Cognitive Effects of Montelukast: A Pharmaco-EEG Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethics
2.3. Study Design and Testing Procedure
2.4. Cognitive Tasks during the EEG
2.5. Electrophysiological Recordings
2.6. Signal Preprocessing
2.7. Quantitative EEG Features
2.8. Neuropsychology
- German version of the adverse events profile of [45]; translation was performed in 2004 by Hoppe/Helmstaedter. This instrument was used in order to systematically record adverse events.
- EpiTrack [46] was chosen in order to have a rapid assessment of various cognitive functions. EpiTrack includes the following subscales:
- Interference: measures response inhibition;
- Connecting numbers: measures visuo-motor speed;
- Connecting numbers and letters: measures mental flexibility;
- Maze test: measures visuo-motor anticipation;
- Verbal fluency: measures rapid lexical access;
- Inverted digit span: measures working memory.
- Verbal learning and memory test [47] was used to measure verbal memory.
- Hospital anxiety and depression scale [48] was used to measure mood and anxiety.
- Barratt impulsiveness scale [49] was used to measure impulsiveness and aggression.
- Clinical personality scales (FPZ) [50] was used to measure psychiatric effects.
- TAP (Thematischer Apperzeptionstest) [51] was used as a test for attentional performance.
2.9. Statistics
3. Results
3.1. Patient Demographics
3.2. Behavioral Within-Subject Contrasts
3.2.1. Neuropsychology
3.2.2. Cognitive Tasks during the EEG
3.3. Within-Subject Cluster-Based Permutation Tests for EEG Features
4. Discussion
Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Kuźma, E.; Lourida, I.; Moore, S.F.; Levine, D.A.; Ukoumunne, O.C.; Llewellyn, D.J. Stroke and dementia risk: A systematic review and meta-analysis. Alzheimers Dement. J. Alzheimers Assoc. 2018, 14, 1416–1426. [Google Scholar] [CrossRef] [Green Version]
- Beagle, A.J.; Darwish, S.M.; Ranasinghe, K.G.; La, A.L.; Karageorgiou, E.; Vossel, K.A. Relative Incidence of Seizures and Myoclonus in Alzheimer’s Disease, Dementia with Lewy Bodies, and Frontotemporal Dementia. J. Alzheimers Dis. JAD 2017, 60, 211–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vossel, K.A.; Tartaglia, M.C.; Nygaard, H.B.; Zeman, A.Z.; Miller, B.L. Epileptic activity in Alzheimer’s disease: Causes and clinical relevance. Lancet Neurol. 2017, 16, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci. 2009, 11, 111–128. [Google Scholar] [PubMed]
- Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef]
- Wecker, N.S.; Kramer, J.H.; Wisniewski, A.; Delis, D.C.; Kaplan, E. Age effects on executive ability. Neuropsychology 2000, 14, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Bank, W. World Population Ageing 2019; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Irani, F.; Barbone, J.M.; Beausoleil, J.; Gerald, L. Is asthma associated with cognitive impairments? A meta-analytic review. J. Clin. Exp. Neuropsychol. 2017, 39, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-H.; Wu, B.-R.; Su, C.-H.; Liao, W.-C.; Muo, C.-H.; Hsia, T.-C.; Kao, C.-H. Adult asthma increases dementia risk: A nationwide cohort study. J. Epidemiol Community Health 2015, 69, 123–128. [Google Scholar] [CrossRef]
- Michael, J.; Marschallinger, J.; Aigner, L. The leukotriene signaling pathway: A druggable target in Alzheimer’s disease. Drug Discov. Today 2019, 24, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.; Unger, M.S.; Poupardin, R.; Schernthaner, P.; Mrowetz, H.; Attems, J.; Aigner, L. Microglia depletion diminishes key elements of the leukotriene pathway in the brain of Alzheimer’s Disease mice. Acta Neuropathol. Commun. 2020, 8, 129. [Google Scholar] [CrossRef]
- Marschallinger, J.; Schäffner, I.; Klein, B.; Gelfert, R.; Rivera, F.J.; Illes, S.; Grassner, L.; Janssen, M.; Rotheneichner, P.; Schmuckermair, C.; et al. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Marschallinger, J.; Altendorfer, B.; Rockenstein, E.; Holztrattner, M.; Garnweidner-Raith, J.; Pillichshammer, N.; Leister, I.; Hutter-Paier, B.; Strempfl, K.; Unger, M.S.; et al. The Leukotriene Receptor Antagonist Montelukast Reduces Alpha-Synuclein Load and Restores Memory in an Animal Model of Dementia with Lewy Bodies. Neurotherapeutics 2020, 17, 1061–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, J.; Zirknitzer, J.; Unger, M.S.; Poupardin, R.; Rieß, T.; Paiement, N.; Zerbe, H.; Hutter-Paier, B.; Reitsamer, H.; Aigner, L. The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5xFAD Mice. Int. J. Mol. Sci. 2021, 22, 2782. [Google Scholar] [CrossRef] [PubMed]
