ± 0.00 | 0.001 | |
Union 2 | 5 | 0.54 ± 0.00 | 66.0 ± 0.7 | 45.7 ± 0.5 | 87.3 ± 0.2 | 0.45 ± 0.01 | 0.001 | ||
Union 3 | 5 | 0.54 ± 0.00 | 66.0 ± 0.7 | 45.7 ± 0.5 | 87.3 ± 0.2 | 0.45 ± 0.01 | 0.001 | ||
Intersection | 2 | 0.50 ± 0.00 | 55.6 ± 0.7 | 45.7 ± 0.0 | 89.4 ± 0.1 | 0.41 ± 0.00 | 0.001 | ||
25% | Union | 4 | 0.54 ± 0.01 | 61.0 ± 1.4 | 48.0 ± 0.5 | 89.4 ± 0.2 | 0.45 ± 0.01 | 0.001 | |
Union 2 | 3 | 0.53 ± 0.00 | 59.9 ± 1.1 | 48.1 ± 0.3 | 89.6 ± 0.3 | 0.45 ± 0.00 | 0.001 | ||
Union 3 | 1 | 0.45 ± 0.00 | 40.1 ± 0.0 | 51.5 ± 0.0 | 93.9 ± 0.0 | 0.37 ± 0.00 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.48 ± 0.01 | 50.2 ± 0.8 | 45.3 ± 0.6 | 90.2 ± 0.1 | 0.39 ± 0.01 | 0.001 | |
Union 2 | 1 | 0.45 ± 0.00 | 40.1 ± 0.0 | 51.5 ± 0.0 | 93.9 ± 0.0 | 0.37 ± 0.00 | 0.001 | ||
Union 3 | 1 | 0.45 ± 0.00 | 40.1 ± 0.0 | 51.5 ± 0.0 | 93.9 ± 0.0 | 0.37 ± 0.00 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
DT | 100% | - | 9 | 0.35 ± 0.06 | 27.4 ± 6.2 | 49.0 ± 4.4 | 95.5 ± 0.7 | 0.28 ± 0.06 | 0.001 |
50% | Union | 8 | 0.35 ± 0.06 | 27.4 ± 6.2 | 49.1 ± 4.5 | 95.5 ± 0.8 | 0.28 ± 0.06 | 0.001 | |
Union 2 | 5 | 0.35 ± 0.07 | 26.3 ± 6.6 | 54.9 ± 3.7 | 96.5 ± 0.9 | 0.29 ± 0.06 | 0.001 | ||
Union 3 | 5 | 0.35 ± 0.07 | 26.3 ± 6.6 | 54.9 ± 3.7 | 96.5 ± 0.9 | 0.29 ± 0.06 | 0.001 | ||
Intersection | 2 | 0.02 ± 0.04 | 1.0 ± 2.1 | 5.7 ± 12.0 | 99.5 ± 0.8 | 0.01 ± 0.02 | 0.001 | ||
25% | Union | 4 | 0.32 ± 0.04 | 23.7 ± 3.6 | 48.5 ± 2.2 | 96.0 ± 0.4 | 0.25 ± 0.03 | 0.001 | |
Union 2 | 3 | 0.31 ± 0.03 | 22.2 ± 2.8 | 49.8 ± 2.7 | 96.4 ± 0.2 | 0.24 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.39 ± 0.00 | 29.9 ± 0.6 | 54.6 ± 1.8 | 96.0 ± 0.4 | 0.32 ± 0.00 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.31 ± 0.03 | 22.3 ± 2.5 | 51.4 ± 2.8 | 96.6 ± 0.2 | 0.25 ± 0.03 | 0.001 | |
Union 2 | 1 | 0.39 ± 0.00 | 29.9 ± 0.6 | 54.6 ± 1.8 | 96.0 ± 0.4 | 0.32 ± 0.00 | 0.001 | ||
Union 3 | 1 | 0.39 ± 0.00 | 29.9 ± 0.6 | 54.6 ± 1.8 | 96.0 ± 0.4 | 0.32 ± 0.00 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
kNN | 100% | - | 9 | 0.35 ± 0.03 | 29.0 ± 2.4 | 44.5 ± 2.7 | 94.2 ± 0.4 | 0.27 ± 0.03 | 0.001 |
50% | Union | 8 | 0.36 ± 0.03 | 28.0 ± 2.1 | 49.5 ± 3.9 | 95.4 ± 0.5 | 0.29 ± 0.03 | 0.001 | |
Union 2 | 5 | 0.35 ± 0.02 | 27.7 ± 2.7 | 48.8 ± 2.4 | 95.3 ± 0.5 | 0.28 ± 0.02 | 0.001 | ||
Union 3 | 5 | 0.35 ± 0.02 | 27.7 ± 2.7 | 48.8 ± 2.4 | 95.3 ± 0.5 | 0.28 ± 0.02 | 0.001 | ||
Intersection | 2 | 0.29 ± 0.06 | 22.9 ± 5.9 | 40.2 ± 3.6 | 94.6 ± 1.2 | 0.21 ± 0.05 | 0.001 | ||
25% | Union | 4 | 0.37 ± 0.03 | 31.3 ± 3.6 | 45.8 ± 4.4 | 94.0 ± 1.2 | 0.29 ± 0.03 | 0.001 | |
Union 2 | 3 | 0.39 ± 0.03 | 32.6 ± 4.5 | 48.1 ± 3.9 | 94.2 ± 1.4 | 0.31 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.27 ± 0.06 | 19.1 ± 5.9 | 51.1 ± 8.2 | 96.7 ± 2.0 | 0.21 ± 0.05 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.31 ± 0.04 | 24.5 ± 4.2 | 43.5 ± 5.0 | 94.8 ± 1.0 | 0.24 ± 0.04 | 0.001 | |
Union 2 | 1 | 0.27 ± 0.06 | 19.1 ± 5.9 | 51.1 ± 8.2 | 96.7 ± 2.0 | 0.21 ± 0.05 | 0.001 | ||
