Effect of Blood Transfusion on Cerebral Hemodynamics and Vascular Topology Described by Computational Fluid Dynamics in Sickle Cell Disease Patients
Abstract
:1. Introduction
- This study will represent the largest study to date to utilize MRI images from patients with SCD to model blood flow and wall shear stress in segments of the ICA and MCA.
- It will also be the first to perform this modeling in a longitudinal fashion, in children with normal TCD velocity at baseline thus allowing us to take the step towards determining whether the CFD measures could have predictive benefit.
- It is also the largest study to date to use MRA images to model hemodynamic behavior and wall shear stress in individuals with SCD.
2. Materials and Methods
2.1. SIT Trial Overview
2.2. Case Selection for This Study
2.3. 3-D Model Development
2.4. Mesh Generation
2.5. Computational Fluid Dynamics Model
2.5.1. Setup and Assumptions
2.5.2. Solution
2.5.3. Result
2.6. Tortuosity Index Calculation
2.7. Statistical Analysis
3. Results
3.1. Demographics
3.2. Arterial Blood Flow Velocity
3.3. Vessel Tortuosity
3.4. Wall Shear Stress
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piel, F.B.; Hay, S.I.; Gupta, S.; Weatherall, D.J.; Williams, T.N. Global burden of sickle cell anaemia in children under five, 2010–2050: Modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013, 10, e1001484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauling, L.; Itano, H.A.; Singer, S.J.; Wells, I.C. Sickle cell anemia, a molecular disease. Science 1949, 110, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, F.D.; Thompson, R.J., Jr.; Wang, W.; Zimmerman, R.; Pegelow, C.H.; Miller, S.; Moser, F.; Bello, J.; Hurtig, A.; Vass, K. Cognitive functioning and brain magnetic resonance imaging in children with sickle Cell disease. Neuropsychology Committee of the Cooperative Study of Sickle Cell Disease. Pediatrics 1996, 97, 864–870. [Google Scholar] [CrossRef]
- Ohene-Frempong, K.; Weiner, S.J.; Sleeper, L.A.; Miller, S.T.; Embury, S.; Moohr, J.W.; Wethers, D.L.; Pegelow, C.H.; Gill, F.M.; Sickle Cell Disease, T.C.S.O. Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood J. Am. Soc. Hematol. 1998, 91, 288–294. [Google Scholar]
- Houwing, M.E.; Grohssteiner, R.L.; Dremmen, M.H.G.; Atiq, F.; Bramer, W.M.; de Pagter, A.P.J.; Zwaan, C.M.; White, T.J.H.; Vernooij, M.W.; Cnossen, M.H. Silent cerebral infarcts in patients with sickle cell disease: A systematic review and meta-analysis. BMC Med. 2020, 18, 393. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Enos, L.; Gallagher, D.; Thompson, R.; Guarini, L.; Vichinsky, E.; Wright, E.; Zimmerman, R.; Armstrong, F.D. Cooperative Study of Sickle Cell Disease. Neuropsychologic performance in school-aged children with sickle cell disease: A report from the Cooperative Study of Sickle Cell Disease. J. Pediatr. 2001, 139, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; McKie, V.; Nichols, F.; Carl, E.; Zhang, D.-L.; McKie, K.; Figueroa, R.; Litaker, M.; Thompson, W.; Hess, D. The Use of Transcranial Ultrasonography to Predict Stroke in Sickle Cell Disease. N. Engl. J. Med. 1992, 326, 605–610. [Google Scholar] [CrossRef]
- Adams, R.J.; Nichols, F.T.; Figueroa, R.; McKie, V.; Lott, T. Transcranial Doppler correlation with cerebral angiography in sickle cell disease. Stroke 1992, 23, 1073–1077. [Google Scholar] [CrossRef] [Green Version]
- Bernaudin, F.; Verlhac, S.; Arnaud, C.; Kamdem, A.; Chevret, S.; Hau, I.; Coic, L.; Leveille, E.; Lemarchand, E.; Lesprit, E.; et al. Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood 2011, 117, 1130–1140. [Google Scholar] [CrossRef] [Green Version]