- Grinde, B.; Engdahl, B. Prescription database analyses indicates that the asthma medicine montelukast might protect against dementia: A hypothesis to be verified. Immun. Ageing 2017, 14. [Google Scholar] [CrossRef]
- Grinde, B.; Schirmer, H.; Eggen, A.E.; Aigner, L.; Engdahl, B. A possible effect of montelukast on neurological aging examined by the use of register data. Int. J. Clin. Pharm. 2020, 1, 3. [Google Scholar] [CrossRef]
- Jobert, M.; Wilson, F.J.; Ruigt, G.S.F.; Brunovsky, M.; Prichep, L.S.; Drinkenburg, W.H.I.M. Guidelines for the Recording and Evaluation of Pharmaco-EEG Data in Man: The International Pharmaco-EEG Society (IPEG). Neuropsychobiology 2012, 66, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Alhainen, K.; Partanen, J.; Reinikainen, K.; Laulumaa, V.; Soininen, H.; Airaksinen, M.; Riekkinen, P. Discrimination of tetrahydroaminoacridine responders by a single dose pharmaco-EEG in patients with Alzheimer’s disease. Neurosci. Lett. 1991, 127, 113–116. [Google Scholar] [CrossRef]
- Lenz, Q.F.; Arroyo, D.S.; Temp, F.R.; Poersch, A.B.; Masson, C.J.; Jesse, A.C.; Marafiga, J.R.; Reschke, C.R.; Iribarren, P.; Mello, C.F. Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood-brain barrier dysfunction. Neuroscience 2014, 277, 859–871. [Google Scholar] [CrossRef]
- Cevik, B.; Solmaz, V.; Aksoy, D.; Erbas, O. Montelukast inhibits pentylenetetrazol-induced seizures in rats. Med. Sci. Monit. 2015, 21, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Gelosa, P.; Bonfanti, E.; Castiglioni, L.; Delgado-Garcia, J.M.; Gruart, A.; Fontana, L.; Gotti, M.; Tremoli, E.; Lecca, D.; Fumagalli, M.; et al. Improvement of fiber connectivity and functional recovery after stroke by montelukast, an available and safe anti-asthmatic drug. Pharmacol. Res. 2019, 142, 223–236. [Google Scholar] [CrossRef]
- Rossini, P.M.; Rossi, S.; Babiloni, C.; Polich, J. Clinical neurophysiology of aging brain: From normal aging to neurodegeneration. Prog. Neurobiol. 2007, 83, 375–400. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Ferri, R.; Binetti, G.; Vecchio, F.; Frisoni, G.B.; Lanuzza, B.; Miniussi, C.; Nobili, F.; Rodriguez, G.; Rundo, F.; et al. Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiol. Aging 2009, 30, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Mormann, F.; Andrzejak, R.G.; Elger, C.E.; Lehnertz, K. Seizure prediction: The long and winding road. Brain J. Neurol. 2007, 130, 314–333. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, A.R.; Vakorin, V.; Kovacevic, N.; Wang, H.; Diaconescu, A.; Protzner, A.B. Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability. Cereb. Cortex 2014, 24, 1806–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prichep, L.S.; John, E.R.; Ferris, S.H.; Reisberg, B.; Almas, M.; Alper, K.; Cancro, R. Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiol. Aging 1994, 15, 85–90. [Google Scholar] [CrossRef]
- Brenner, R.P.; Ulrich, R.F.; Spiker, D.G.; Sclabassi, R.J.; Reynolds, C.F.; Marin, R.S.; Boller, F. Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalogr. Clin. Neurophysiol. 1986, 64, 483–492. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Peng, C.-K.; Lipsitz, L.A. What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging 2002, 23, 23–26. [Google Scholar] [CrossRef]
- Takahashi, T.; Cho, R.Y.; Murata, T.; Mizuno, T.; Kikuchi, M.; Mizukami, K.; Kosaka, H.; Takahashi, K.; Wada, Y. Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2009, 120, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Abásolo, D.; Hornero, R.; Espino, P.; Poza, J.; Sánchez, C.I.; de la Rosa, R. Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with Approximate Entropy. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2005, 116, 1826–1834. [Google Scholar] [CrossRef] [Green Version]
- Guidelines for the Diagnosis and Management of Asthma 2007 (EPR-3)/NHLBI, NIH. Available online: https://www.nhlbi.nih.gov/health-topics/guidelines-for-diagnosis-management-of-asthma (accessed on 12 April 2021).
