The Difficult Integration between Human and Animal Studies on Emotional Lateralization: A Perspective Article
Abstract
:1. Introduction
2. General Factors That Have Hindered the Integration between Human and Animal Studies on Different Aspects of Hemispheric Functional Asymmetries
3. Factors That Have Specifically Failed to Establish a Dialogue between Human and Animal Studies on Hemispheric Asymmetries for Emotions
3.1. Behavioral Patterns Considered as ‘Emotional’ in Human and in Animal Studies
3.2. Models of Hemispheric Asymmetries for Emotions Transposed from Human to Animal Studies
4. Comparative Analysis of Components and Stages of Emotional Processing That Could Contribute to a Better Integration between Human and Animal Investigations
4.1. Asymmetries in the Evalutation of the Emotional Stimuli in the Right and Left Amygdala
4.2. Hemispheric Asymmetries for the Vegetative Components of Emotions
4.3. The Contribution of the Right and Left Insular Cortex to the Emotional Experience
5. A Provisional Interpretation of These Results
Funding
Conflicts of Interest
References
- MacWhinney, B. Language Evolution and Human Development. In Origins of the Social Mind: Evolutionary Psychology and Child Development; Bjorklund, D., Pellegrini, A., Eds.; Guilford Press: New York, NY, USA, 2005; pp. 383–410. [Google Scholar]
- Corballis, M. The Lopsided Ape; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: Hove, UK, 2002. [Google Scholar]
- McManus, C. Right Hand Left Hand; Weidenfeld & Nicolson: London, UK, 2002. [Google Scholar]
- Bradshaw, J.L.; Rogers, L.J. The Evolution of Lateral Asymmetries, Language, Tool Use, and Intellect; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Désiré, L.; Boissy, A.; Veissier, I. Emotions in farm animals. Behav. Process. 2002, 60, 165–180. [Google Scholar] [CrossRef]
- Dawkins, M.S. Through animal eyes: What behaviour tells us. Appl. Anim. Behav. Sci. 2006, 100, 4–10. [Google Scholar] [CrossRef]
- Austin, N.P.; Rogers, L.J. Asymmetry of flight and escape turning responses in horses. Laterality Asymmetries Body Brain Cogn. 2007, 12, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Carriba, S.; Loeches, A.; Morcillo, A.; Hopkins, W.D. Functional asymmetry of emotions in primates: New findings in chimpanzees. Brain Res. Bull. 2002, 57, 561–564. [Google Scholar] [CrossRef]
- Lindell, A.K. Continuities in Emotion Lateralization in Human and Non-Human Primates. Front. Hum. Neurosci. 2013, 7, 464. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.D.; Misiura, M.; Pope, S.M.; Latash, E.M. Behavioral and brain asymmetries in primates: A preliminary evaluation of two evolutionary hypotheses. Ann. N. Y. Acad. Sci. 2015, 1359, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J. Lateralization in vertebrates: Its early evolution, general pattern, and development. In Advances in the Study of Behavior; Slater, P.J.B., Rosenblatt, J.S., Snowdon, C.T., Roper, T.J., Eds.; Academic Press: Cambridge, MA, USA, 2002; Volume 31, pp. 107–161. [Google Scholar]
- Rogers, L.J.; Andrew, J.R. (Eds.) Comparative Vertebrate Lateralization; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- MacNeilage, P.F.; Rogers, L.J.; Vallortigara, G. Origins of the Left & Right Brain. Sci. Am. 2009, 301, 60–67. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Düpjan, S.; Tuchscherer, A.; Puppe, B. Hemispheric Specialization for Processing the Communicative and Emotional Content of Vocal Communication in a Social Mammal, the Domestic Pig. Front. Behav. Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- Bisazza, A.; Rogers, L.J.; Vallortigara, G. The Origins of Cerebral Asymmetry: A Review of Evidence of Behavioural and Brain Lateralization in Fishes, Reptiles and Amphibians. Neurosci. Biobehav. Rev. 1998, 22, 411–426. [Google Scholar] [CrossRef]
