From aMCI to AD: The Role of Visuo-Spatial Memory Span and Executive Functions in Egocentric and Allocentric Spatial Impairments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Sessions
2.2.1. Session 1. Neuropsychological Assessment
2.2.2. Session 2. Ego-Allo Task
2.3. Setting and Materials
2.4. Procedure
2.5. Data Analysis
- A 3X2 ANOVA with a between-subject factor “Groups” (aMCI vs. AD vs. NC) and a within-subject factor “Ego-Allo” (i.e., egocentric vs. allocentric judgments) on the mean accuracy at the Ego-Allo Task;
- Two separate one-way ANOVAs with the between-subject factor “Groups” on scores at FAB and TMT, respectively;
- A 2X2 two-way ANOVA with the between-subject factor “Groups” and a within-subject factor “Forward-Backward” on scores at CORSI test.
- Two stepwise forward multiple regression analyses on egocentric and allocentric mean accuracy separately as the criterion, and scores at FAB, TMT, Corsi Forward and Backward as predictors were carried out on the whole sample regardless of the group of participants;
- The same regression model as above was carried out on each group of participants separately.
3. Results
3.1. ANOVAs
3.2. Neuropsychological Assessment
3.3. Stepwise Forward Multiple Regressions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Bischkopf, J.; Busse, A.; Angermeyer, M.C. Mild cognitive impairment—A review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr. Scand. 2002, 106, 403–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundman, M.; Petersen, R.C.; Ferris, S.H.; Thomas, R.G.; Aisen, P.S.; Bennett, D.A.; Foster, N.L.; Jack, C.R., Jr.; Galasko, D.R.; Doody, R.; et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch. Neurol. 2004, 61, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Bäckman, L.; Jones, S.; Berger, A.K.; Laukka, E.J.; Small, B.J. Cognitive impairment in preclinical Alzheimer’s disease: A meta-analysis. Neuropsychology 2005, 19, 520–531. [Google Scholar] [CrossRef] [Green Version]
- Bondi, M.W.; Jak, A.J.; Delano-Wood, L.; Jacobson, M.W.; Delis, D.C.; Salmon, D.P. Neuropsychological contributions to the early identification of Alzheimer’s disease. Neuropsychol. Rev. 2008, 18, 73–90. [Google Scholar] [CrossRef]
- Webster, S.J.; Bachstetter, A.D.; Nelson, P.T.; Schmitt, F.A.; Van Eldik, L.J. Using mice to model Alzheimer’s dementia: An overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front. Genet. 2014, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Dong, X.; Sun, H.; Xu, Y.; Ma, Y.; Wang, X. The overall impairment of core executive function components in patients with amnestic mild cognitive impairment: A cross-sectional study. BMC Neurol. 2012, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Chen, J.; Gao, L.; Shu, H.; Wang, Z.; Liu, D.; Yan, Y.; Li, S.; Zhang, Z. Deficits of visuospatial working memory and executive function in single- versus multiple-domain amnestic mild cognitive impairment: A combined ERP and sLORETA study. Clin. Neurophysiol. 2019, 130, 739–751. [Google Scholar] [CrossRef]
- McGuinness, B.; Barrett, S.L.; Craig, D.; Lawson, J.; Passmore, A.P. Executive functioning in Alzheimer’s disease and vascular dementia. Int. J. Geriatr. Psychiatry 2010, 25, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Binetti, G.; Magni, E.; Padovani, A.; Cappa, S.F.; Bianchetti, A.; Trabucchi, M. Executive dysfunction in early Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1996, 60, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Collette, F.; Van der Linden, M.; Salmon, E. Executive dysfunction in Alzheimer’s disease. Cortex 1999, 35, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Guarino, A.; Favieri, F.; Boncompagni, I.; Agostini, F.; Cantone, M.; Casagrande, M. Executive functions in Alzheimer disease: A systematic review. Aging Neurosci. 2019, 10, 437. [Google Scholar] [CrossRef]