- Schwimmbeck, F.; Göller, D.; Höller, Y. A Virtual Reality Paradigm to assess Episodic Memory: Six different Maps and Schemes for Behavioral Assessment. Mendeley Data 2019. [Google Scholar] [CrossRef]
- Höller, Y.; Höhn, C.; Schwimmbeck, F.; Plancher, G.; Trinka, E. A virtual reality paradigm to assess episodic memory: Validation-dataset for six parallel versions and a structured behavioral assessment. Data Brief 2020, 29, 105279. [Google Scholar] [CrossRef]
- Võ, M.L.H.; Conrad, M.; Kuchinke, L.; Urton, K.; Hofmann, M.J.; Jacobs, A.M. The Berlin Affective Word List Reloaded (BAWL-R). Behav. Res. Methods 2009, 41, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.R.; Rudell, A.P. Auditory S-R compatibility: The effect of an irrelevant cue on information processing. J. Appl. Psychol. 1967, 51, 300–304. [Google Scholar] [CrossRef]
- Van Der Lubbe, R.H.J.; Verleger, R. Aging and the Simon task. Psychophysiology 2002, 39, 100–110. [Google Scholar] [CrossRef] [PubMed]
- FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Available online: https://www.hindawi.com/journals/cin/2011/156869/ (accessed on 8 March 2021).
- Hjorth, B. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 1970, 29, 306–310. [Google Scholar] [CrossRef]
- Martin-Loeches, M.; Garcia-Trapero, J.; Gil, P.; Rubia, F.J. Topography of mobility and complexity parameters of the EEG in Alzheimer’s disease. Biol. Psychiatry 1991, 30, 1111–1121. [Google Scholar] [CrossRef]
- BioSig: The Free and Open Source Software Library for Biomedical Signal Processing. Available online: https://www.hindawi.com/journals/cin/2011/935364/ (accessed on 8 March 2021).
- Pop-Jordanova, N.; Pop-Jordanov, J. Spectrum-weighted EEG frequency (“brain-rate”) as a quantitative indicator of mental arousal. Prilozi 2005, 26, 35–42. [Google Scholar] [PubMed]
- Cohen, M.X. Analyzing Neural Time Series Data: Theory and Practice; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Baker, G.A.; Jacoby, A.; Buck, D.; Stalgis, C.; Monnet, D. Quality of life of people with epilepsy: A European study. Epilepsia 1997, 38 (Suppl. S7), 353–362. [Google Scholar] [CrossRef]
- Lutz, M.T.; Helmstaedter, C. EpiTrack: Tracking cognitive side effects of medication on attention and executive functions in patients with epilepsy. Epilepsy Behav. 2005, 7, 708–714. [Google Scholar] [CrossRef]
- Helmstaedter, C.A.; Lendt, M.; Lux, S. Verbaler Lern-Und Merkfähigkeitstest: VLMT; Beltz Test: Göttingen, Germany, 2001. [Google Scholar]
- Hinz, A.; Schwarz, R.; Herrmann, C.; Buss, U.; Snaith, R. Hospital Anxiety and Depression Scale-Deutsche Version(HADS-D). Diagnostica 2002, 48, 112–113. [Google Scholar] [CrossRef]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Gleißner, U.; Elger, C.E. Clinical personality scales (CPS) in focal epilepsy: Preliminary results. Epilepsia 2000, 42 (Suppl. 7), 236. [Google Scholar]
- Zimmermann, P.; Fimm, B. Testbatterie Zur Aufmerksamkeitsprüfung (TAP, Version 2.3); Psytest: Herzogenrath, Germany, 2012. [Google Scholar]