Union 3 | 1 | 0.27 ± 0.06 | 19.1 ± 5.9 | 51.1 ± 8.2 | 96.7 ± 2.0 | 0.21 ± 0.05 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
SVM | 100% | - | 9 | 0.38 ± 0.03 | 30.4 ± 2.8 | 51.1 ± 3.4 | 95.3 ± 0.5 | 0.31 ± 0.03 | 0.001 |
50% | Union | 8 | 0.39 ± 0.03 | 31.4 ± 2.8 | 52.9 ± 2.7 | 95.5 ± 0.3 | 0.32 ± 0.03 | 0.001 | |
Union 2 | 5 | 0.37 ± 0.02 | 30.2 ± 2.2 | 49.0 ± 2.7 | 94.9 ± 0.4 | 0.30 ± 0.02 | 0.001 | ||
Union 3 | 5 | 0.37 ± 0.02 | 30.2 ± 2.2 | 49.0 ± 2.7 | 94.9 ± 0.4 | 0.30 ± 0.02 | 0.001 | ||
Intersection | 2 | 0.04 ± 0.04 | 2.0 ± 2.1 | 14.5 ± 13.0 | 98.9 ± 0.9 | 0.01 ± 0.02 | 0.032 | ||
25% | Union | 4 | 0.32 ± 0.02 | 24.5 ± 1.8 | 46.2 ± 3.7 | 95.4 ± 0.5 | 0.25 ± 0.03 | 0.001 | |
Union 2 | 3 | 0.34 ± 0.03 | 26.2 ± 2.8 | 48.9 ± 2.3 | 95.6 ± 0.4 | 0.27 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.38 ± 0.03 | 29.0 ± 2.9 | 54.1 ± 2.1 | 96.0 ± 0.4 | 0.31 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - | ||
10% | Union | 2 | 0.39 ± 0.03 | 29.8 ± 3.1 | 54.7 ± 2.0 | 96.0 ± 0.2 | 0.32 ± 0.03 | 0.001 | |
Union 2 | 1 | 0.38 ± 0.03 | 29.0 ± 2.9 | 54.1 ± 2.1 | 96.0 ± 0.4 | 0.31 ± 0.03 | 0.001 | ||
Union 3 | 1 | 0.38 ± 0.03 | 29.0 ± 2.9 | 54.1 ± 2.1 | 96.0 ± 0.4 | 0.31 ± 0.03 | 0.001 | ||
Intersection | - | - | - | - | - | - | - |
References
- Morrison, S.; Rynders, C.A.; Sosnoff, J.J. Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis. Gait Posture 2016, 49, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Allali, G.; Laidet, M.; Armand, S.; Elsworth-Edelsten, C.; Assal, F.; Lalive, P.H. Stride time variability as a marker for higher level of gait control in multiple sclerosis: Its association with fear of falling. J. Neural Transm. 2016, 123, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Kalron, A.; Frid, L.; Gurevich, M. Concern about falling is associated with step length in persons with multiple sclerosis. Eur. J. Phys. Rehabil. Med. 2015, 51, 197–205. [Google Scholar]
- Nilsagard, Y.; Gunn, H.; Freeman, J.; Hoang, P.; Lord, S.; Mazumder, R.; Cameron, M. Falls in people with MS—An individual data meta-analysis from studies from Australia, Sweden, United Kingdom and the United States. Mult. Scler. J. 2015, 21, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Nilsagård, Y.; Lundholm, C.; Denison, E.; Gunnarsson, L.G. Predicting accidental falls in people with multiple sclerosis—A longitudinal study. Clin. Rehabil. 2009, 23, 259–269. [Google Scholar] [CrossRef]
- Finlayson, M.L.; Peterson, E.W.; Cho, C.C. Risk Factors for Falling among People Aged 45 to 90 Years with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2006, 87, 1274–1279. [Google Scholar] [CrossRef] [PubMed]
- Kasser, S.L.; Jacobs, J.V.; Foley, J.T.; Cardinal, B.J.; Maddalozzo, G.F. A prospective evaluation of balance, gait, and strength to predict falling in women with multiple sclerosis. Arch. Phys. Med. Rehabil. 2011, 92, 1840–1846. [Google Scholar] [CrossRef]
