Neural Representation of Costs and Rewards in Decision Making
Abstract
:1. Introduction
2. Reward Encoding and Learning
2.1. Dopamine and Model-Free Choices
2.2. Other Brain Areas and Model-Based Choices
2.3. Updating the Reward Value with Learning
3. Cost Encoding and Learning
Updating the Cost Value with Learning
4. What Is the Optimal Strategy for the Task?
4.1. Combined Value Calculation
4.2. Action Selection
5. Conclusions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Thorndike, E.L. Animal Intelligence: Experimental Studies; Macmillan Press: New York, NY, USA, 1912. [Google Scholar] [CrossRef]
- Hassabis, D.; Maguire, E.A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 2007, 11, 299–306. [Google Scholar] [CrossRef]
- Schacter, D.L.; Addis, D.R.; Buckner, R.L. Remembering the past to imagine the future: The prospective brain. Nat. Rev. Neurosci. 2007, 8, 657–661. [Google Scholar] [CrossRef]
- Balleine, B.; Daw, N.D.; O’Doherty, J.P. Multiple forms of value learning and the function of dopamine. Hum. Cap. Health Behav. 2009, 367–387. [Google Scholar] [CrossRef]
- Syed, E.C.; Grima, L.L.; Magill, P.J.; Bogacz, R.; Brown, P.; Walton, M.E. Action initiation shapes mesolimbic dopamine encoding of future rewards. Nat. Neurosci. 2016, 19, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science 1997, 275, 1593–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, R.J.; Dayan, P. Goals and habits in the brain. Neuron 2013, 80, 312–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doll, B.B.; Simon, D.; Daw, N.D. The ubiquity of model-based reinforcement learning. Curr. Opin. Neurobiol. 2012, 22, 1075–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balleine, B.W.; Dickinson, A. The role of incentive learning in instrumental outcome revaluation by sensory-specific satiety. Learn. Behav. 1998, 26, 46–59. [Google Scholar] [CrossRef]
- Niv, Y.; Daw, N.D.; Joel, D.; Dayan, P. Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology 2007, 191, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Berke, J.D. What does dopamine mean? Nat. Neurosci. 2018, 21, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007, 447, 1111–1115. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 2008, 12, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Hunt, L.T. Frontal circuit specialisations for decision making. Eur. J. Neurosci. 2021, 53, 3654–3671. [Google Scholar] [CrossRef]
- Hunt, L.T.; Hayden, B.Y. A distributed, hierarchical and recurrent framework for reward-based choice. Nat. Rev. Neurosci. 2017, 18, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Phillips, P.E.M.; Walton, M.E.; Jhou, T.C. Calculating utility: Preclinical evidence for cost–benefit analysis by mesolimbic dopamine. Psychopharmacology 2007, 191, 483–495. [Google Scholar] [CrossRef]
- Wise, R.A.; Raptis, L. Effects of naloxone and pimozide on initiation and maintenance measures of free feeding. Brain Res. 1986, 368, 62–68. [Google Scholar] [CrossRef]
- Berridge, K.C.; Kringelbach, M. Pleasure systems in the brain. Neuron 2015, 86, 646–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berridge, K.; Robinson, T.E. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 1998, 28, 309–369. [Google Scholar] [CrossRef]
- Chong, T.T.-J.; Bonnelle, V.; Manohar, S.; Veromann, K.-R.; Muhammed, K.; Tofaris, G.; Hu, M.; Husain, M. Dopamine enhances willingness to exert effort for reward in Parkinson’s disease. Cortex 2015, 69, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Rich, E.L.; Stoll, F.M.; Rudebeck, P.H. Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making. Curr. Opin. Neurobiol. 2018, 49, 24–32. [Google Scholar] [CrossRef]
