Building Embodied Spaces for Spatial Memory Neurorehabilitation with Virtual Reality in Normal and Pathological Aging
Abstract
:1. Towards an Embodied Space Approach in Spatial Neurorehabilitation
1.1. Virtual Bodily Representation
1.2. Spatial Affordances
2. Virtual Enactment Effect
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Steel, A.; Robertson, C.E.; Taube, J.S. Current Promises and Limitations of Combined Virtual Reality and Functional Magnetic Resonance Imaging Research in Humans: A Commentary on Huffman and Ekstrom (2019). J. Cogn. Neurosci. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chrastil, E.R.; Warren, W.H. Active and passive contributions to spatial learning. Psychon. Bull. Rev. 2012, 19, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Poulter, S.; Hartley, T.; Lever, C. The Neurobiology of Mammalian Navigation. Curr. Biol. 2018, 28, R1023–R1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, D.; Serino, S.; Tuena, C.; Pedroli, E.; Dakanalis, A.; Cipresso, P.; Riva, G. Egocentric and allocentric spatial reference frames in aging: A systematic review. Neurosci. Biobehav. Rev. 2017, 80, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Tuena, C.; Mancuso, V.; Stramba-Badiale, C.; Pedroli, E.; Stramba-Badiale, M.; Riva, G.; Repetto, C. Egocentric and Allocentric Spatial Memory in Mild Cognitive Impairment with Real-World and Virtual Navigation Tasks: A Systematic Review. J. Alzheimer’s Dis. 2021, 79, 95–116. [Google Scholar] [CrossRef]
- Serino, S.; Cipresso, P.; Morganti, F.; Riva, G. The role of egocentric and allocentric abilities in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2014, 16, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Lowry, E.; Puthusseryppady, V.; Coughlan, G.; Jeffs, S.; Hornberger, M. Path Integration Changes as a Cognitive Marker for Vascular Cognitive Impairment?—A Pilot Study. Front. Hum. Neurosci. 2020, 14, 131. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.B.; Linse, K.; Schönfeld, R.; Brown, S.; Koch, R.; Reichmann, H.; Leplow, B.; Storch, A. Spatial learning deficits in Parkinson’s disease with and without mild cognitive impairment. Parkinsonism Relat. Disord. 2017, 36, 83–88. [Google Scholar] [CrossRef]
- Tu, S.; Spiers, H.J.; Hodges, J.R.; Piguet, O.; Hornberger, M. Egocentric versus Allocentric Spatial Memory in Behavioral Variant Frontotemporal Dementia and Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 59, 883–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuehn, E.; Perez-Lopez, M.B.; Diersch, N.; Döhler, J.; Wolbers, T.; Riemer, M. Embodiment in the aging mind. Neurosci. Biobehav. Rev. 2017, 86, 207–225. [Google Scholar] [CrossRef]
- Vallet, G.T. Embodied cognition of aging. Front. Psychol. 2015, 5, 463. [Google Scholar] [CrossRef] [Green Version]
- García-Betances, R.I.; Arredondo Waldmeyer, M.T.; Fico, G.; Cabrera-Umpiérrez, M.F. A succinct overview of virtual reality technology use in Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, O.; Pang, Y.; Kim, J.H. The effectiveness of virtual reality for people with mild cognitive impairment or dementia: A meta-analysis. BMC Psychiatry 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repetto, C.; Serino, S.; Macedonia, M.; Riva, G. Virtual Reality as an Embodied Tool to Enhance Episodic Memory in Elderly. Front. Psychol. 2016, 7, 1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozio, N.; Maggioni, E.; Pittera, D.; Gallace, A.; Obrist, M. May I Smell Your Attention: Exploration of Smell and Sound for Visuospatial Attention in Virtual Reality. Front. Psychol. 2021, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cogné, M.; Taillade, M.; N’Kaoua, B.; Tarruella, A.; Klinger, E.; Larrue, F.; Sauzéon, H.; Joseph, P.A.; Sorita, E. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Ann. Phys. Rehabil. Med. 2017, 60, 164–176. [Google Scholar] [CrossRef]
- Cogné, M.; Auriacombe, S.; Vasa, L.; Tison, F.; Klinger, E.; Sauzéon, H.; Joseph, P.; N’Kaoua, B. Are Visual Cues Helpful for Virtual Spatial Navigation and Spatial Memory in Patients With Mild Cognitive Impairment or Alzheimer’s Disease? Neuropsychology 2018, 32, 385–400. [Google Scholar] [CrossRef]
- Doeller, C.F.; King, J.A.; Burgess, N. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc. Natl. Acad. Sci. USA 2008, 105, 5915–5920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montana, J.I.; Tuena, C.; Serino, S.; Cipresso, P.; Riva, G. Neurorehabilitation of Spatial Memory Using Virtual Environments: A Systematic Review. J. Clin. Med. 2019, 8, 1516. [Google Scholar] [CrossRef] [Green Version]