- Scholz, M.; Haase, R.; Trentzsch, K.; Weidemann, M.L.; Ziemssen, T. Fear of falling and falls in people with multiple sclerosis: A literature review. Mult. Scler. Relat. Disord. 2021, 47, 102609. [Google Scholar] [CrossRef]
- Cameron, M.H.; Nilsagard, Y. Balance, gait, and falls in multiple sclerosis. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 159, pp. 237–250. [Google Scholar]
- Kalron, A.; Allali, G. Gait and cognitive impairments in multiple sclerosis: The specific contribution of falls and fear of falling. J. Neural Transm. 2017, 124, 1407–1416. [Google Scholar] [CrossRef]
- Panitch, H.; Applebee, A. Treatment of walking impairment in multiple sclerosis: An unmet need for a disease-specific disability. Expert Opin. Pharmacother. 2011, 12, 1511–1521. [Google Scholar] [CrossRef]
- Zwibel, H.L. Contribution of impaired mobility and general symptoms to the burden of multiple sclerosis. Adv. Ther. 2009, 26, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, E.; Haase, R.; Ziemssen, T. Review: Patient-reported outcomes in multiple sclerosis care. Mult. Scler. Relat. Disord. 2019, 33, 61–66. [Google Scholar] [CrossRef]
- Fritz, N.E.; Kloos, A.D.; Kegelmeyer, D.A.; Kaur, P.; Nichols-Larsen, D.S. Supplementary motor area connectivity and dual-task walking variability in multiple sclerosis. J. Neurol. Sci. 2019, 396, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.L.; Phillips, B.A.; Kilpatrick, T.J.; Butzkueven, H.; Tubridy, N.; McDonald, E.; Galea, M.P. Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Mult. Scler. 2006, 12, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Mandaresu, S.; Pilloni, G.; Porta, M.; Coghe, G.; Marrosu, M.G.; Cocco, E. Smoothness of gait detects early alterations of walking in persons with multiple sclerosis without disability. Gait Posture 2017, 58, 307–309. [Google Scholar] [CrossRef]
- Ziemssen, T.; Phillips, G.; Shah, R.; Mathias, A.; Foley, C.; Coon, C.; Sen, R.; Lee, A.; Agarwal, S. Development of the multiple sclerosis (MS) early mobility impairment questionnaire (EMIQ). J. Neurol. 2016, 263, 1969–1983. [Google Scholar] [CrossRef]
- Torchio, A.; Corrini, C.; Anastasi, D.; Parelli, R.; Meotti, M.; Spedicato, A.; Groppo, E.; D’Arma, A.; Grosso, C.; Montesano, A.; et al. Identification of modified dynamic gait index cutoff scores for assessing fall risk in people with Parkinson disease, stroke and multiple sclerosis. Gait Posture 2022, 91, 1–6. [Google Scholar] [CrossRef]
- Drover, D.; Howcroft, J.; Kofman, J.; Lemaire, E. Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features. Sensors 2017, 17, 1321. [Google Scholar] [CrossRef]
- Palmerini, L.; Klenk, J.; Becker, C.; Chiari, L. Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls. Sensors 2020, 20, 6479. [Google Scholar] [CrossRef]
- Silva, C.A.; García−Bermúdez, R.; Casilari, E. Features Selection for Fall Detection Systems Based on Machine Learning and Accelerometer Signals. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2021; Volume 12862, pp. 380–391. [Google Scholar]