- Frasnelli, E.; Vallortigara, G.; Rogers, L.J. Left–right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 2012, 36, 1273–1291. [Google Scholar] [CrossRef]
- Frasnelli, E. Lateralization in Invertebrates. In Lateralized Brain Functions; Neuromethods; Rogers, L., Vallortigara, G., Eds.; Humana Press: New York, NY, USA, 2008; Volume 122, pp. 153–208. [Google Scholar]
- Rogers, L. Brain Lateralization and Cognitive Capacity. Animals 2021, 11, 1996. [Google Scholar] [CrossRef]
- Goursot, C.; Duepjan, S.; Puppe, B.; Lelived, L. Affective styles and emotional lateralization: A promising framework for an-imal welfare research. Appl. Anim. Behav. Sci. 2021, 37, 105279. [Google Scholar] [CrossRef]
- Siniscalchi, M.; D’Ingeo, S.; Quaranta, A. Lateralized emotional functioning in domestic animals. Appl. Anim. Behav. Sci. 2021, 237, 105282. [Google Scholar] [CrossRef]
- Plutchik, R. Emotion: A Psychobioevolutionary Synthesis; Harper and Row: New York, NY, USA, 1980. [Google Scholar]
- Ekman, P. Expression and the nature of emotion. In Approachs to Emotion; Scherer, K., Ekman, P., Eds.; Erlbaum: Hillsdale, NJ, USA, 1984; pp. 319–344. [Google Scholar]
- Ekman, P. Are there basic emotions? Psychol. Rev. 1992, 99, 550–553. [Google Scholar] [CrossRef]
- Frijda, N.H. The Emotions; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Scherer, K.R. Psychological models of emotion. In The Neuropsychology of Emotion; Borod, J.C., Ed.; Oxford University Press: New York, NY, USA, 2000; pp. 137–162. [Google Scholar]
- Fox, E. Emotion Science: An Integration of Cognitive and Neuroscientific Approaches; Palgrave MacMillan: New York, NY, USA, 2008; ISBN 978-0-230-00517-4. [Google Scholar]
- Koene, J.; Jansen, R.; Ter Maat, A.; Chase, R. A conserved location for the central nervous system control of mating behaviour in gastropod molluscs: Evidence from a terrestrial snail. J. Exp. Biol. 2000, 203, 1071–1080. [Google Scholar] [CrossRef]
- Kamimura, Y. Right-handed penises of the earwigLabidura riparia (Insecta, Dermaptera, Labiduridae): Evolutionary relationships between structural and behavioral asymmetries. J. Morphol. 2006, 267, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Bisazza, A.; Pignatti, R.; Vallortigara, G. Laterality in detour behaviour: Interspecific variation in poeciliid fish. Anim. Behav. 1997, 54, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Green, A.J.; Green, A.J. Asymmetrical turning during spermatophore transfer in the male smooth newt. Anim. Behav. 1997, 54, 343–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventolini, N.; Ferrero, E.A.; Sponza, S.; Della Chiesa, A.; Zucca, P.; Vallortigara, G. Laterality in the wild: Preferential hemifield use during predatory and sexual behaviour in the black-winged stilt. Anim. Behav. 2005, 69, 1077–1084. [Google Scholar] [CrossRef]
- Gulbetekin, E.; Güntürkün, O.; Dural, S.; Cetinkaya, H. Asymmetry of visually guided sexual behaviour in adult Japanese quail (Coturnix japonica). Laterality Asymmetries Body Brain Cogn. 2007, 12, 321–331. [Google Scholar] [CrossRef]
- Templeton, J.J.; McCracken, B.G.; Sher, M.; Mountjoy, D.J. An eye for beauty: Lateralized visual stimulation of courtship behavior and mate preferences in male zebra finches, Taeniopygia guttata. Behav. Process. 2014, 102, 33–39. [Google Scholar] [CrossRef]