- Clay, F.; Howett, D.; FitzGerald, J.; Fletcher, P.; Chan, D.; Price, A. Use of Immersive Virtual Reality in the Assessment and Treatment of Alzheimer’s Disease: A Systematic Review. J. Alzheimer’s Dis. 2020, 75, 23–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claessen, M.H.G.; van der Ham, I.J.M.; Jagersma, E.; Visser-Meily, J.M.A. Navigation strategy training using virtual reality in six chronic stroke patients: A novel and explorative approach to the rehabilitation of navigation impairment. Neuropsychol. Rehabil. 2015, 37–41. [Google Scholar] [CrossRef]
- Faria, A.L.; Andrade, A.; Soares, L.; Bermúdez, S. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients. J. Neuroeng. Rehabil. 2016, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serino, S.; Pedroli, E.; Tuena, C.; De Leo, G.; Stramba-Badiale, M.; Goulene, K.; Mariotti, N.G.; Riva, G. A Novel Virtual Reality-Based Training Protocol for the Enhancement of the “ Mental Frame Syncing ” in Individuals with Alzheimer’ s Disease: A Development-of-Concept Trial. Front. Aging Neurosci. 2017, 9, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.; Moussavi, Z. Neurocognitive Treatment for a Patient with Alzheimer’ s Disease Using a Virtual Reality Navigational Environment. J. Exp. Neurosci. 2016, 10, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H. Effects of virtual reality-based spatial cognitive training on hippocampal function of older adults with mild cognitive impairment. Int. Psychogeriatrics 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Huffman, D.J.; Ekstrom, A.D. A Modality-Independent Network Underlies the Retrieval of Large-Scale Spatial Environments in the Human Brain. Neuron 2019, 104, 611–622.e7. [Google Scholar] [CrossRef]
- Wolbers, T.; Klatzky, R.L.; Loomis, J.M.; Wutte, M.G.; Giudice, N.A. Modality-independent coding of spatial layout in the human brain. Curr. Biol. 2011, 21, 984–989. [Google Scholar] [CrossRef] [Green Version]
- Taube, J.S.; Valerio, S.; Yoder, R.M. Is Navigation in Virtual Reality with fMRI Really Navigation? J. Cogn. Neurosci. 2013, 25, 1008–1019. [Google Scholar] [CrossRef]
- Coello, Y.; Iachini, T. Embodied perception of objects and people in space. In Perceptual and Emotional Embodiment: Foundations of Embodied Cognition; Coello, Y., Fischer, M.H., Eds.; Routledge: Abingdon, UK, 2015; pp. 198–220. [Google Scholar]
- König, S.U.; Goeke, C.; Meilinger, T.; König, P. Are allocentric spatial reference frames compatible with theories of Enactivism? Psychol. Res. 2019, 83, 498–513. [Google Scholar] [CrossRef]
- Lhuillier, S.; Gyselinck, V.; Piolino, P.; Nicolas, S. “Walk this way”: Specific contributions of active walking to the encoding of metric properties during spatial learning. Psychol. Res. 2020. [Google Scholar] [CrossRef]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton Mifflin: Boston, MA, USA, 1979. [Google Scholar]
- Barsalou, L.W. Grounded cognition. Annu. Rev. Psychol. 2008, 59, 617–645. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, K.; Post, L. Mechanisms of embodiment. Front. Psychol. 2015, 6, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skulmowski, A.; Rey, G.D. Embodied learning: Introducing a taxonomy based on bodily engagement and task integration. Cogn. Res. Princ. Implic. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Körner, A.; Topolinski, S.; Strack, F. Routes to embodiment. Front. Psychol. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohbot, V.D.; Copara, M.S.; Gotman, J.; Ekstrom, A.D. Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Hejtmanek, L.; Starrett, M.; Ferrer, E.; Ekstrom, A.D. How much of what we learn in virtual reality transfers to real-world navigation? Multisens. Res. 2020, 33, 479–503. [Google Scholar] [CrossRef] [PubMed]
- Tuena, C.; Serino, S.; Dutriaux, L.; Riva, G.; Piolino, P. Virtual Enactment Effect on Memory in Young and Aged Populations: A Systematic Review. J. Clin. Med. 2019, 8, 620. [Google Scholar] [CrossRef] [PubMed]
- Tuena, C.; Serino, S.; Gaston-Bellegarde, A.; Orriols, E.; Makowski, D.; Riva, G.; Piolino, P. How virtual embodiment affects episodic memory functioning: A proof-of-concept study. Annu. Rev. Cybertherapy Telemed. 2017, 98–103. [Google Scholar]
- Riva, G.; Castelnuovo, G.; Mantovani, F. Transformation of flow in rehabilitation: The role of advanced communication technologies. Behav. Res. Methods 2006, 38, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Huffman, D.J.; Ekstrom, A.D. An Important Step toward Understanding the Role of Body-based Cues on Human Spatial Memory for Large-Scale Environments. J. Cogn. Neurosci. 2020, 1–13. [Google Scholar] [CrossRef]
- Glenberg, A.M.; Hayes, J. Contribution of embodiment to solving the riddle of infantile amnesia. Front. Psychol. 2016, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Arzy, S.; Schacter, D.L. Self-Agency and Self-Ownership in Cognitive Mapping. Trends Cogn. Sci. 2019, 23, 476–487. [Google Scholar] [CrossRef]