- Kelly, D.; Condell, J.; Gillespie, J.; Munoz Esquivel, K.; Barton, J.; Tedesco, S.; Nordstrom, A.; Åkerlund Larsson, M.; Alamäki, A. Improved screening of fall risk using free-living based accelerometer data. J. Biomed. Inform. 2022, 131, 104116. [Google Scholar] [CrossRef]
- Chandak, A.; Chaturvedi, N. Dhiraj Machine-Learning-Based Human Fall Detection Using Contact- and Noncontact-Based Sensors. Comput. Intell. Neurosci. 2022, 2022, 9626170. [Google Scholar] [CrossRef] [PubMed]
- Zurbuchen, N.; Wilde, A.; Bruegger, P. A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection. Sensors 2021, 21, 938. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.C.; Hsieh, C.Y.; Hsu, S.J.P.; Chan, C.T. Impact of Sampling Rate on Wearable-Based Fall Detection Systems Based on Machine Learning Models. IEEE Sens. J. 2018, 18, 9882–9890. [Google Scholar] [CrossRef]
- Martins, L.M.; Ribeiro, N.F.; Soares, F.; Santos, C.P. Inertial Data-Based AI Approaches for ADL and Fall Recognition. Sensors 2022, 22, 4028. [Google Scholar] [CrossRef]
- Rehman, R.Z.U.; Zhou, Y.; Din, S.D.; Alcock, L.; Hansen, C.; Guan, Y.; Hortobágyi, T.; Maetzler, W.; Rochester, L.; Lamoth, C.J.C. Gait Analysis with Wearables Can Accurately Classify Fallers from Non-Fallers: A Step toward Better Management of Neurological Disorders. Sensors 2020, 20, 6992. [Google Scholar] [CrossRef]
- Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; Allen, D.A.; Adamowicz, L.; Larie, D.; Solomon, A.J.; Cheney, N.; McGinnis, R.S. Wearables and Deep Learning Classify Fall Risk from Gait in Multiple Sclerosis. IEEE J. Biomed. Health Inform. 2021, 25, 1824–1831. [Google Scholar] [CrossRef]
- Piryonesi, S.M.; Rostampour, S.; Piryonesi, S.A. Predicting falls and injuries in people with multiple sclerosis using machine learning algorithms. Mult. Scler. Relat. Disord. 2021, 49, 102740. [Google Scholar] [CrossRef]
- Ravi, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.Z. Deep Learning for Health Informatics. IEEE J. Biomed. Health Informatics 2017, 21, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for filter methods for feature selection in high-dimensional classification data. Comput. Stat. Data Anal. 2020, 143, 106839. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 2013, 34, 483–519. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Bolón-Canedo, V.; Alonso-Betanzos, A. Ensembles for feature selection: A review and future trends. Inf. Fusion 2019, 52, 1–12. [Google Scholar] [CrossRef]
- Trentzsch, K.; Weidemann, M.L.; Torp, C.; Inojosa, H.; Scholz, M.; Haase, R.; Schriefer, D.; Akgün, K.; Ziemssen, T. The Dresden Protocol for Multidimensional Walking Assessment (DMWA) in Clinical Practice. Front. Neurosci. 2020, 14, 582046. [Google Scholar] [CrossRef]
- Electronic Gaitr. GAITRite Electronic Walkway Technical Reference. Available online: https://www.procarebv.nl/wp-content/uploads/2017/01/Technische-aspecten-GAITrite-Walkway-System.pdf (accessed on 5 June 2021).
- APDM—Wearable Technologies. Available online: https://www.apdm.com/ (accessed on 4 October 2018).