- Siniscalchi, M.; Sasso, R.; Pepe, A.M.; Dimatteo, S.; Vallortigara, G.; Quaranta, A. Sniffing with the right nostril: Lateralization of response to odour stimuli by dogs. Anim. Behav. 2011, 82, 399–404. [Google Scholar] [CrossRef]
- Hauser, M.D.; Akre, K. Asymmetries in the timing of facial and vocal expressions by rhesus monkeys: Implications for hemispheric specialization. Anim. Behav. 2001, 61, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Holman, S.D.; Hutchinson, J.B. Lateralization of a sexually dimorphic brain area associated with steroid-sensitive behavior in the male gerbil. Behav. Neurosci. 1993, 107, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Leliveld, L.M.C.; Scheumann, M.; Zimmermann, E. Effects of Caller Characteristics on Auditory Laterality in an Early Primate (Microcebus murinus). PLoS ONE 2010, 5, e9031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ades, C.; Ramires, E.N. Asymmetry of Leg Use During Prey Handling in the Spider Scytodes globula (Scytodidae). J. Insect Behav. 2002, 15, 563–570. [Google Scholar] [CrossRef]
- Heuts, B.A.; Cornelissen, P.; Lambrechts, D.Y.M. Different attack modes of Formica species in interspecific one-on-one combats with other ants (Hymenoptera: Formicidae). Ann. Zool. (Wars) 2003, 53, 205–216. [Google Scholar]
- Giljov, A.N.; Karenina, K.A.; Malashichev, Y.B. An eye for a worm: Lateralisation of feeding behaviour in aquatic anamniotes. Laterality Asymmetries Body Brain Cogn. 2009, 14, 273–286. [Google Scholar] [CrossRef]
- Lippolis, G.; Bisazza, A.; Rogers, L.J.; Vallortigara, G. Lateralisation of predator avoidance responses in three species of toads. Laterality Asymmetries Body Brain Cogn. 2002, 7, 163–183. [Google Scholar] [CrossRef]
- Robins, A.; Rogers, L.J. Complementary and lateralized forms of processing in Bufo marinus for novel and familiar prey. Neurobiol. Learn. Mem. 2006, 86, 214–227. [Google Scholar] [CrossRef]
- Bonati, B.; Csermely, D.; Romani, R. Lateralization in the predatory behaviour of the common wall lizard (Podarcis muralis). Behav. Process. 2008, 79, 171–174. [Google Scholar] [CrossRef]
- Mench, J.; Andrew, R. Lateralization of a food search task in the domestic chick. Behav. Neural Biol. 1986, 46, 107–114. [Google Scholar] [CrossRef]
- Güntürkün, O.; Kesch, S. Visual lateralization during feeding in pigeons. Behav. Neurosci. 1987, 101, 433–435. [Google Scholar] [CrossRef]
- Alonso, Y. Lateralization of visual guided behaviour during feeding in zebra finches (Taeniopygia guttata). Behav. Process. 1998, 43, 257–263. [Google Scholar] [CrossRef]
- Rogers, L.; Ward, J.; Stanford, D. Eye dominance in the small-eared bushbaby, Otolemur garnettii. Neuropsychologia 1994, 32, 257–264. [Google Scholar] [CrossRef]
- Losin, E.A.R.; Russell, J.L.; Freeman, H.; Meguerditchian, A.; Hopkins, W.D. Left Hemisphere Specialization for Oro-Facial Movements of Learned Vocal Signals by Captive Chimpanzees. PLoS ONE 2008, 3, e2529. [Google Scholar] [CrossRef]
- De Latude, M.; Demange, M.; Bec, P.; Blois-Heulin, C. Visual laterality responses to different emotive stimuli by red-capped mangabeys, Cercocebus torquatus torquatus. Anim. Cogn. 2008, 12, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Marchant, L.F.; McGrew, W.C. Handedness is more than laterality: Lessons from chimpanzees. Ann. N. Y. Acad. Sci. 2013, 1288, 1–8. [Google Scholar] [CrossRef]
- Gainotti, G. Emotional Behavior and Hemispheric Side of the Lesion. Cortex 1972, 8, 41–55. [Google Scholar] [CrossRef]