- Traykov, L.; Raoux, N.; Latour, F.; Gallo, L.; Hanon, O.; Baudic, S.; Bayle, C.; Wenisch, E.; Remy, P.; Rigaud, A. Executive functions deficit in mild cognitive impairment. Cogn. Behav. Neurol. 2007, 20, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Perry, R.J.; Watson, P.; Hodges, J.R. The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: Relationship to episodic and semantic memory impairment. Neuropsychologia 2000, 38, 252–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, B.; Verhaeghen, P.; Nilsson, L.G. Executive functioning in older adults with mild cognitive impairment: MCI has effects on planning, but not on inhibition. Aging Neuropsychol. Cogn. 2007, 14, 557–570. [Google Scholar] [CrossRef]
- Bisiacchi, P.S.; Borella, E.; Bergamaschi, S.; Carretti, B.; Mondini, S. Interplay between memory and executive functions in normal and pathological aging. J. Clin. Exp. Neuropsychol. 2008, 30, 723–733. [Google Scholar] [CrossRef]
- Lithfous, S.; Dufour, A.; Després, O. Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: Insights from imaging and behavioral studies. Ageing Res. Rev. 2013, 12, 201–213. [Google Scholar] [CrossRef]
- Vasilyeva, M.; Lourenco, S.F. Development of spatial cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2012, 3, 349–362. [Google Scholar] [CrossRef]
- Ruggiero, G.; D’Errico, O.; Iachini, T. Development of egocentric and allocentric spatial representations from childhood to elderly age. Psychol. Res. 2016, 80, 259–272. [Google Scholar] [CrossRef]
- Ruggiero, G.; Ruotolo, F.; Iavarone, A.; Iachini, T. Allocentric coordinate spatial representations are impaired in aMCI and Alzheimer’s disease patients. Behav. Brain Res. 2020, 393, 112793. [Google Scholar] [CrossRef]
- Salthouse, T.A. The processing speed theory of adult age differences in cognition. Psychol. Rev. 1996, 103, 403–428. [Google Scholar] [CrossRef] [Green Version]
- Sanders, A.E.; Holtzer, R.; Lipton, R.B.; Hall, C.; Verghese, J. Egocentric and exocentric navigation skills in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Park, D.C. Basic mechanisms accounting for age-related decline in cognitive functions. In Cognitive Aging: A Primer; Park, D.C., Schwarz, N., Eds.; Psychology Press: Philadelphia, PA, USA, 2000; pp. 3–22. [Google Scholar] [CrossRef]
- Bächtold, D.; Brugger, P.; Regard, M. Processing of spatial locations: Hemispace effects during encoding but not recall. Neuropsychologia 2000, 38, 864–872. [Google Scholar] [CrossRef]
- Postma, A.; Kessels, R.P.; van Asselen, M. How the brain remembers and forgets where things are: The neurocognition of object–location memory. Neurosci. Biobehav. Rev. 2008, 32, 1339–1345. [Google Scholar] [CrossRef]
- Iachini, T.; Iavarone, A.; Senese, V.P.; Ruotolo, F.; Ruggiero, G. Visuospatial memory in healthy elderly, AD and MCI: A review. Curr. Aging Sci. 2009, 2, 43–59. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging and Alzheimer’s Association workgroup. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Hort, J.; Laczó, J.; Vyhnálek, M.; Bojar, M.; Bureš, J.; Vlček, K. Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. USA 2007, 104, 4042–4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlček, K.; Laczó, J. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease. Front. Behav. Neurosci. 2014, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, M.C.; Yang, Y.C. Impaired translation of spatial representation in young onset Alzheimer’s disease patients. Curr. Alzheimer. Res. 2013, 10, 95–103. [Google Scholar] [CrossRef] [PubMed]
- DeIpolyi, A.R.; Rankin, K.P.; Mucke, L.; Miller, B.L.; Gorno-Tempini, M.L. Spatial cognition and the human navigation network in AD and MCI. Neurology 2007, 69, 986–997. [Google Scholar] [CrossRef]
- Borella, E.; Carretti, B.; De Beni, R. Working memory and inhibition across the adult life-span. Acta Psychol. 2008, 128, 33–44. [Google Scholar] [CrossRef]