- Mancini, M.; King, L.; Salarian, A.; Holmstrom, L.; McNames, J.; Horak, F.B. Mobility Lab to Assess Balance and Gait with Synchronized Body-worn Sensors. J. Bioeng. Biomed. Sci. 2013, 12 (Suppl. 1), 7. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Inojosa, H.; Schriefer, D.; Ziemssen, T. Clinical outcome measures in multiple sclerosis: A review. Autoimmun. Rev. 2020, 19, 102512. [Google Scholar] [CrossRef]
- Cutter, G.R.; Baier, M.L.; Rudick, R.A.; Cookfair, D.L.; Fischer, J.S.; Petkau, J.; Syndulko, K.; Weinshenker, B.G.; Antel, J.P.; Confavreux, C.; et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 1999, 122, 871–882. [Google Scholar] [CrossRef]
- Rossier, P.; Wade, D.T. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch. Phys. Med. Rehabil. 2001, 82, 9–13. [Google Scholar] [CrossRef]
- Hobart, J.C.; Riazi, A.; Lamping, D.L.; Fitzpatrick, R.; Thompson, A.J. Measuring the impact of MS on walking ability: The 12-item MS Walking Scale (MSWS-12). Neurology 2003, 60, 31–36. [Google Scholar] [CrossRef]
- Seijo-Pardo, B.; Bolón-Canedo, V.; Alonso-Betanzos, A. On developing an automatic threshold applied to feature selection ensembles. Inf. Fusion 2019, 45, 227–245. [Google Scholar] [CrossRef]
- Ali, S.I.; Bilal, H.S.M.; Hussain, M.; Hussain, J.; Satti, F.A.; Hussain, M.; Park, G.H.; Chung, T.; Lee, S. Ensemble Feature Ranking for Cost-Based Non-Overlapping Groups: A Case Study of Chronic Kidney Disease Diagnosis in Developing Countries. IEEE Access 2020, 8, 215623–215648. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. An ensemble of filters and classifiers for microarray data classification. Pattern Recognit. 2012, 45, 531–539. [Google Scholar] [CrossRef]
- Tsymbal, A.; Pechenizkiy, M.; Cunningham, P. Diversity in search strategies for ensemble feature selection. Inf. Fusion 2005, 6, 83–98. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- The MathWorks, Inc. The Statistics and Machine Learning ToolboxTM: User’s Guide v12.2; The MathWorks, Inc.: Natick, MA, USA; Available online: https://de.mathworks.com/help/pdf_doc/stats/stats.pdf (accessed on 6 March 2022).
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling imbalanced datasets: A review. GESTS Int. Trans. Comput. Sci. Eng. 2006, 30, 25–36. [Google Scholar]
- Ojala, M.; Garriga, G.C. Permutation Tests for Studying Classifier Performance Markus Ojala. J. Mach. Learn. Res. 2010, 11, 1833–1863. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michael, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Scholz, M.; Haase, R.; Trentzsch, K.; Stölzer-hutsch, H.; Ziemssen, T. Improving Digital Patient Care: Lessons Learned from Patient-Reported and Expert-Reported Experience Measures for the Clinical Practice of Multidimensional Walking Assessment. Brain Sci. 2021, 11, 786. [Google Scholar] [CrossRef]
- Nowinski, C.J.; Miller, D.M.; Cella, D. Evolution of Patient-Reported Outcomes and Their Role in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017, 14, 934–944. [Google Scholar] [CrossRef]
- Callis, N. Falls prevention: Identification of predictive fall risk factors. Appl. Nurs. Res. 2016, 29, 53–58. [Google Scholar] [CrossRef]
- Subramaniam, S.; Faisal, A.I.; Deen, M.J. Wearable Sensor Systems for Fall Risk Assessment: A Review. Front. Digit. Health 2022, 4, 921506. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1812–1820. [Google Scholar] [CrossRef]