- Bernaudin, F.; Verlhac, S.; Arnaud, C.; Kamdem, A.; Vasile, M.; Kasbi, F.; Hau, I.; Madhi, F.; Fourmaux, C.; Biscardi, S.; et al. Chronic and acute anemia and extracranial internal carotid stenosis are risk factors for silent cerebral infarcts in sickle cell anemia. Blood 2015, 125, 1653–1661. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.H. Cerebrovascular complications of sickle cell anemia. Stroke 1978, 9, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Merkel, K.H.; Ginsberg, P.L.; Parker, J.C., Jr.; Post, M.J. Cerebrovascular disease in sickle cell anemia: A clinical, pathological and radiological correlation. Stroke 1978, 9, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridgers, W.H. Cerebral vascular disease accompanying sickle cell anemia. Am. J. Pathol. 1939, 15, 353–362.5. [Google Scholar] [PubMed]
- Boros, L.; Thomas, C.; Weiner, W.J. Large cerebral vessel disease in sickle cell anaemia. J. Neurol. Neurosurg. Psychiatry 1976, 39, 1236–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platt, M.O.; Ankeny, R.F.; Jo, H. Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arter. Thromb. Vasc. Biol 2006, 26, 1784–1790. [Google Scholar] [CrossRef] [Green Version]
- Platt, M.O.; Ankeny, R.F.; Shi, G.P.; Weiss, D.; Vega, J.D.; Taylor, W.R.; Jo, H. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1479–H1486. [Google Scholar] [CrossRef] [Green Version]
- Platt, M.O.; Shockey, W.A. Endothelial cells and cathepsins: Biochemical and biomechanical regulation. Biochimie 2016, 122, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Giddens, D.P.; Zarins, C.K.; Glagov, S. The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. 1993, 115, 588–594. [Google Scholar] [CrossRef]
- Rivera, C.P.; Veneziani, A.; Ware, R.E.; Platt, M.O. Original Research: Sickle cell anemia and pediatric strokes: Computational fluid dynamics analysis in the middle cerebral artery. Exp. Biol. Med. 2016, 241, 755–765. [Google Scholar] [CrossRef] [Green Version]
- DeBaun, M.R.; Sarnaik, S.A.; Rodeghier, M.J.; Minniti, C.P.; Howard, T.H.; Iyer, R.V.; Inusa, B.; Telfer, P.T.; Kirby-Allen, M.; Quinn, C.T.; et al. Associated risk factors for silent cerebral infarcts in sickle cell anemia: Low baseline hemoglobin, sex, and relative high systolic blood pressure. Blood 2012, 119, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- DeBaun, M.R.; Gordon, M.; McKinstry, R.C.; Noetzel, M.J.; White, D.A.; Sarnaik, S.A.; Meier, E.R.; Howard, T.H.; Majumdar, S.; Inusa, B.P.; et al. Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. N. Engl. J. Med. 2014, 371, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Kassim, A.A.; Pruthi, S.; Day, M.; Rodeghier, M.; Gindville, M.C.; Brodsky, M.A.; DeBaun, M.R.; Jordan, L.C. Silent cerebral infarcts and cerebral aneurysms are prevalent in adults with sickle cell anemia. Blood 2016, 127, 2038–2040. [Google Scholar] [CrossRef] [PubMed]
- Casella, J.F.; King, A.A.; Barton, B.; White, D.A.; Noetzel, M.J.; Ichord, R.N.; Terrill, C.; Hirtz, D.; McKinstry, R.C.; Strouse, J.J.; et al. Design of the silent cerebral infarct transfusion (SIT) trial. Pediatr. Hematol. Oncol. 2010, 27, 69–89. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- Sosnowski, M.; Krzywanski, J.; Grabowska, K.; Gnatowska, R. Polyhedral meshing in numerical analysis of conjugate heat transfer. EPJ Web Conf. 2018, 180, 02096. [Google Scholar] [CrossRef]
- Adams, R.J.; Nichols, F.T.; McKie, V.C.; McKie, K.M.; Stephens, S.; Carl, E.; Thompson, W.O. Transcranial Doppler: Influence of hematocrit in children with sickle cell anemia without stroke. J. Cardiovasc. Technol. 1989, 8, 97–101. [Google Scholar]