- Ruff, C.; Fehr, E. The neurobiology of rewards and values in social decision making. Nat. Rev. Neurosci. 2014, 15, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Elston, T.W.; Croy, E.; Bilkey, D.K. Communication between the anterior cingulate cortex and ventral tegmental area during a cost-benefit reversal task. Cell Rep. 2019, 26, 2353–2361.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiez, C.; Joseph, J.; Procyk, E. Reward encoding in the monkey anterior cingulate cortex. Cereb. Cortex 2006, 16, 1040–1055. [Google Scholar] [CrossRef] [Green Version]
- Maren, S.; Fanselow, M.S. The amygdala and fear conditioning: Has the nut been cracked? Neuron 1996, 16, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Wise, R.; Spindler, J.; Dewit, H.; Gerberg, G. Neuroleptic-induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science 1978, 201, 262–264. [Google Scholar] [CrossRef]
- Berridge, K.C. From prediction error to incentive salience: Mesolimbic computation of reward motivation. Eur. J. Neurosci. 2012, 35, 1124–1143. [Google Scholar] [CrossRef]
- Howard, C.; Li, H.; Geddes, C.E.; Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron 2017, 93, 1436–1450.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sienkiewicz-Jarosz, H.; Scinska, A.; Kuran, W.; Ryglewicz, D.; Rogowski, A.; Wrobel, E.; Korkosz, A.; Kukwa, A.; Kostowski, W.; Bienkowski, P. Taste responses in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2005, 76, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Callesen, M.B.; Scheel-Krüger, J.; Kringelbach, M.L.; Møller, A. A systematic review of impulse control disorders in Parkinson’s disease. J. Park. Dis. 2013, 3, 105–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drew, D.S.; Muhammed, K.; Baig, F.; Kelly, M.; Saleh, Y.; Sarangmat, N.; Okai, D.; Hu, M.; Manohar, S.; Husain, M. Dopamine and reward hypersensitivity in Parkinson’s disease with impulse control disorder. Brain 2020, 143, 2502–2518. [Google Scholar] [CrossRef] [PubMed]
- Politis, M.; Loane, C.; Wu, K.; O’Sullivan, S.S.; Woodhead, Z.; Kiferle, L.; Lawrence, A.D.; Lees, A.J.; Piccini, P. Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain 2013, 136, 400–411. [Google Scholar] [CrossRef] [Green Version]
- Castro, D.; Berridge, K. Advances in the neurobiological bases for food ‘liking’ versus ‘wanting’. Physiol. Behav. 2014, 136, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Mirenowicz, J.; Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol. 1994, 72, 1024–1027. [Google Scholar] [CrossRef]
- Tobler, P.N.; Fiorillo, C.D.; Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 2005, 307, 1642–1645. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, C.D.; Tobler, P.N.; Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 2003, 299, 1898–1902. [Google Scholar] [CrossRef] [Green Version]
- Sulzer, D. How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 2011, 69, 628–649. [Google Scholar] [CrossRef] [Green Version]
- Dabney, W.; Kurth-Nelson, Z.; Uchida, N.; Starkweather, C.K.; Hassabis, D.; Munos, R.; Botvinick, M. A distributional code for value in dopamine-based reinforcement learning. Nature 2020, 577, 671–675. [Google Scholar] [CrossRef]
- Strecker, R.E.; Steinfels, G.F.; Jacobs, B.L. Dopaminergic unit activity in freely moving cats: Lack of relationship to feeding, satiety, and glucose injections. Brain Res. 1983, 260, 317–321. [Google Scholar] [CrossRef]
- Cohen, J.Y.; Amoroso, M.W.; Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. Elife 2015, 4, e06346. [Google Scholar] [CrossRef]
- Brown, M.T.C.; Tan, K.R.; O’Connor, E.C.; Nikonenko, I.; Muller, D.; Lüscher, C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 2012, 492, 452–456. [Google Scholar] [CrossRef]
- Yamanaka, K.; Hori, Y.; Minamimoto, T.; Yamada, H.; Matsumoto, N.; Enomoto, K.; Aosaki, T.; Graybiel, A.M.; Kimura, M. Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events. J. Neural Transm. 2017, 125, 501–513. [Google Scholar] [CrossRef]