- Maris, E.; Oostenveld, R. Nonparametric statistical testing of EEG-and MEG-data. J. Neurosci. Methods 2007, 164, 177–190. [Google Scholar] [CrossRef]
- Vorhees, C.V.; Williams, M.T. Assessing Spatial Learning and Memory in Rodents. ILAR J. 2014, 55, 310. [Google Scholar] [CrossRef] [Green Version]
- Laczó, J.; Andel, R.; Vyhnalek, M.; Vlcek, K.; Magerova, H.; Varjassyova, A.; Nedelska, Z.; Gazova, I.; Bojar, M.; Sheardova, K.; et al. From Morris Water Maze to computer tests in the prediction of Alzheimer’s disease. Neurodegener. Dis. 2012, 10, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Lazarov, O.; Marr, R.A. Of mice and men: Neurogenesis, cognition, and Alzheimer’s disease. Front. Aging Neurosci. 2013, 5, 43. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.H.; Baxter, M.G. The ageing cortical synapse: Hallmarks and implications for cognitive decline. Nat. Rev. Neurosci. 2012, 13, 240–250. [Google Scholar] [CrossRef]
- Al Zoubi, O.; Ki Wong, C.; Kuplicki, R.T.; Yeh, H.; Mayeli, A.; Refai, H.; Paulus, M.; Bodurka, J. Predicting Age From Brain EEG Signals—A Machine Learning Approach. Front. Aging Neurosci. 2018, 10, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [Google Scholar] [CrossRef]
- Schumacher, J.; Taylor, J.P.; Hamilton, C.A.; Firbank, M.; Cromarty, R.A.; Donaghy, P.C.; Roberts, G.; Allan, L.; Lloyd, J.; Durcan, R.; et al. Quantitative EEG as a biomarker in mild cognitive impairment with Lewy bodies. Alzheimer’s Res. Ther. 2020, 12. [Google Scholar] [CrossRef]
- Poil, S.S.; de Haan, W.; van der Flier, W.M.; Mansvelder, H.D.; Scheltens, P.; Linkenkaer-Hansen, K. Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front. Aging Neurosci. 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Scally, B.; Burke, M.R.; Bunce, D.; Delvenne, J.-F. Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiol. Aging 2018, 71, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Musaeus, C.S.; Engedal, K.; Høgh, P.; Jelic, V.; Mørup, M.; Naik, M.; Oeksengaard, A.-R.; Snaedal, J.; Wahlund, L.-O.; Waldemar, G.; et al. EEG Theta Power Is an Early Marker of Cognitive Decline in Dementia due to Alzheimer’s Disease. J. Alzheimers Dis. JAD 2018, 64, 1359–1371. [Google Scholar] [CrossRef] [PubMed]
- Adler, G.; Brassen, S.; Chwalek, K.; Dieter, B.; Teufel, M. Prediction of treatment response to rivastigmine in Alzheimer’s dementia. J. Neurol. Neurosurg. Psychiatry 2004, 75, 292–294. [Google Scholar] [CrossRef]
- Ferenets, R.; Lipping, T.; Anier, A.; Jäntti, V.; Melto, S.; Hovilehto, S. Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans. Biomed. Eng. 2006, 53, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.S. Recalibrating the Relevance of Adult Neurogenesis. Trends Neurosci. 2019, 42, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Couillard-Despres, S.; Iglseder, B.; Aigner, L. Neurogenesis, cellular plasticity and cognition: The impact of stem cells in the adult and aging brain-a mini-review. Gerontology 2011, 57, 559–564. [Google Scholar] [CrossRef]