- Adams, R.J.; Nichols, F.T.; Stephens, S.; Carl, E.; McKie, V.C.; McKie, K.; Fischer, A.; Thompson, W.O. Transcranial Doppler: The influence of age and hematocrit in normal children. J. Cardiovasc. Ultrason. 1988, 7, 201–205. [Google Scholar]
- Hasan, I.; Frentzen, M.; Utz, K.H.; Hoyer, D.; Langenbach, A.; Bourauel, C. Finite element analysis of adhesive endo-crowns of molars at different height levels of buccally applied load. J. Dent. Biomech. 2012, 3, 1758736012455421. [Google Scholar] [CrossRef]
- Ciurică, S.; Lopez-Sublet, M.; Loeys, B.L.; Radhouani, I.; Natarajan, N.; Vikkula, M.; Maas, A.H.; Adlam, D.; Persu, A. Arterial tortuosity: Novel implications for an old phenotype. Hypertension 2019, 73, 951–960. [Google Scholar] [CrossRef]
- Liu, J.; Ke, X.; Lai, Q. Increased tortuosity of bilateral distal internal carotid artery is associated with white matter hyperintensities. Acta Radiol. 2021, 62, 515–523. [Google Scholar] [CrossRef]
- Capowski, J.J.; Kylstra, J.A.; Freedman, S.F. A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity. Retina 1995, 15, 490–500. [Google Scholar] [CrossRef]
- Smedby, Ö.; Bergstrand, L. Tortuosity and atherosclerosis in the femoral artery: What is cause and what is effect? Ann. Biomed. Eng. 1996, 24, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, A.; Baker, P.B.; Newman, W.; Vigorito, R.; Friedman, M. Variability of human coronary artery geometry: An angiographic study of the left anterior descending arteries of 30 autopsy hearts. Ann. Biomed. Eng. 1994, 22, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Morel, S.; Schilling, S.; Diagbouga, M.R.; Delucchi, M.; Bochaton-Piallat, M.L.; Lemeille, S.; Hirsch, S.; Kwak, B.R. Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities. Front. Physiol. 2021, 12, 727338. [Google Scholar] [CrossRef] [PubMed]
- Sakariassen, K.S.; Orning, L.; Turitto, V.T. The impact of blood shear rate on arterial thrombus formation. Future Sci. OA 2015, 1, Fso30. [Google Scholar] [CrossRef] [Green Version]
- Russo, T.A.; Banuth, A.M.M.; Nader, H.B.; Dreyfuss, J.L. Altered shear stress on endothelial cells leads to remodeling of extracellular matrix and induction of angiogenesis. PLoS ONE 2020, 15, e0241040. [Google Scholar] [CrossRef]
- Ruze, A.; Zhao, Y.; Li, H.; Gulireba, X.; Li, J.; Lei, D.; Dai, H.; Wu, J.; Zhao, X.; Nie, Y. Low shear stress upregulates the expression of fractalkine through the activation of mitogen-activated protein kinases in endothelial cells. Blood Coagul. Fibrinolysis 2018, 29, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, D.; Sun, L.; Sucosky, P. Role of Pathologic Shear Stress Alterations in Aortic Valve Endothelial Activation. Cardiovasc. Eng. Technol. 2010, 1, 165–178. [Google Scholar] [CrossRef]
- Spinardi, L.; Vornetti, G.; de Martino, S.; Golfieri, R.; Faccioli, L.; Trossello, M.P.; Graziano, C.; Mariucci, E.; Donti, A. Intracranial Arterial Tortuosity in Marfan Syndrome and Loeys-Dietz Syndrome: Tortuosity Index Evaluation Is Useful in the Differential Diagnosis. Am. J. Neuroradiol. 2020, 41, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Buch, K.; Arya, R.; Shah, B.; Nadgir, R.N.; Saito, N.; Qureshi, M.M.; Sakai, O. Quantitative Analysis of Extracranial Arterial Tortuosity in Patients with Sickle Cell Disease. J. Neuroimaging 2017, 27, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Hyacinth, H.I.; Sugihara, C.L.; Spencer, T.L.; Archer, D.R.; Shih, A.Y. Higher prevalence of spontaneous cerebral vasculopathy and cerebral infarcts in a mouse model of sickle cell disease. J. Cereb. Blood Flow Metab. 2019, 39, 342–351. [Google Scholar] [CrossRef]