- Gershman, S.J. Dopamine ramps are a consequence of reward prediction errors. Neural Comput. 2014, 26, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Mikhael, J.G.; Kim, H.R.; Uchida, N.; Gershman, S.J. Ramping and state uncertainty in the dopamine signal. bioRxiv 2019, 805366. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.G.R.; Malik, A.N.; Mikhael, J.G.; Bech, P.; Tsutsui-Kimura, I.; Sun, F.; Zhang, Y.; Li, Y.; Watabe-Uchida, M.; Gershman, S.J.; et al. A unified framework for dopamine signals across timescales. bioRxiv 2019. [Google Scholar] [CrossRef]
- Howe, M.W.; Tierney, P.L.; Sandberg, S.G.; Phillips, P.E.; Graybiel, A.M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 2013, 500, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Toyoshima, O.; Kunimatsu, J.; Yamada, H.; Matsumoto, M. Tonic firing mode of midbrain dopa- mine neurons continuously tracks reward values changing moment-by-moment. bioRxiv 2020. [Google Scholar] [CrossRef]
- Russo, S.J.; Nestler, E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013, 14, 609–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, J.O.; Walton, M.E.; Phillips, P.E.M. Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat. Neurosci. 2009, 13, 25–27. [Google Scholar] [CrossRef]
- Humphries, M.D.; Prescott, T. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog. Neurobiol. 2010, 90, 385–417. [Google Scholar] [CrossRef] [PubMed]
- Akam, T.; Walton, M. What is dopamine doing in model-based reinforcement learning? Curr. Opin. Behav. Sci. 2021, 38, 74–82. [Google Scholar] [CrossRef]
- Daw, N.D.; Gershman, S.J.; Seymour, B.; Dayan, P.; Dolan, R.J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 2011, 69, 1204–1215. [Google Scholar] [CrossRef] [Green Version]
- Langdon, A.J.; Sharpe, M.J.; Schoenbaum, G.; Niv, Y. Model-based predictions for dopamine. Curr. Opin. Neurobiol. 2018, 49, 1–7. [Google Scholar] [CrossRef]
- Roberts, A.C.; Christopoulos, G.; Car, J.; Soh, C.-K.; Lu, M. Psycho-biological factors associated with underground spaces: What can the new era of cognitive neuroscience offer to their study? Tunn. Undergr. Space Technol. 2016, 55, 118–134. [Google Scholar] [CrossRef]
- Laubach, M.; Amarante, L.; Swanson, T.K.; White, S.R. What, if anything, is rodent prefrontal cortex? eNeuro 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.D.; Gottfried, J.A.; Tobler, P.; Kahnt, T. Identity-specific coding of future rewards in the human orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 2015, 112, 5195–5200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolls, E.; Baylis, L. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J. Neurosci. 1994, 14, 5437–5452. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.; Critchley, H.; Browning, A.S.; Hernadi, I.; Lenard, L. Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. J. Neurosci. 1999, 19, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- Vassena, E.; Silvetti, M.; Boehler, C.N.; Achten, E.; Fias, W.; Verguts, T. Overlapping neural systems represent cognitive effort and reward anticipation. PLoS ONE 2014, 9, e91008. [Google Scholar] [CrossRef]
- Croxson, P.; Walton, M.E.; O’Reilly, J.; Behrens, T.E.J.; Rushworth, M.F.S. Effort-based cost-benefit valuation and the human brain. J. Neurosci. 2009, 29, 4531–4541. [Google Scholar] [CrossRef] [PubMed]
- Öngür, D.; Ferry, A.T.; Price, J.L. Architectonic subdivision of the human orbital and medial prefrontal cortex. J. Comp. Neurol. 2003, 460, 425–449. [Google Scholar] [CrossRef]
- Gläscher, J.; Hampton, A.N.; O’Doherty, J.P. Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cereb. Cortex 2008, 19, 483–495. [Google Scholar] [CrossRef]
- Kable, J.W.; Glimcher, P.W. The neurobiology of decision: Consensus and controversy. Neuron 2009, 63, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Kahnt, T.; Heinzle, J.; Park, S.; Haynes, J.-D. Decoding different roles for vmPFC and dlPFC in multi-attribute decision making. Neuroimage 2011, 56, 709–715. [Google Scholar] [CrossRef]