- Kalron, A.; Achiron, A. Postural control, falls and fear of falling in people with multiple sclerosis without mobility aids. J. Neurol. Sci. 2013, 335, 186–190. [Google Scholar] [CrossRef]
- Roma, P.; Monaro, M.; Muzi, L.; Colasanti, M.; Ricci, E.; Biondi, S.; Napoli, C.; Ferracuti, S.; Mazza, C. How to Improve Compliance with Protective Health Measures during the COVID-19 Outbreak: Testing a Moderated Mediation Model and Machine Learning Algorithms. Int. J. Environ. Res. Public Health 2020, 17, 7252. [Google Scholar] [CrossRef]
- Oztekin, A.; Delen, D.; Turkyilmaz, A.; Zaim, S. A machine learning-based usability evaluation method for eLearning systems. Decis. Support Syst. 2013, 56, 63–73. [Google Scholar] [CrossRef]
- Saeys, Y.; Abeel, T.; Van De Peer, Y. Robust feature selection using ensemble feature selection techniques. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Antwerp, Belgium, 15–19 September 2008; Volume 5212, pp. 313–325. [Google Scholar] [CrossRef] [Green Version]
- Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [CrossRef] [Green Version]
- Duan, K.; Keerthi, S.S.; Poo, A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 2003, 51, 41–59. [Google Scholar] [CrossRef]
- Wolpert, D.H. On Overfitting Avoidance as Bias; The Santa Fe Institute: Santa Fe, NM, USA, 1993. [Google Scholar]
- Sun, Y.; Wong, A.K.C.; Kamel, M.S. Classification of imbalanced data: A review. Int. J. Pattern Recognit. Artif. Intell. 2009, 23, 687–719. [Google Scholar] [CrossRef]
- Moghimi, A.; Yang, C.; Marchetto, P.M. Ensemble Feature Selection for Plant Phenotyping: A Journey from Hyperspectral to Multispectral Imaging. IEEE Access 2018, 6, 56870–56884. [Google Scholar] [CrossRef]
Data Set | No. | Features |
---|---|---|
Basic data set | 11 | Walking speed (T25-FW), walking endurance (2MWT), EDSS subcategories of functional systems (visual, brainstem, pyramidal, cerebellar, sensory, bowel bladder, cognition/fatigue, ambulation) and total score |
EDSS data set | 9 | EDSS subcategories of functional systems (visual, brainstem, pyramidal, cerebellar, sensory, bowel bladder, cognition/fatigue, ambulation) and total score |
GAITRite System (GR_N and GR_D data set) | 82 | Ambulation Time, Cadence, Cycle Time, Walking Distance, Foot Length, Foot Width, Functional Ambulation Profile, Leg Length, Step Count, Step Length, Step Time, Stride Length, Stride Time, Stride Velocity, walking velocity, various parameters of the individual gait phases [38] |
Mobility Lab Gait (ML_N and ML_D data set) | 84 | Duration, Cadence, Circumduction, Foot Strike Angle, Gait Cycle Duration, Gait Speed, Lateral Step Variability, Stance duration, Step Duration, Stride Length, Toe Off Angle, Coronal Range of Motion, Sagittal Range of Motion, Transverse Range of Motion, Turns Angle, Turns Duration, Steps in Turn, Turn Velocity, Arm Range of Motion, Arm Swing Velocity [39] |
Mobility Lab Postural Sway (ML_S_EO and ML_S_EC data set) | 32 | Ellipse Axis, Ellipse Rotation, Range of sway in the sagittal and coronal plane, anterior-posterior and mediolateral trunk fluctuation range, Sway Velocity [39] |
MSWS-12 data set | 12 | Self report: Limitation of walking ability, Limitation of balance, Limitation of walking distance, Effort for walking, Need of walking aids, Limitation of walking velocity [45] |