- Terzian, H.; Cecotto, S. Su un nuovo metodo per la determinazione e lo studio della dominanza emisferica. Giorn. Psichiatr. Neuropatol. 1958, 87, 889–924. [Google Scholar]
- Perria, L.; Rosadini, G.; Rossi, G.F. Determination of Side of Cerebral Dominance with Amobarbital. Arch. Neurol. 1961, 4, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Terzian, H. Behavioural and EEG effects of intracarotid sodium amytal injection. Acta Neurochir. 1964, 12, 230–239. [Google Scholar] [CrossRef]
- Ross, E.D. The Aprosodias. Arch. Neurol. 1981, 38, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.D. Right’ s hemisphere role in language, affective behaviour and emotion. Trends Neurosci. 1984, 7, 342–346. [Google Scholar] [CrossRef]
- Gainotti, G. Neuropsychological theories of emotions. In The Neuropsychology of Emotions; Borod, J.C., Ed.; Oxford University Press: New York, NY, USA, 2000; pp. 147–167. [Google Scholar]
- Borod, J.C.; Zgaljardic, D.; Tabert, M.H.; Koff, A. Asymmetries of emotional perception and expression in normal adults. In Handbook of Neuropsychology, 2nd ed.; Emotional Behavior and Its Disorders; Gainotti, G., Boller, F., Grafman, J., Eds.; Elsevier: Amsterdam, The Netherlands; Volume 5, pp. 181–205.
- Schwartz, G.E.; Ahern, G.L.; Brown, S.-L. Lateralized Facial Muscle Response to Positive and Negative Emotional Stimuli. Psychophysiology 1979, 16, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Reuter-Lorenz, P.; Davidson, R. Differential contributions of the two cerebral hemispheres to the perception of happy and sad faces. Neuropsychologia 1981, 19, 609–613. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.; Givis, R.; Moscovitch, M. Hemispheric specialization and the perception of emotion: Evidence from right-handers and from inverted and non-inverted left-handers. Neuropsychologia 1983, 21, 687–692. [Google Scholar] [CrossRef]
- Natale, M.; E Gur, R.; Gur, R.C.; Gur, R.E.; Gur, R.C. Hemispheric asymmetries in processing emotional expressions. Neuropsychologia 1983, 21, 555–565. [Google Scholar] [CrossRef]
- Davidson, R.J. Hemispheric specialization for cognition and affect. In Physiological Correlates of Human Behavior; Gale, A., Edwards, J., Eds.; Academic Press: London, UK, 1983; pp. 203–216. [Google Scholar]
- Davidson, R.J. Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 1992, 20, 125–151. [Google Scholar] [CrossRef]
- Davidson, R.J. Affective Style and Affective Disorders: Perspectives from Affective Neuroscience. Cogn. Emot. 1998, 12, 307–330. [Google Scholar] [CrossRef]
- Davidson, R.J.; Schwartz, G.E.; Saron, C.; Bennett, J.; Goleman, D.J. Frontal versus parietal EEG asymmetry during positive and negative affect. Psychophysiology 1979, 16, 202–203. [Google Scholar]
- Davidson, R.; A Fox, N. Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants. Science 1982, 218, 1235–1237. [Google Scholar] [CrossRef] [PubMed]
- Spielberg, J.; Stewart, J.L.; Levin, R.L.; Miller, G.A.; Heller, W. Prefrontal Cortex, Emotion, and Approach/Withdrawal Motivation. Soc. Pers. Psychol. Compass 2008, 2, 135–153. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.J.B.; Keune, P.M.; Schönenberg, M.; Nusslock, R. Frontal EEG alpha asymmetry and emotion: From neural underpinnings and methodological considerations to psychopathology and social cognition. Psychophysiology 2017, 55, e13028. [Google Scholar] [CrossRef] [PubMed]