- Presti, A.L.; Rogers, J.M.; Stoodley, M.A.; Assaad, N.N.A.; Simons, M.; Sen, I.; Morgan, M.K. Laminar Wall Shear Stress in Brain Arteriovenous Malformations: Systematic Review of Literature. World Neurosurg. 2019, 128, e760–e767. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, M.; Amin-Hanjani, S.; Du, X.; Ruland, S.; Charbel, F.T. Wall Shear Stress in Major Cerebral Arteries as a Function of Age and Gender—A Study of 301 Healthy Volunteers. J. Neuroimaging 2015, 25, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Chukwu, B.; Menezes, L.; Fukuda, T.; Filho, J.; Goncalves, M. Timed Average Mean Maximum Velocity (TAMMV) of Cerebral Blood Flow of Children and Adolescents with Sickle cell Disease: Correlation with clinical and hematological profiles in country. Malawi Med. J. 2021, 33, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; Aaslid, R.; el Gammal, T.; Nichols, F.; McKie, V. Detection of cerebral vasculopathy in sickle cell disease using transcranial Doppler ultrasonography and magnetic resonance imaging. Case Report. Stroke 1988, 19, 518–520. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.J.; McKie, V.C.; Hsu, L.; Files, B.; Vichinsky, E.; Pegelow, C.; Abboud, M.; Gallagher, D.; Kutlar, A.; Nichols, F.T.; et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N. Engl. J. Med. 1998, 339, 5–11. [Google Scholar] [CrossRef]
- Guilliams, K.P.; Fields, M.E.; Ragan, D.K.; Chen, Y.; Eldeniz, C.; Hulbert, M.L.; Binkley, M.M.; Rhodes, J.N.; Shimony, J.S.; McKinstry, R.C.; et al. Large-Vessel Vasculopathy in Children With Sickle Cell Disease: A Magnetic Resonance Imaging Study of Infarct Topography and Focal Atrophy. Pediatr. Neurol. 2017, 69, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, A.L.; Ragan, D.K.; Fellah, S.; Binkley, M.M.; Fields, M.E.; Guilliams, K.P.; An, H.; Jordan, L.C.; McKinstry, R.C.; Lee, J.-M.; et al. Silent infarcts in sickle cell disease occur in the border zone region and are associated with low cerebral blood flow. Blood 2018, 132, 1714–1723. [Google Scholar] [CrossRef] [Green Version]
- Yawn, B.P.; Buchanan, G.R.; Afenyi-Annan, A.N.; Ballas, S.K.; Hassell, K.L.; James, A.H.; Jordan, L.; Lanzkron, S.M.; Lottenberg, R.; Savage, W.J.; et al. Management of sickle cell disease: Summary of the 2014 evidence-based report by expert panel members. JAMA 2014, 312, 1033–1048. [Google Scholar] [CrossRef]
- Fields, M.E.; Guilliams, K.P.; Ragan, D.; Binkley, M.M.; Mirro, A.; Fellah, S.; Hulbert, M.L.; Blinder, M.; Eldeniz, C.; Vo, K.; et al. Hydroxyurea reduces cerebral metabolic stress in patients with sickle cell anemia. Blood 2019, 133, 2436–2444. [Google Scholar] [CrossRef]
- Karkoska, K.; Quinn, C.T.; Niss, O.; Pfeiffer, A.; Dong, M.; Vinks, A.A.; McGann, P.T. Hydroyxurea improves cerebral oxygen saturation in children with sickle cell anemia. Am. J. Hematol. 2021, 96, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Nottage, K.A.; Ware, R.E.; Aygun, B.; Smeltzer, M.; Kang, G.; Moen, J.; Wang, W.C.; Hankins, J.S.; Helton, K.J. Hydroxycarbamide treatment and brain MRI/MRA findings in children with sickle cell anaemia. Br. J. Haematol. 2016, 175, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.J.; McKie, V.C.; Carl, E.M.; Nichols, F.T.; Perry, R.; Brock, K.; McKie, K.; Figueroa, R.; Litaker, M.; Weiner, S.; et al. Long-term stroke risk in children with sickle cell disease screened with transcranial Doppler. Ann. Neurol. 1997, 42, 699–704. [Google Scholar] [CrossRef] [PubMed]
Chronic Transfusion Therapy (n = 5) | Observation Only (n = 5) | p-Value | ||||