EMIQ data set In the past 30 days, how often have you… | 9 | Self report: Walking ability without/during cognitive tasks, Need of walking aid, Limitation of walking velocity, Limitation of household, social and physical activity [17] |
All data set | 428 | All features of the Basic data set, the GAITRite System data sets, the Mobility Lab Gait data sets, the MSWS-12 data set and the EMIQ data set |
Method | Hyperparameter | Min | Max | Step Size | Scale |
---|---|---|---|---|---|
Decision Tree | Criterion: ‘gini’ or ‘entropy’ | - | - | - | - |
Maximum depth | 2 | 10 | 1 | linear | |
Minimum samples at a leaf node | 5 | 30 | 1 | linear | |
k-Nearest Neighbor | Weights: ‘uniform’ or ‘distance’ | - | - | - | - |
Distance metric: ‘euclidean’ or ‘manhattan’ | - | - | - | - | |
Numbers of neighbors | 2 | 10 | 1 | linear | |
Support Vector Machine | Regularization C | 0.1 | 100 | 10 | logarithmic |
Kernel coefficient gamma | 10−5 | 1 | 10 | logarithmic |
Variable | Participants, No. (%) | |
---|---|---|
Gender | Female | 911 (73.5) |
Male | 329 (26.5) | |
MS subtype | Relapsing-remitting | 1091 (88.0) |
Primary progressive | 83 (6.7) | |
Secondary progressive | 65 (5.2) | |
MS subtype still unclear | 1 (0.1) | |
Immunomodulatory Therapies | First-line therapies | 357 (28.8) |
Second-line therapies | 629 (50.7) | |
No therapy | 254 (20.5) |
Thresh-Old | Combination Method | No. Features | F1 | Recall (%) | Precision (%) | Specificity (%) | Kappa | p | |
---|---|---|---|---|---|---|---|---|---|
All data set (n = 929) | |||||||||
GNB | 10% | Intersection | 9 | 0.53 ± 0.00 | 74.0 ± 0.0 | 41.0 ± 0.3 | 83.1 ± 0.2 | 0.43 ± 0.00 | 0.001 |
Basic data set (n = 1237) | |||||||||
GNB | 100% | - | 11 | 0.47 ± 0.01 | 57.6 ± 0.9 | 39.4 ± 0.4 | 85.7 ± 0.2 | 0.36 ± 0.01 | 0.001 |
EDSS data set (n = 1237) | |||||||||
GNB | 100% | - | 9 | 0.48 ± 0.00 | 64.6 ± 0.3 | 38.2 ± 0.2 | 83.1 ± 0.1 | 0.37 ± 0.00 | 0.001 |
GR_N data set (n = 1212) | |||||||||
GNB | 50% | Intersection | 7 | 0.42 ± 0.00 | 45.4 ± 0.6 | 38.4 ± 0.3 | 88.3 ± 0.1 | 0.31 ± 0.00 | 0.001 |
GR_D data set (n = 1213) | |||||||||
GNB | 25% | Intersection | 4 | 0.38 ± 0.01 | 41.0 ± 0.8 | 35.7 ± 0.4 | 88.5 ± 0.1 | 0.28 ± 0.01 | 0.001 |
ML_N data set (n = 1006) | |||||||||
GNB | 10% | Union 2 | 8 | 0.43 ± 0.01 | 42.9 ± 0.6 | 43.1 ± 0.7 | 90.8 ± 0.2 | 0.34 ± 0.01 | 0.001 |
ML_D data set (n = 971) | |||||||||
GNB | 25% | Intersection | 4 | 0.39 ± 0.00 | 40.7 ± 0.6 | 37.4 ± 0.5 | 89.2 ± 0.1 | 0.29 ± 0.01 | 0.001 |
ML_S_EO data set (n = 1201) | |||||||||
kNN | 25% | Union 3 | 2 | 0.29 ± 0.02 | 24.8 ± 1.5 | 35.0 ± 1.6 | 92.7 ± 0.3 | 0.20 ± 0.02 | 0.001 |
ML_S_EC data set (n = 1190) | |||||||||
GNB | 25% | Union | 22 | 0.30 ± 0.01 | 23.4 ± 0.9 | 40.8 ± 1.3 | 94.6 ± 0.2 | 0.22 ± 0.01 | 0.001 |
MSWS-12 data set (n = 1227) | |||||||||
GNB | 25% | Union 2 | 3 | 0.54 ± 0.00 | 65.9 ± 0.0 | 45.4 ± 0.1 | 87.3 ± 0.0 | 0.45 ± 0.00 | 0.001 |
EMIQ data set (n = 1239) | |||||||||
GNB | 25% | Union | 4 | 0.54 ± 0.01 | 61.0 ± 1.4 | 48.0 ± 0.5 | 89.4 ± 0.2 | 0.45 ± 0.01 | 0.001 |
Features | Used No./Total No. | |
---|---|---|
All data set | ||
GNB | Q1_EMIQ, Q4_EMIQ, Q8_EMIQ, Q1_MSWS-12, Q2_MSWS-12, Q3_MSWS-12, Q7_MSWS-12, Q11_MSWS-12, Q12_MSWS-12 | 9/428 |
Basic data set | ||