- Reznik, S.J.; Allen, J.J.B. Frontal asymmetry as a mediator and moderator of emotion: An updated review. Psychophysiology 2017, 55, e12965. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, A.; Siniscalchi, M.; Vallortigara, G. Asymmetric tail-wagging responses by dogs to different emotive stimuli. Curr. Biol. 2007, 17, R199–R201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siniscalchi, M.; Lusito, R.; Vallortigara, G.; Quaranta, A. Seeing Left- or Right-Asymmetric Tail Wagging Produces Different Emotional Responses in Dogs. Curr. Biol. 2013, 23, 2279–2282. [Google Scholar] [CrossRef] [Green Version]
- Hook-Costigan, M.A.; Rogers, L.J. Eye Preferences in Common Marmosets (Callithrix jacchus): Influence of Age, Stimulus, and Hand Preference. Laterality Asymmetries Body Brain Cogn. 1998, 3, 109–130. [Google Scholar] [CrossRef]
- Vallortigara, G.; Rogers, L.J.; Bisazza, A.; Lippolis, G.; Robins, A. Complementary right and left hemifield use for predatory and agonistic behaviour in toads. NeuroReport 1998, 9, 3341–3344. [Google Scholar] [CrossRef]
- Lippolis, G.; Joss, J.; Rogers, L. Australian Lungfish (Neoceratodus forsteri): A Missing Link in the Evolution of Complementary Side Biases for Predator Avoidance and Prey Capture. Brain Behav. Evol. 2009, 73, 295–303. [Google Scholar] [CrossRef]
- Leliveld, L.M.; Langbein, J.; Puppe, B. The emergence of emotional lateralization: Evidence in non-human vertebrates and implications for farm animals. Appl. Anim. Behav. Sci. 2013, 145, 1–14. [Google Scholar] [CrossRef]
- Hauser, M. Right hemisphere dominance for the production of facial expression in monkeys. Science 1993, 261, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Hook, M.; Rogers, L. Lateralized use of the mouth in production of vocalizations by marmosets. Neuropsychologia 1998, 36, 1265–1273. [Google Scholar] [CrossRef]
- Fernandez-Carriba, S.; Loeches, A.; Morcillo, A.; Washburn, D.; Hopkins, W.; Kashima, Y.; Kashima, E.; Farsides, T.; Kim, U.; Strack, F.; et al. Human assessment of chimpanzee facial asymmetry. Laterality Asymmetries Body Brain Cogn. 2004, 9, 1–17. [Google Scholar] [CrossRef]
- Lemasson, A.; Koda, H.; Kato, A.; Oyakawa, C.; Blois-Heulin, C.; Masataka, N. Influence of sound specificity and familiarity on Japanesemacaques’ (Macaca fuscata) auditory laterality. Behav. Brain Res. 2010, 208, 286–289. [Google Scholar] [CrossRef]
- Wallez, C.; Vauclair, J. Human (Homo sapiens) and baboon (Papio papio) chimeric face processing: Right-hemisphere involvement. J. Comp. Psychol. 2013, 127, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Wallez, C.; Vauclair, J.; Bourjade, M. Baboon (Papio anubis) chimeric face processing by human (Homo sapiens) judges: Influence of stimuli complexity on the perception of oro-facial asymmetries. J. Comp. Psychol. 2019, 133, 36–45. [Google Scholar] [CrossRef]
- Güntürkün, O.; Ströckens, F.; Ocklenburg, S. Brain Lateralization: A Comparative Perspective. Physiol. Rev. 2020, 100, 1019–1063. [Google Scholar] [CrossRef] [PubMed]
- James, W. What is an emotion? Mind 1884, 9, 188–205. [Google Scholar] [CrossRef]
- Davis, M.; Whalen, P.J. The amygdala: Vigilance and emotion. Mol. Psychiatry 2000, 6, 13–34. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, L. A Network Model of the Emotional Brain. Trends Cogn. Sci. 2017, 21, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Behbehani, M.M. Functional characteristics of the midbrain periaqueductal gray. Prog. Neurobiol. 1995, 46, 575–605. [Google Scholar] [CrossRef]
- Faull, O.K.; Pattinson, K.T. The cortical connectivity of the periaqueductal gray and the conditioned response to the threat of breathlessness. eLife 2017, 6, e21749. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. Significance of the insula for the evolution of human awareness of feelings from the body. Ann. N. Y. Acad. Sci. 2011, 1225, 72–82. [Google Scholar] [CrossRef]