Modality | Test | Scale | Mdn B | Mdn M | z | p | r |
---|---|---|---|---|---|---|---|
Adverse | AEP | Total score | 36 | 35 | −1.38 | 0.404 | −0.28 |
event | EpiTrack | Interference | 5.5 | 5 | −0.71 | 0.728 | −0.14 |
Connect digits | 5 | 5.5 | −0.69 | 0.728 | −0.14 | ||
Connect letters | 5 | 6 | 1.31 | 0.404 | 0.27 | ||
Maze test | 6 | 6 | 0.45 | 0.801 | 0.09 | ||
Verbal fluency | 5 | 6 | 2.11 | 0.197 | 0.43 | ||
Digit span | 5 | 5 | 1.63 | 0.394 | 0.33 | ||
Total score | 32 | 33 | 1.34 | 0.404 | 0.27 | ||
Memory | VR | Recollection | 31.5 | 30.5 | −0.59 | 0.755 | −0.12 |
WP | Recollection | 21.5 | 19 | −0.31 | 0.801 | −0.06 | |
VLMT | Learning | 52.5 | 58 | 1.57 | 0.394 | 0.32 | |
Consolidation | 2 | 3.5 | 1.62 | 0.394 | 0.33 | ||
Recognition | 13.5 | 9.5 | −0.62 | 0.755 | −0.13 | ||
Attention | Simon | RT C × C | 462 | 446 | −0.31 | 0.801 | −0.06 |
RT IC × IC | 510 | 506 | −0.39 | 0.801 | −0.08 | ||
RT C × IC (B) | 462 | 510 | 3.06 | 0.049 * | 0.62 | ||
RT C × IC (M) | 446 | 506 | 2.98 | 0.049 * | 0.61 | ||
AC C × C | 99 | 100 | 1.48 | 0.404 | 0.3 | ||
AC IC × IC | 96 | 98 | 1.26 | 0.419 | 0.26 | ||
AC C × IC (B) | 99 | 96 | −2.5 | 0.106 | −0.51 | ||
AC C × IC (M) | 100 | 98 | −2.67 | 0.087 | −0.54 | ||
TAP | RT auditive | 614 | 617 | −0.39 | 0.801 | −0.08 | |
RT visual | 785 | 829 | 0.94 | 0.62 | 0.19 | ||
RT tone (+) | 242.5 | 233.5 | 1.33 | 0.404 | 0.27 | ||
RT tone (−) | 241 | 242.5 | 0.78 | 0.71 | 0.16 | ||
Mood | HADS | Anxiety | 5 | 5 | −0.77 | 0.71 | −0.16 |
Depression | 2 | 1 | −0.33 | 0.801 | −0.07 | ||
Personality | BSI | Total score | 60 | 64 | 2.12 | 0.197 | 0.43 |
FPZ | Neuroticism | 73.5 | 80.5 | 0.22 | 0.824 | 0.05 | |
HOPS | 55.5 | 56.5 | −0.22 | 0.824 | −0.05 | ||
Extraversion | 61.5 | 60 | −1.35 | 0.404 | −0.28 | ||
Addiction | 14 | 16 | 1.63 | 0.394 | 0.33 | ||
Delusion | 5 | 4.5 | 0.96 | 0.62 | 0.2 | ||
Total score | 212 | 218.5 | −0.43 | 0.801 | −0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwimmbeck, F.; Staffen, W.; Höhn, C.; Rossini, F.; Renz, N.; Lobendanz, M.; Reichenpfader, P.; Iglseder, B.; Aigner, L.; Trinka, E.; et al. Cognitive Effects of Montelukast: A Pharmaco-EEG Study. Brain Sci. 2021, 11, 547. https://doi.org/10.3390/brainsci11050547
Schwimmbeck F, Staffen W, Höhn C, Rossini F, Renz N, Lobendanz M, Reichenpfader P, Iglseder B, Aigner L, Trinka E, et al. Cognitive Effects of Montelukast: A Pharmaco-EEG Study. Brain Sciences. 2021; 11(5):547. https://doi.org/10.3390/brainsci11050547
Chicago/Turabian StyleSchwimmbeck, Fabian, Wolfgang Staffen, Christopher Höhn, Fabio Rossini, Nora Renz, Markus Lobendanz, Peter Reichenpfader, Bernhard Iglseder, Ludwig Aigner, Eugen Trinka, and et al. 2021. "Cognitive Effects of Montelukast: A Pharmaco-EEG Study" Brain Sciences 11, no. 5: 547. https://doi.org/10.3390/brainsci11050547