GNB | T25-FW, 2MWT, EDSS_Ambulation, EDSS_Bowel_Bladder, EDSS_Brainstem, EDSS_Cerebellar, EDSS_cognition/fatigue, EDSS_Pyramidal, EDSS_Score, EDSS_Sensory, EDSS_Visual | 11/11 |
EDSS data set | ||
GNB | EDSS_Ambulation, EDSS_Bowel_Bladder, EDSS_Brainstem, EDSS_Cerebellar, EDSS_cognition/fatigue, EDSS_Pyramidal, EDSS_Score, EDSS_Sensory, EDSS_Visual | 9/9 |
GR_N data set | ||
GNB | Step Count, Step Length (cm) L, Step Length (cm) R, Stride Length (cm) L, Stride Length (cm) R, Stride Velocity Right, Velocity | 7/82 |
GR_D data set | ||
GNB | Step Extremity (ratio) L, Step Length (cm) L, Step Length (cm) R, Stride Length (cm) R | 4/82 |
ML_N data set | ||
GNB | Lower Limb – Double Support L (%GCT) [mean], Lower Limb – Gait Speed L (m/s) [mean], Lower Limb – Gait Speed R (m/s) [mean], Lower Limb – Single Limb Support L (%GCT) [mean], Lower Limb – Stance R (%GCT) [mean], Lower Limb – Swing R (%GCT) [mean], Lower Limb – Terminal Double Support R (%GCT) [std], Stride Length R (m) [mean] | 8/84 |
ML_D data set | ||
GNB | Lower Limb – Stride Length R (m) [mean], Lower Limb – Terminal Double Support R (%GCT) [mean], Lower Limb – Toe Off Angle L (degrees) [mean], Lower Limb – Toe Off Angle R (degrees) [mean] | 4/84 |
ML_S_EO data set | ||
kNN | Acc – Jerk (Sagittal) (m2/s5); Angles – 95% Ellipse Axis 1 Radius (degrees) | 2/32 |
ML_S_EC data set | ||
GNB | Acc – 95% Ellipse Axis 1 Radius (m/s2), Acc – 95% Ellipse Rotation (radians), Acc – Centroidal Frequency (Hz), Acc – Centroidal Frequency (Coronal) (Hz), Acc – Centroidal Frequency (Sagittal) (Hz), Acc – Frequency Dispersi on (AD), Acc – Frequency Dispersion (Coronal) (AD), Acc – Frequency Dispersion (Sagittal) (AD), Acc – Jerk (m2/s5), Acc – Jerk (Coronal) (m2/s5), Acc – Jerk (Sagittal) (m2/s5), Acc – Mean Velocity (Coronal) (m/s), Acc – Path Length (m/s2), Acc – Path Length (Coronal) (m/s2), Acc – Path Length (Sagittal) (m/s2), Acc – Range (m/s2), Acc – Range (Coronal) (m/s2), Acc – RMS Sway (Coronal) (m/s2), Acc – RMS Sway (Sagittal) (m/s2), Angles – 95% Ellipse Axis 1 Radius (degrees), Angles – 95% Ellipse Rotation (radians), Angles – RMS Sway (Coronal) (degrees) | 22/32 |
MSWS-12 data set | ||
GNB | Q5_MSWS-12, Q8_MSWS-12, Q12_MSWS-12 | 3/12 |
EMIQ data set | ||
GNB | Q1_EMIQ, Q4_EMIQ, Q8_EMIQ, Q9_EMIQ | 4/9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schumann, P.; Scholz, M.; Trentzsch, K.; Jochim, T.; Śliwiński, G.; Malberg, H.; Ziemssen, T. Detection of Fall Risk in Multiple Sclerosis by Gait Analysis—An Innovative Approach Using Feature Selection Ensemble and Machine Learning Algorithms. Brain Sci. 2022, 12, 1477. https://doi.org/10.3390/brainsci12111477
Schumann P, Scholz M, Trentzsch K, Jochim T, Śliwiński G, Malberg H, Ziemssen T. Detection of Fall Risk in Multiple Sclerosis by Gait Analysis—An Innovative Approach Using Feature Selection Ensemble and Machine Learning Algorithms. Brain Sciences. 2022; 12(11):1477. https://doi.org/10.3390/brainsci12111477
Chicago/Turabian StyleSchumann, Paula, Maria Scholz, Katrin Trentzsch, Thurid Jochim, Grzegorz Śliwiński, Hagen Malberg, and Tjalf Ziemssen. 2022. "Detection of Fall Risk in Multiple Sclerosis by Gait Analysis—An Innovative Approach Using Feature Selection Ensemble and Machine Learning Algorithms" Brain Sciences 12, no. 11: 1477. https://doi.org/10.3390/brainsci12111477