- Noonan, M.P.; Walton, M.E.; Behrens, T.E.J.; Sallet, J.; Buckley, M.J.; Rushworth, M. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 2010, 107, 20547–20552. [Google Scholar] [CrossRef] [Green Version]
- Monosov, I.E.; Hikosaka, O. Regionally distinct processing of rewards and punishments by the primate ventromedial prefrontal cortex. J. Neurosci. 2012, 32, 10318–10330. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.K.; Batchelor, H.M.; Liu, B.; Khanna, A.; Morales, M.; Schoenbaum, G. Dopamine neurons respond to errors in the prediction of sensory features of expected rewards. Neuron 2017, 95, 1395–1405.e3. [Google Scholar] [CrossRef] [Green Version]
- Horvitz, J.C.; Stewart, T.; Jacobs, B.L. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res. 1997, 759, 251–258. [Google Scholar] [CrossRef]
- Engelhard, B.; Finkelstein, J.; Cox, J.; Fleming, W.; Jang, H.J.; Ornelas, S.; Koay, S.A.; Thiberge, S.Y.; Daw, N.D.; Tank, D.W.; et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 2019, 570, 509–513. [Google Scholar] [CrossRef]
- Grohn, J.; Schüffelgen, U.; Neubert, F.-X.; Bongioanni, A.; Verhagen, L.; Sallet, J.; Kolling, N.; Rushworth, M.F.S. Multiple systems in macaques for tracking prediction errors and other types of surprise. PLoS Biol. 2020, 18, e3000899. [Google Scholar] [CrossRef]
- Lee, H.J.; Youn, J.M.; Mary, J.O.; Gallagher, M.; Holland, P.C. Role of substantia nigra—Amygdala connections in surprise-induced enhancement of attention. J. Neurosci. 2006, 26, 6077–6081. [Google Scholar] [CrossRef]
- Williams, G.V.; Goldman-Rakic, P.S. Modulation of memory fields by dopamine Dl receptors in prefrontal cortex. Nature 1995, 376, 572–575. [Google Scholar] [CrossRef]
- Morrens, J.; Aydin, C.; van Rensburg, A.J.; Rabell, J.E.; Haesler, S. Cue-evoked dopamine promotes conditioned responding during learning. Neuron 2020, 106, 142–153.e7. [Google Scholar] [CrossRef]
- Hitchcott, P.K.; Quinn, J.J.; Taylor, J.R. Bidirectional modulation of goal-directed actions by prefrontal cortical dopamine. Cereb. Cortex 2007, 17, 2820–2827. [Google Scholar] [CrossRef] [Green Version]
- Inzlicht, M.; Shenhav, A.; Olivola, C. The effort paradox: Effort is both costly and valued. Trends Cogn. Sci. 2017, 22, 337–349. [Google Scholar] [CrossRef]
- Inglis, I.; Forkman, B.; Lazarus, J. Free food or earned food? A review and fuzzy model of contrafreeloading. Anim. Behav. 1997, 53, 1171–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlezon, W.A.; Thomas, M.J. Biological substrates of reward and aversion: A nucleus accumbens activity hypothesis. Neuropharmacology 2009, 56, 122–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamone, J.D.; Correa, M.; Farrar, A.; Mingote, S.M. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Neuropharmacology 2007, 191, 461–482. [Google Scholar] [CrossRef] [PubMed]
- Monosov, I.E. Anterior cingulate is a source of valence-specific information about value and uncertainty. Nat. Commun. 2017, 8, 134. [Google Scholar] [CrossRef] [Green Version]
- Kimmel, D.L.; Elsayed, G.F.; Cunningham, J.P.; Newsome, W.T. Value and choice as separable and stable representations in orbitofrontal cortex. Nat. Commun. 2020, 11, 3466. [Google Scholar] [CrossRef]
- Stalnaker, T.A.; Cooch, N.K.; Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 2015, 18, 620–627. [Google Scholar] [CrossRef]
- Wilson, R.C.; Takahashi, Y.K.; Schoenbaum, G.; Niv, Y. Orbitofrontal cortex as a cognitive map of task space. Neuron 2014, 81, 267–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuck, N.W.; Cai, M.; Wilson, R.C.; Niv, Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 2016, 91, 1402–1412. [Google Scholar] [CrossRef] [Green Version]
- Wikenheiser, A.M.; Schoenbaum, G. Over the river, through the woods: Cognitive maps in the hippocampus and orbitofrontal cortex. Nat. Rev. Neurosci. 2016, 17, 513–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rushworth, M.F.S.; Behrens, T.E.J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 2008, 11, 389–397. [Google Scholar] [CrossRef]