- Cornoldi, C.; Vecchi, T. Visuo-Spatial Working Memory and Individual Differences; Psychology Press: Hove, UK, 2004. [Google Scholar] [CrossRef]
- Craik, F.I.M. A functional account of age differences in memory. In Human Memory and Cognitive Capabilities; Klix, F., Hagendorf, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 409–422. [Google Scholar]
- Meneghetti, C.; Fiore, F.; Borella, E.; De Beni, R. Learning a map of environment: The role of visuo-spatial abilities in young and older adults. Appl. Cogn. Psychol. 2011, 25, 952–959. [Google Scholar] [CrossRef]
- Iachini, T.; Ruggiero, G.; Ruotolo, F. The effect of age on egocentric and allocentric spatial frames of reference. Cogn. Process. 2009, 10, 222–224. [Google Scholar] [CrossRef]
- Ruggiero, G.; Iavarone, A.; Iachini, T. Allocentric to egocentric spatial switching: Impairment in aMCI and Alzheimer’s Disease patients? Curr. Alzheimer Res. 2018, 15, 229–236. [Google Scholar] [CrossRef]
- Moffat, S.D. Aging and spatial navigation: What do we know and where do we go? Neuropsychol. Rev. 2009, 19, 478–489. [Google Scholar] [CrossRef]
- Serino, S.; Cipresso, P.; Morganti, F.; Riva, G. The role of egocentric and allocentric abilities in Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2014, 16, 32–44. [Google Scholar] [CrossRef]
- Dubois, B.; Albert, M.L. Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol. 2004, 3, 246–248. [Google Scholar] [CrossRef]
- Aguirre, G.K.; D’Esposito, M. Topographical disorientation: A synthesis and taxonomy. Brain 1999, 122, 1613–1628. [Google Scholar] [CrossRef] [Green Version]
- Economou, A.; Papageorgiou, S.G.; Karageorgiou, C.; Vassilopoulos, D. Nonepisodic memory deficits in amnestic MCI. Cogn. Behav. Neurol. 2007, 20, 99–106. [Google Scholar] [CrossRef]
- Saunders, N.L.; Summers, M.J. Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment. Neuropsychology 2011, 25, 237. [Google Scholar] [CrossRef]
- Alescio-Lautier, B.; Michel, B.F.; Herrera, C.; Elahmadi, A.; Chambon, C.; Touzet, C.; Paban, V. Visual and visuospatial short-term memory in mild cognitive impairment and Alzheimer disease: Role of attention. Neuropsychologia 2007, 45, 1948–1960. [Google Scholar] [CrossRef]
- Giovagnoli, A.R.; Del Pesce, M.; Mascheroni, S.; Simoncelli, M.; Laiacona, M.; Capitani, E. Trail making test: Normative values from 287 normal adult controls. Ital. J. Neurol. Sci. 1996, 17, 305–309. [Google Scholar] [CrossRef]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B.F.A.B. The FAB: A frontal assessment battery at bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef] [Green Version]
- Iachini, T.; Ruggiero, G. Egocentric and allocentric spatial frames of reference: A direct measure. Cogn. Process. 2006, 7, 126–127. [Google Scholar] [CrossRef]
- Iachini, T.; Ruggiero, G.; Ruotolo, F. Does blindness affect egocentric and allocentric frames of reference in small and large scale spaces? Behav. Brain Res. 2014, 273, 73–81. [Google Scholar] [CrossRef]
- Portet, F.; Ousset, P.J.; Visser, P.J.; Frisoni, G.B.; Nobili, F.; Scheltens, P.; Vellas, B.; Touchon, J.; MCI Working Group of the European Consortium on Alzheimer’s Disease (EADC). Mild cognitive impairment (MCI) in medical practice: A critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. J. Neurol. Neurosurg. Psychiatry 2006, 77, 714–718. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.R.; Folstein, S.; McHugh, P.R. Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. J. Psychol. Res. 1975, 12, 128–198. [Google Scholar] [CrossRef]
- Measso, G.; Cavarzeran, F.; Zappalà, G.; Lebowitz, B.D.; Crook, T.H.; Pirozzolo, F.J.; Amaducci, L.A.; Massari, D.; Grigoletto, F. The mini-mental state examination: Normative study of an Italian random sample. Dev. Neuropsychol. 1993, 9, 77–85. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iavarone, A.; Lorè, E.; De Falco, C.; Milan, G.; Mosca, R.; Pappatà, S.; Galeone, F.; Sorrentino, P.; Scognamiglio, M.; Postiglione, A. Dysexecutive performance of healthy oldest old subjects on the Frontal Assessment Battery. Aging Clin. Exp. Res. 2011, 23, 351–356. [Google Scholar] [CrossRef]