- LeDoux, J.E. Cognitive-Emotional Interactions in the Brain. Cogn. Emot. 1989, 3, 267–289. [Google Scholar] [CrossRef]
- Adolphs, R.; Tranel, D.; Damasio, H.; Damasio, A.R. Fear and the human amygdala. J. Neurosci. 1995, 15, 5879–5891. [Google Scholar] [CrossRef]
- Morris, J.S.; Ohman, A.W.; Dolan, R. Conscious and unconscious emotional learning in the human amygdala. Nat. Cell Biol. 1998, 393, 467–470. [Google Scholar] [CrossRef]
- Morris, J.S.; Ohman, A.; Dolan, R. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc. Natl. Acad. Sci. USA 1999, 96, 1680–1685. [Google Scholar] [CrossRef] [Green Version]
- Papez, J.W. A proposed mechanism of emotion. Arch. Neurol. Psychiatr. 1937, 79, 217–224. [Google Scholar] [CrossRef]
- LeDoux, J.E.; Ruggiero, D.A.; Reis, D.J. Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J. Comp. Neurol. 1985, 242, 182–213. [Google Scholar] [CrossRef]
- Nomura, M.; Ohira, H.; Haneda, K.; Iidaka, T.; Sadato, N.; Okada, T.; Yonekura, Y. Functional association of the amygdala and ventral prefrontal cortex during cognitive evaluation of facial expressions primed by masked angry faces: An event-related fMRI study. NeuroImage 2004, 21, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M.; Das, P.; Liddell, B.J.; Kemp, A.H.; Rennie, C.J.; Gordon, E. Mode of Functional Connectivity in Amygdala Pathways Dissociates Level of Awareness for Signals of Fear. J. Neurosci. 2006, 26, 9264–9271. [Google Scholar] [CrossRef] [Green Version]
- Pegna, A.J.; Landis, T.; Khateb, A. Electrophysiological evidence for early non-conscious processing of fearful facial expressions. Int. J. Psychophysiol. 2008, 70, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.; Smith, M.L.; Bayle, D.J.; Mills, T.; Cheyne, D.; Taylor, M.J. Unattended emotional faces elicit early lateralized amygdala–frontal and fusiform activations. NeuroImage 2010, 50, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-Y.; Chen, Y.-S.; Hsieh, J.-C.; Chen, L.-F. Asymmetric Engagement of Amygdala and Its Gamma Connectivity in Early Emotional Face Processing. PLoS ONE 2015, 10, e0115677. [Google Scholar] [CrossRef]
- Tetereva, A.O.; Balaev, V.V.; Kartashov, S.I.; Ushakov, V.L.; Ivanitsky, A.M.; Martynova, O.V. Asymmetry of amygdala resting-state functional connectivity in healthy human brain. NeuroReport 2020, 31, 17–21. [Google Scholar] [CrossRef]
- Gainotti, G. Unconscious processing of emotions and the right hemisphere. Neuropsychologia 2012, 50, 205–218. [Google Scholar] [CrossRef]
- McFadyen, J. Investigating the Subcortical Route to the Amygdala Across Species and in Disordered Fear Responses. J. Exp. Neurosci. 2019, 13. [Google Scholar] [CrossRef]
- Wei, P.; Liu, N.; Zhang, Z.; Liu, X.; Tang, Y.; He, X.; Wu, B.; Zhou, Z.; Liu, Y.; Li, J.; et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 2015, 6, 6756. [Google Scholar] [CrossRef] [Green Version]
- Shang, C.; Liu, Z.; Chen, Z.; Shi, Y.; Wang, Q.; Liu, S.; Li, D.; Cao, P. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 2015, 348, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Masterson, S.P.; Damron, J.K.; Guido, W.; Bickford, M.E. The Mouse Pulvinar Nucleus Links the Lateral Extrastriate Cortex, Striatum, and Amygdala. J. Neurosci. 2017, 38, 347–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day-Brown, J.D.; Wei, H.; Chomsung, R.D.; Petry, H.M.; Bickford, M.E. Pulvinar Projections to the Striatum and Amygdala in the Tree Shrew. Front. Neuroanat. 2010, 4, 143. [Google Scholar] [CrossRef] [Green Version]