- Rudebeck, P.H.E.; Walton, M.; Smyth, A.N.; Bannerman, D.; Rushworth, M. Separate neural pathways process different decision costs. Nat. Neurosci. 2006, 9, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Walton, M.E.; Bannerman, D.; Alterescu, K.; Rushworth, M. Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J. Neurosci. 2003, 23, 6475–6479. [Google Scholar] [CrossRef]
- Hu, Y.; van Wingerden, M.; Sellitto, M.; Schäble, S.; Kalenscher, T. Anterior cingulate cortex lesions abolish budget effects on effort-based decision-making in rat consumers. J. Neurosci. 2021, 41, 4448–4460. [Google Scholar] [CrossRef]
- Hillman, K.L.; Bilkey, D.K. Neural encoding of competitive effort in the anterior cingulate cortex. Nat. Neurosci. 2012, 15, 1290–1297. [Google Scholar] [CrossRef]
- Fatahi, Z.; Ghorbani, A.; Zibaii, M.I.; Haghparast, A. Neural synchronization between the anterior cingulate and orbitofrontal cortices during effort-based decision making. Neurobiol. Learn. Mem. 2020, 175, 107320. [Google Scholar] [CrossRef]
- Tindell, A.J.; Smith, K.S.; Peciña, S.; Berridge, K.; Aldridge, J.W. Ventral pallidum firing codes hedonic reward: When a bad taste turns good. J. Neurophysiol. 2006, 96, 2399–2409. [Google Scholar] [CrossRef] [Green Version]
- Walton, M.E.; Bouret, S. What is the relationship between dopamine and effort? Trends Neurosci. 2019, 42, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollon, N.G.; Arnold, M.M.; Gan, J.O.; Walton, M.E.; Phillips, P.E.M. Dopamine-associated cached values are not sufficient as the basis for action selection. Proc. Natl. Acad. Sci. USA 2014, 111, 18357–18362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquereau, B.; Turner, R.S. Limited encoding of effort by dopamine neurons in a cost-benefit trade-off task. J. Neurosci. 2013, 33, 8288–8300. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.; Bogacz, R. Learning the payoffs and costs of actions. PLoS Comput. Biol. 2019, 15, e1006285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omelchenko, N.; Bell, R.; Sesack, S.R. Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur. J. Neurosci. 2009, 30, 1239–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.; Jhou, T.C.; Smith, M.; Saleem, K.S.; Hikosaka, O. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 2011, 31, 11457–11471. [Google Scholar] [CrossRef]
- Li, H.; Vento, P.J.; Carrero, J.P.; Pullmann, D.; Chao, Y.S.; Eid, M.; Jhou, T.C. Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron 2019, 104, 987–999. [Google Scholar] [CrossRef]
- Collins, A.G.E.; Frank, M.J. Opponent actor learning (OpAL): Modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 2014, 121, 337–366. [Google Scholar] [CrossRef] [Green Version]
- Hauser, T.U.; Eldar, E.; Dolan, R.J. Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proc. Natl. Acad. Sci. USA 2017, 114, E7395–E7404. [Google Scholar] [CrossRef] [Green Version]
- Lammel, S.; Ion, D.I.; Roeper, J.; Malenka, R.C. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 2011, 70, 855–862. [Google Scholar] [CrossRef] [Green Version]
- De Jong, J.; Afjei, S.A.; Dorocic, I.P.; Peck, J.R.; Liu, C.; Kim, C.K.; Tian, L.; Deisseroth, K.; Lammel, S. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 2019, 101, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Mirenowicz, J.; Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 1996, 379, 449–451. [Google Scholar] [CrossRef]
- Brischoux, F.; Chakraborty, S.; Brierley, D.; Ungless, M.A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA 2009, 106, 4894–4899. [Google Scholar] [CrossRef] [Green Version]
- Abercrombie, E.D.; Keefe, K.A.; DiFrischia, D.S.; Zigmond, M.J. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 1989, 52, 1655–1658. [Google Scholar] [CrossRef]