- Monaco, M.; Costa, A.; Caltagirone, C.; Carlesimo, G.A. Forward and backward span for verbal and visuo-spatial data: Standardization and normative data from an Italian adult population. Neurol. Sci. 2012, 34, 749–754. [Google Scholar] [CrossRef]
- Ruggiero, G.; Ruotolo, F.; Iachini, T. Egocentric/allocentric and coordinate/categorical haptic encoding in blind people. Cogn. Process. 2012, 13, 313–317. [Google Scholar] [CrossRef]
- Ruggiero, G.; Ruotolo, F.; Orti, R.; Rauso, B.; Iachini, T. Egocentric metric representations in peripersonal space: A bridge between motor resources and spatial memory. Br. J. Psychol. 2021, 112, 433–454. [Google Scholar] [CrossRef]
- Ruotolo, F.; van der Ham, I.; Postma, A.; Ruggiero, G.; Iachini, T. How coordinate and categorical spatial relations combine with egocentric and allocentric reference frames in a motor task: Effects of delay and stimuli characteristics. Behav. Brain Res. 2015, 284, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Ruotolo, F.; Iachini, T.; Ruggiero, G.; van der Ham, I.J.; Postma, A. Frames of reference and categorical/coordinate spatial relations in a “what was where” task. Exp. Brain Res. 2016, 234, 2687–2696. [Google Scholar] [CrossRef] [Green Version]
- Laukka, E.J.; MacDonald, S.W.; Fratiglioni, L.; Bäckman, L. Preclinical cognitive trajectories differ for Alzheimer’s disease and vascular dementia. J. Int. Neuropsychol. Soc. 2012, 18, 191–199. [Google Scholar] [CrossRef]
- Serino, S.; Morganti, F.; Colombo, D.; Riva, G. The Contribution of Allocentric Impairments to the Cognitive Decline in Alzheimer’s Disease. In Proceedings of the Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Cipresso, P., Serino, S., Ostrovsky, Y., Baker, J.T., Eds.; Springer: Cham, Switzerland, 2018; Volume 253, pp. 84–91. [Google Scholar] [CrossRef]
- Rudkin, S.J.; Pearson, D.; Logie, R.H. Executive processes in visual and spatial working memory tasks. Q. J. Exp. Psychol. 2007, 60, 79–100. [Google Scholar] [CrossRef]
- Vandierendonck, A.; Kemps, E.; Fastame, M.C.; Szmalec, A. Working memory components of the Corsi blocks task. Br. J. Psychol. 2004, 95, 57–79. [Google Scholar] [CrossRef]
- Ruggiero, G.; Sergi, I.; Iachini, T. Gender differences in remembering and inferring spatial distances. Memory 2008, 16, 821–828. [Google Scholar] [CrossRef]
- Ruggiero, G.; Ruotolo, F.; Iachini, T. Congenital blindness limits allocentric to egocentric switching ability. Exp. Brain Res. 2018, 236, 813–820. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Moffat, S.D.; Kennedy, K.M.; Rodrigue, K.M.; Raz, N. Extrahippocampal contributions to age differences in human spatial navigation. Cereb. Cortex 2007, 17, 1274–1282. [Google Scholar] [CrossRef] [Green Version]
- Pfefferbaum, A.; Adalsteinsson, E.; Sullivan, E.V. Frontal circuitry degradation marks healthy adult aging: Evidence from diffusion tensor imaging. Neuroimage 2005, 26, 891–899. [Google Scholar] [CrossRef]
- Hashimoto, R.; Uechi, M.; Komori, N. Egocentric and allocentric spatial cognition in amnestic mild cognitive impairment and early Alzheimer’s disease. Eur. Neurol. 2020, 83, 395–403. [Google Scholar] [CrossRef]
- Nedelska, Z.; Andel, R.; Laczò, J.; Vlček, K.; Horinek, D.; Lisy, J.; Sheardova, K.; Bures, J.; Hort, J. Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad Sci. USA 2012, 109, 2590–2594. [Google Scholar] [CrossRef] [Green Version]
- Laczò, J.; Vlček, K.; Vyhna’lek, M.; Vajnerova, O.; Ort, M.; Holmerova, I.; Tolar, M.; Andel, R.; Bojar, M.; Hort, J. Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 2009, 202, 252–259. [Google Scholar] [CrossRef]