- Elorette, C.; Forcelli, P.A.; Saunders, R.C.; Malkova, L. Colocalization of Tectal Inputs With Amygdala-Projecting Neurons in the Macaque Pulvinar. Front. Neural Circuits 2018, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gainotti, G. Emotions and the Right Side of the Brain; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Rogers, L.J. Evolution of Hemispheric Specialization: Advantages and Disadvantages. Brain Lang. 2000, 73, 236–253. [Google Scholar] [CrossRef]
- Rogers, L.J. Relevance of brain and behavioural lateralization to animal welfare. Appl. Anim. Behav. Sci. 2010, 127, 1–11. [Google Scholar] [CrossRef]
- Andrew, R.J.; Rogers, L.J. The nature of lateralization in tetrapods; Cambridge University Press: Cambridge, UK, 2002; pp. 94–125. [Google Scholar] [CrossRef]
- Bonati, B.; Csermely, D.; López, P.; Martín, J. Lateralization in the escape behaviour of the common wall lizard (Podarcis muralis). Behav. Brain Res. 2010, 207, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Dharmaretnam, M.; Rogers, L. Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav. Brain Res. 2005, 162, 62–70. [Google Scholar] [CrossRef]
- Austin, N.; Rogers, L. Lateralization of agonistic and vigilance responses in Przewalski horses (Equus przewalskii). Appl. Anim. Behav. Sci. 2013, 151, 43–50. [Google Scholar] [CrossRef]
- Siniscalchi, M.; Sasso, R.; Pepe, A.M.; Vallortigara, G.; Quaranta, A. Dogs turn left to emotional stimuli. Behav. Brain Res. 2010, 208, 516–521. [Google Scholar] [CrossRef]
- Reinholz-Trojan, A.; Włodarczyk, E.; Trojan, M.; Kulczyński, A.; Stefańska, J. Hemispheric specialization in domestic dogs (Canis familiaris) for processing different types of acoustic stimuli. Behav. Process. 2012, 91, 202–205. [Google Scholar] [CrossRef]
- Siniscalchi, M.; Padalino, B.; Aube, L.; Quaranta, A. Right-nostril use during sniffing at arousing stimuli produces higher cardiac activity in jumper horses. Laterality Asymmetries Body Brain Cogn. 2014, 20, 483–500. [Google Scholar] [CrossRef]
- Siniscalchi, M.; D’Ingeo, S.; Quaranta, A. Lateralized Functions in the Dog Brain. Symmetry 2017, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Casperd, J.M.; Dunbar, R. Asymmetries in the visual processing of emotional cues during agonistic interactions by gelada baboons. Behav. Process. 1996, 37, 57–65. [Google Scholar] [CrossRef]
- Jennings, D. Right-sided bias in fallow deer terminating parallel walks: Evidence for lateralization during a lateral display. Anim. Behav. 2012, 83, 1427–1432. [Google Scholar] [CrossRef]
- Camerlink, I.; Menneson, S.; Turner, S.; Farish, M.; Arnott, G. Lateralization influences contest behaviour in domestic pigs. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Hof, P.R.; Friston, K.; Fan, J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 2013, 521, 3371–3388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.D. How do you feel — now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. The sentient self. Brain Struc. Funct. 2010, 214, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. The Expression of the Emotions in Animals and Man; Reprinted 1965; Chicago University Press: Chicago, IL, USA, 1872. [Google Scholar]
- Schroeter, L.; Schroeter, F.; Jones, K. Do Emotions Represent Values? Dialectica 2015, 69, 357–380. [Google Scholar] [CrossRef]
- Damasio, A.R. Descartes’ Error: Emotion, Reason, and the Human Brain; George Putnam: New York, NY, USA, 1994. [Google Scholar]