- Kennerley, S.W.; Behrens, T.E.J.; Wallis, J. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat. Neurosci. 2011, 14, 1581–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, H.; Lee, D. Behavioral and neural changes after gains and losses of conditioned reinforcers. J. Neurosci. 2009, 29, 3627–3641. [Google Scholar] [CrossRef]
- Kennerley, S.W.E.; Walton, M.; Behrens, T.E.J.; Buckley, M.J.; Rushworth, M. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 2006, 9, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A.; Damasio, A.R.; Damasio, H.; Anderson, S. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994, 50, 7–15. [Google Scholar] [CrossRef]
- Monosov, I.E.; Haber, S.N.; Leuthardt, E.C.; Jezzini, A. Anterior cingulate cortex and the control of dynamic behavior in primates. Curr. Biol. 2020, 30, R1442–R1454. [Google Scholar] [CrossRef]
- Niv, Y. Learning task-state representations. Nat. Neurosci. 2019, 22, 1544–1553. [Google Scholar] [CrossRef] [PubMed]
- Hiser, J.; Koenigs, M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision 791 making, social cognition, and psychopathology. biological psychiatry. Biol. Psychiatry 2018, 83, 638–647. [Google Scholar] [CrossRef]
- Pujara, M.S.; Philippi, C.L.; Motzkin, J.C.; Baskaya, M.K.; Koenigs, M. Ventromedial prefrontal cortex damage is associated with decreased ventral striatum volume and response to reward. J. Neurosci. 2016, 36, 5047–5054. [Google Scholar] [CrossRef] [Green Version]
- Atlas, L.Y.; Wager, T.D. A meta-analysis of brain mechanisms of placebo analgesia: Consistent findings and unanswered questions. Organotypic Models Drug Dev. 2014, 225, 37–69. [Google Scholar] [CrossRef]
- Eippert, F.; Bingel, U.; Schoell, E.D.; Yacubian, J.; Klinger, R.; Lorenz, J.; Büchel, C. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 2009, 63, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Dunn, B.D.; Dalgleish, T.; Lawrence, A.D. The somatic marker hypothesis: A critical evaluation. Neurosci. Biobehav. Rev. 2006, 30, 239–271. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.D.; Galton, H.C.; Morgan, R.; Evans, D.; Oliver, C.; Meyer, M.; Cusack, R.; Lawrence, A.D.; Dalgleish, T. Listening to your heart. Psychol. Sci. 2010, 21, 1835–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figlewicz, D.; Evans, S.; Murphy, J.; Hoen, M.; Baskin, D. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 2003, 964, 107–115. [Google Scholar] [CrossRef]
- Friend, D.; Kravitz, A.V. Working together: Basal ganglia pathways in action selection. Trends Neurosci. 2014, 37, 301–303. [Google Scholar] [CrossRef] [Green Version]
- Calabresi, P.; Picconi, B.; Tozzi, A.; Ghiglieri, V.; Di Filippo, M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci. 2014, 17, 1022–1030. [Google Scholar] [CrossRef]
- Roesch, M.R.; Taylor, A.R.; Schoenbaum, G. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron 2006, 51, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Voon, V.; Fernagut, P.-O.; Wickens, J.; Baunez, C.; Rodriguez, M.; Pavon, N.; Juncos, J.L.; Obeso, J.A.; Bezard, E. Chronic dopaminergic stimulation in Parkinson’s disease: From dyskinesias to impulse control disorders. Lancet Neurol. 2009, 8, 1140–1149. [Google Scholar] [CrossRef]
- Vonsattel, J.-P.; Myers, R.H.; Stevens, T.J.; Ferrante, R.J.; Bird, E.D.; Richardson, E.P., Jr. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 1985, 44, 559–577. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y. Neural Representation of Costs and Rewards in Decision Making. Brain Sci. 2021, 11, 1096. https://doi.org/10.3390/brainsci11081096
Chen Y. Neural Representation of Costs and Rewards in Decision Making. Brain Sciences. 2021; 11(8):1096. https://doi.org/10.3390/brainsci11081096
Chicago/Turabian StyleChen, Yixuan. 2021. "Neural Representation of Costs and Rewards in Decision Making" Brain Sciences 11, no. 8: 1096. https://doi.org/10.3390/brainsci11081096
APA StyleChen, Y. (2021). Neural Representation of Costs and Rewards in Decision Making. Brain Sciences, 11(8), 1096. https://doi.org/10.3390/brainsci11081096