- Caffò, A.O.; De Caro, M.F.; Picucci, L.; Notarnicola, A.; Settanni, A.; Livrea, P.; Lancioni, G.E.; Bosco, A. Reorientation deficits are associated with amnestic mild cognitive impairment. Am. J. Alzheimers Dis. Demen. 2012, 27, 321–330. [Google Scholar] [CrossRef]
- Caffò, A.O.; Hoogeveen, F.; Groenendaal, M.; Perilli, A.V.; Picucci, L.; Lancioni, G.E.; Bosco, A. Intervention strategies for spatial orientation disorders in dementia: A selective review. Dev. Neurorehabilit. 2014, 17, 200–209. [Google Scholar] [CrossRef]
- Lester, A.W.; Moffat, S.D.; Wiener, J.M.; Barnes, C.A.; Wolbers, T. The aging navigational system. Neuron 2017, 95, 1019–1035. [Google Scholar] [CrossRef]
- Howett, D.; Castegnaro, A.; Krzywicka, K.; Hagman, J.; Marchment, D.; Henson, R.; Rio, M.; King, J.A.; Burgess, N.; Chan, D. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 2019, 142, 1751–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E.; Bohl, J.; Bratzke, H. Evolution of Alzheimer’s disease related cortical lesions. Alzheimers Dis. Basic Res. Clin. App. 1998, 54, 97–106. [Google Scholar]
- Buckner, R.L. Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron 2004, 44, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Beta | Std. Err | B | Std. Err | t(49) | p-Level | |
---|---|---|---|---|---|---|
TMT | −0.47 | 0.10 | 0.00 | 0.00 | −4.83 | 0.00 |
CORSI B. | 0.46 | 0.10 | 0.04 | 0.01 | 4.78 | 0.00 |
Beta | Std. Err | B | Std. Err | t(49) | p-Level | |
---|---|---|---|---|---|---|
FAB | 0.54 | 0.13 | 0.02 | 0.01 | 4.29 | 0.00 |
CORSI B. | 0.21 | 0.13 | 0.01 | 0.01 | 1.63 | 0.11 |
EGOCENTRIC | ||||||
---|---|---|---|---|---|---|
Beta | Std. Err | B | Std. Err | t(49) | p-Level | |
CORSI B. | 0.36 | 0.27 | 0.03 | 0.02 | 1.35 | 0.23 |
TMT | −0.48 | 0.26 | 0.00 | 0.00 | −1.84 | 0.11 |
FAB | 0.34 | 0.23 | 0.04 | 0.02 | 1.48 | 0.19 |
ALLOCENTRIC | ||||||
CORSI B. | 0.47 | 0.27 | 0.03 | 0.02 | 1.74 | 0.13 |
FAB | 0.45 | 0.27 | 0.04 | 0.02 | 1.67 | 0.14 |
EGOCENTRIC | ||||||
---|---|---|---|---|---|---|
Beta | Std. Err | B | Std. Err | t(49) | p-Level | |
CORSI B. | 0.78 | 0.22 | 0.11 | 0.03 | 3.49 | 0.01 |
TMT | −0.33 | 0.21 | 0.00 | 0.00 | −1.59 | 0.16 |
CORSI F. | −0.35 | 0.22 | −0.04 | 0.02 | −1.54 | 0.17 |
ALLOCENTRIC | ||||||
FAB | 0.78 | 0.21 | 0.03 | 0.01 | 3.78 | 0.00 |
EGOCENTRIC | ||||||
---|---|---|---|---|---|---|
Beta | Std. Err | B | Std. Err | t(49) | p-Level | |
TMT | −0.42 | 0.18 | 0.00 | 0.00 | −2.39 | 0.02 |
FAB | 0.16 | 0.19 | 0.01 | 0.01 | 0.81 | 0.42 |
CORSI B. | 0.19 | 0.16 | 0.01 | 0.01 | 1.19 | 0.25 |
CORSI F. | 0.17 | 0.16 | 0.02 | 0.02 | 1.09 | 0.29 |
ALLOCENTRIC | ||||||
FAB | 0.45 | 0.17 | 0.02 | 0.01 | 2.72 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iachini, T.; Ruotolo, F.; Iavarone, A.; Mazzi, M.C.; Ruggiero, G. From aMCI to AD: The Role of Visuo-Spatial Memory Span and Executive Functions in Egocentric and Allocentric Spatial Impairments. Brain Sci. 2021, 11, 1536. https://doi.org/10.3390/brainsci11111536
Iachini T, Ruotolo F, Iavarone A, Mazzi MC, Ruggiero G. From aMCI to AD: The Role of Visuo-Spatial Memory Span and Executive Functions in Egocentric and Allocentric Spatial Impairments. Brain Sciences. 2021; 11(11):1536. https://doi.org/10.3390/brainsci11111536
Chicago/Turabian StyleIachini, Tina, Francesco Ruotolo, Alessandro Iavarone, Michele Carpinelli Mazzi, and Gennaro Ruggiero. 2021. "From aMCI to AD: The Role of Visuo-Spatial Memory Span and Executive Functions in Egocentric and Allocentric Spatial Impairments" Brain Sciences 11, no. 11: 1536. https://doi.org/10.3390/brainsci11111536
APA StyleIachini, T., Ruotolo, F., Iavarone, A., Mazzi, M. C., & Ruggiero, G. (2021). From aMCI to AD: The Role of Visuo-Spatial Memory Span and Executive Functions in Egocentric and Allocentric Spatial Impairments. Brain Sciences, 11(11), 1536. https://doi.org/10.3390/brainsci11111536