---|---|---|---|---|---|---|
TAMV in cm/s (SD) | Mean Change in TAMV in cm/s (SD) | TAMV in cm/s (SD) | Mean Change in TAMV in cm/s (SD) | |||
Pre-randomization | right | 159 (26) | - | 145 (42) | - | 0.14 + |
left | 183 (65) | - | 134 (68) | - | 0.78 + | |
Study exit (36 months) | right | 165 (60) | 6 (59) | 137 (47) | −8 (69) | 0.74 ++ |
left | 168 (67) | −0.15 (101) | 197 (67) | 62 (97) | 0.25 ++ |
TAMV (cm/s) Right Screening (p-Value) | TAMV (cm/s) Left Screening (p-Value) | TAMV cm/s Right Study Exit (36 Months) (p-Value) | TAMV cm/s Left Study Exit (36 Months) (p-Value) | TCD Velocity (cm/s) Study Entry (p-Value) | |
---|---|---|---|---|---|
Age | −0.13 (0.73) | 0.27 (0.45) | −0.31 (0.46) | −0.17 (0.69) | - |
WSS Right Screening | 0.38 (0.28) | −0.20 (0.58) | - | - | 0.25 (0.52) |
WSS Left Screening | 0.38 (0.28) | 0.38 (0.28) | - | - | −0.17 (0.67) |
WSS Right Study exit | - | - | 0.74 (0.04) | 0.50 (0.21) | 0.12 (0.78) |
WSS Left Study exit | - | - | 0.55 (0.16) | 0.26 (0.53) | 0.33 (0.42) |
TCD Velocity Study Entry | −0.40 (0.29) | −0.65 (0.06) | −0.02 (0.96) | −0.57 (0.14) | - |
Chronic Transfusion Therapy (n = 5) | Observation Only (n = 5) | p-Value | ||||
---|---|---|---|---|---|---|
Tortuosity Index Mean (SD) | Mean Change in Tortuosity Index (SD) | Tortuosity Index Mean (SD) | Mean Change in Tortuosity Index (SD) | |||
Pre-randomization | right | 0.85 (0.45) | 0.90 (0.30) | 0.84 + | ||
left | 0.87 (0.46) | 0.60 (0.17) | 0.25 + | |||
36 Month | right | 0.99 (0.18) | 0.15 (0.30) | 0.92 (0.42) | 0.02 (0.27) | 0.49 ++ |
left | 0.82 (0.18) | −0.04 (0.34) | 0.70 (0.26) | 0.10 (0.21) | 0.46 ++ |
Chronic Transfusion Therapy (n = 5) | Observation Only (n = 5) | p-Value | ||||
---|---|---|---|---|---|---|
WSS Mean in Dyne/cm2 (SD) | Mean Change in WSS (SD) | WSS Mean in Dyne/cm2 (SD) | Mean Change in WSS (SD) | |||
Pre-randomization | right | 5.64 (1.44) | 36.27 (36.13) | 0.09 + | ||
left | 6.25 (1.68) | 57.03 (62.6) | 0.11 + | |||
36 Month | right | 61.85 (45.82) | 56.20 (44.73) | 41.03 (42.69) | 4.76 (35.02) | 0.08 ++ |
left | 65.87 (49.26) | 59.62 (49.70) | 70.23 (50.11) | 13.20 (79.69) | 0.30 ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawyer, R.P.; Pun, S.; Karkoska, K.A.; Clendinen, C.A.; DeBaun, M.R.; Gutmark, E.; Barrile, R.; Hyacinth, H.I. Effect of Blood Transfusion on Cerebral Hemodynamics and Vascular Topology Described by Computational Fluid Dynamics in Sickle Cell Disease Patients. Brain Sci. 2022, 12, 1402. https://doi.org/10.3390/brainsci12101402
Sawyer RP, Pun S, Karkoska KA, Clendinen CA, DeBaun MR, Gutmark E, Barrile R, Hyacinth HI. Effect of Blood Transfusion on Cerebral Hemodynamics and Vascular Topology Described by Computational Fluid Dynamics in Sickle Cell Disease Patients. Brain Sciences. 2022; 12(10):1402. https://doi.org/10.3390/brainsci12101402
Chicago/Turabian StyleSawyer, Russell P., Sirjana Pun, Kristine A. Karkoska, Cherita A. Clendinen, Michael R. DeBaun, Ephraim Gutmark, Riccardo Barrile, and Hyacinth I. Hyacinth. 2022. "Effect of Blood Transfusion on Cerebral Hemodynamics and Vascular Topology Described by Computational Fluid Dynamics in Sickle Cell Disease Patients" Brain Sciences 12, no. 10: 1402. https://doi.org/10.3390/brainsci12101402
APA StyleSawyer, R. P., Pun, S., Karkoska, K. A., Clendinen, C. A., DeBaun, M. R., Gutmark, E., Barrile, R., & Hyacinth, H. I. (2022). Effect of Blood Transfusion on Cerebral Hemodynamics and Vascular Topology Described by Computational Fluid Dynamics in Sickle Cell Disease Patients. Brain Sciences, 12(10), 1402. https://doi.org/10.3390/brainsci12101402