- Critchley, H.D.; Wiens, S.; Rotshtein, P.; Öhman, A.; Dolan, R. Neural systems supporting interoceptive awareness. Nat. Neurosci. 2004, 7, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.; Harrison, N.; Wiens, S.; Critchley, H. Modulation of Emotional Appraisal by False Physiological Feedback during fMRI. PLoS ONE 2007, 2, e546. [Google Scholar] [CrossRef]
- Ogino, Y.; Nemoto, H.; Inui, K.; Saito, S.; Kakigi, R.; Goto, F. Inner Experience of Pain: Imagination of Pain While Viewing Images Showing Painful Events Forms Subjective Pain Representation in Human Brain. Cereb. Cortex 2006, 17, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G. Emotions and the right hemisphere: Can new data clarify old models? Neuroscientist 2019, 25, 258–270. [Google Scholar] [CrossRef]
- Craig, A. Forebrain emotional asymmetry: A neuroanatomical basis? Trends Cogn. Sci. 2005, 9, 566–571. [Google Scholar] [CrossRef]
- Hanamori, T.; Kunitake, T.; Kato, K.; Kannan, H. Responses of Neurons in the Insular Cortex to Gustatory, Visceral, and Nociceptive Stimuli in Rats. J. Neurophysiol. 1998, 79, 2535–2545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.-J.; Cassell, M. Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J. Comp. Neurol. 1998, 399, 440–468. [Google Scholar] [CrossRef]
- Nimchinsky, E.A.; Gilissen, E.; Allman, J.M.; Perl, D.P.; Erwin, J.M.; Hof, P.R. A neuronal morphologic type unique to humans and great apes. Proc. Natl. Acad. Sci. USA 1999, 96, 5268–5273. [Google Scholar] [CrossRef] [Green Version]
- Hakeem, A.Y.; Sherwood, C.C.; Bonar, C.J.; Butti, C.; Hof, P.R.; Allman, J.M. Von Economo Neurons in the Elephant Brain. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2009, 292, 242–248. [Google Scholar] [CrossRef]
- Hof, P.R.; Van Der Gucht, E. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2007, 290, 1–31. [Google Scholar] [CrossRef]
- Allman, J.M.; Tetreault, N.A.; Hakeem, A.Y.; Manaye, K.F.; Semendeferi, K.; Erwin, J.M.; Park, S.; Goubert, V.; Hof, P.R. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct. Funct. 2010, 214, 495–517. [Google Scholar] [CrossRef] [Green Version]
- Allman, J.M.; Tetreault, N.A.; Hakeem, A.Y.; Manaye, K.F.; Semendeferi, K.; Erwin, J.M.; Park, S.; Goubert, V.; Hof, P.R. The von Economo neurons in the frontoinsular and anterior cingulate cortex. Ann. N. Y. Acad. Sci. 2011, 1225, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Watkins, K.E.; Paus, T.; Lerch, J.; Zijdenbos, A.; Collins, D.L.; Neelin, P.; Taylor, J.; Worsley, K.; Evans, A. Structural Asymmetries in the Human Brain: A Voxel-based Statistical Analysis of 142 MRI Scans. Cereb. Cortex 2001, 11, 868–877. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gainotti, G. The Difficult Integration between Human and Animal Studies on Emotional Lateralization: A Perspective Article. Brain Sci. 2021, 11, 975. https://doi.org/10.3390/brainsci11080975
Gainotti G. The Difficult Integration between Human and Animal Studies on Emotional Lateralization: A Perspective Article. Brain Sciences. 2021; 11(8):975. https://doi.org/10.3390/brainsci11080975
Chicago/Turabian StyleGainotti, Guido. 2021. "The Difficult Integration between Human and Animal Studies on Emotional Lateralization: A Perspective Article" Brain Sciences 11, no. 8: 975. https://doi.org/10.3390/brainsci11080975
APA StyleGainotti, G. (2021). The Difficult Integration between Human and Animal Studies on Emotional Lateralization: A Perspective Article. Brain Sciences, 11(8), 975. https://doi.org/10.3390/brainsci11080975