- Plancher, G.; Tirard, A.; Gyselinck, V.; Nicolas, S.; Piolino, P. Using virtual reality to characterize episodic memory profiles in amnestic mild cognitive impairment and Alzheimer’s disease: Influence of active and passive encoding. Neuropsychologia 2012, 50, 592–602. [Google Scholar] [CrossRef]
- Julian, J.B.; Keinath, A.T.; Marchette, S.A.; Epstein, R.A. The Neurocognitive Basis of Spatial Reorientation. Curr. Biol. 2018, 28, R1059–R1073. [Google Scholar] [CrossRef] [Green Version]
- Ruotolo, F.; Claessen, M.H.G.; van der Ham, I.J.M. Putting emotions in routes: The influence of emotionally laden landmarks on spatial memory. Psychol. Res. 2018, 83, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.J. The Emotion Probe. Am. Psychol. Assoc. 1995, 50, 372–385. [Google Scholar] [CrossRef]
- Piccardi, L.; Guariglia, P.; Nori, R.; Palmiero, M. The role of emotional landmarks in embodied and not-embodied tasks. Brain Sci. 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Morganti, F. Enacting space in virtual reality: A comparison between Money’s Road Map test and its virtual version. Front. Psychol. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, S.U.; Clay, V.; Nolte, D.; Duesberg, L.; Kuske, N.; König, P. Learning of spatial properties of a large-scale virtual city with an interactive map. Front. Hum. Neurosci. 2019, 13, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Serino, S.; Morganti, F.; Di Stefano, F.; Riva, G. Detecting early egocentric and allocentric impairments deficits in Alzheimer’s disease: An experimental study with virtual reality. Front. Aging Neurosci. 2015, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Serino, S.; Riva, G. How different spatial representations interact in virtual environments: The role of mental frame syncing. Cogn. Process. 2015, 16, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Engelkamp, J. Memory for Actions; Psychology Press/Taylor & Francis: Hove, UK, 1998. [Google Scholar]
- Madan, C.R.; Singhal, A. Using actions to enhance memory: Effects of enactment, gestures, and exercise on human memory. Front. Psychol. 2012, 3, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ref. | Sample | Idiothetic Cues | Environmental Cues | Symbolic Cues | Outcome |
---|---|---|---|---|---|
[21] | CS | None (2D VR ‘passive’ navigation) | Virtual city with no explicit instruction to use environmental cues; ‘paper and pencil’ survey and route knowledge strategy learning | ‘Paper and pencil’ maps and arrows | Results indicated that only one patient clearly improved navigation and that four correctly used the impaired navigational strategy |
[22] | CS | Motor commands (2D VR with joystick) | Virtual city with no explicit instruction to use environmental cues | Map, arrows, planning list | Findings indicated that the training proposed was able to improve a wide range of cognitive functions in the virtual compared to the control group |
[23] | AD | Motor commands (2D VR with joypad) | Virtual city with no explicit instruction to use environmental cues | Interactive map, directional arrows | The spatial training improved visuospatial learning test in AD |
[24] | AD | Motor commands, vestibular and proprioceptive information (visor with wheelchair) | Target searching task in a virtual building | ‘X’ was the target location in the building | Authors found decreased navigation errors in a single patient with AD |
[25] | aMCI | Motor commands (2D VR with joystick) | Allocentric boundary-based navigation strategy; no egocentric landmark strategy | Visual feedback for correct responses | The training led to improvements in aMCI patients in episodic and spatial memory tests |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuena, C.; Serino, S.; Pedroli, E.; Stramba-Badiale, M.; Riva, G.; Repetto, C. Building Embodied Spaces for Spatial Memory Neurorehabilitation with Virtual Reality in Normal and Pathological Aging. Brain Sci. 2021, 11, 1067. https://doi.org/10.3390/brainsci11081067
Tuena C, Serino S, Pedroli E, Stramba-Badiale M, Riva G, Repetto C. Building Embodied Spaces for Spatial Memory Neurorehabilitation with Virtual Reality in Normal and Pathological Aging. Brain Sciences. 2021; 11(8):1067. https://doi.org/10.3390/brainsci11081067
Chicago/Turabian StyleTuena, Cosimo, Silvia Serino, Elisa Pedroli, Marco Stramba-Badiale, Giuseppe Riva, and Claudia Repetto. 2021. "Building Embodied Spaces for Spatial Memory Neurorehabilitation with Virtual Reality in Normal and Pathological Aging" Brain Sciences 11, no. 8: 1067. https://doi.org/10.3390/brainsci11081067
APA StyleTuena, C., Serino, S., Pedroli, E., Stramba-Badiale, M., Riva, G., & Repetto, C. (2021). Building Embodied Spaces for Spatial Memory Neurorehabilitation with Virtual Reality in Normal and Pathological Aging. Brain Sciences, 11(8), 1067. https://doi.org/10.3390/brainsci11081067