Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Characteristics
2.2. Preprocessing
2.3. Whole-Brain Multiple Regression Analysis for Age-Related Changes in LC Connectivity
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aston-Jones, G.; Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 2003, 42, 33–84. [Google Scholar] [CrossRef]
- Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 2010, 13, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Chen, W. Stimulant Drugs and ADHD: Basic and Clinical Neuroscience; Solanto, M., Arnsten, A., Castellanos, F.X., Eds.; University of Oxford Press: Oxford, UK, 2001; p. 410. ISBN 0-19-513371-4. [Google Scholar]
- Clewett, D.V.; Huang, R.; Velasco, R.; Lee, T.H.; Mather, M. Locus Coeruleus Activity Strengthens Prioritized Memories Under Arousal. J. Neurosci. 2018, 38, 1558–1574. [Google Scholar] [CrossRef]
- Coronel-Oliveros, C.; Castro, S.; Cofré, R.; Orio, P. Structural features of the human connectome that facilitate the switching of brain dynamics via noradrenergic neuromodulation. Front. Comput. Neurosci. 2021, 15, 61. [Google Scholar] [CrossRef]
- Lee, T.H.; Greening, S.G.; Ueno, T.; Clewett, D.; Ponzio, A.; Sakaki, M.; Mather, M. Arousal increases neural gain via the locus coeruleus-norepinephrine system in younger adults but not in older adults. Nat. Hum. Behav. 2018, 2, 356–366. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, S.H.; Katz, B.; Mather, M. The Decline in Intrinsic Connectivity Between the Salience Network and Locus Coeruleus in Older Adults: Implications for Distractibility. Front. Aging Neurosci. 2020, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.H.; Sakaki, M.; Cheng, R.; Velasco, R.; Mather, M. Emotional arousal amplifies the effects of biased competition in the brain. Soc. Cogn. Affect. Neurosci. 2014, 9, 2067–2077. [Google Scholar] [CrossRef] [Green Version]
- Mather, M.; Harley, C.W. The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain. Trends Cogn. Sci. 2016, 20, 214–226. [Google Scholar] [CrossRef] [Green Version]
- McBurney-Lin, J.; Lu, J.; Zuo, Y.; Yang, H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci. Biobehav. Rev. 2019, 105, 190–199. [Google Scholar] [CrossRef]
- Devilbiss, D.M.; Waterhouse, B.D.; Berridge, C.W.; Valentino, R. Corticotropin-releasing factor acting at the locus coeruleus disrupts thalamic and cortical sensory-evoked responses. Neuropsychopharmacology 2012, 37, 2020–2030. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, B.D.; Navarra, R.L. The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res. 2019, 1709, 1–15. [Google Scholar] [CrossRef]
- Fast, C.D.; McGann, J.P. Amygdalar gating of early sensory processing through interactions with locus coeruleus. J. Neurosci. 2017, 37, 3085–3101. [Google Scholar] [CrossRef] [Green Version]
- Rodenkirch, C.; Liu, Y.; Schriver, B.J.; Wang, Q. Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nat. Neurosci. 2019, 22, 120–133. [Google Scholar] [CrossRef]
- Devilbiss, D.M.; Waterhouse, B.D. Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. J. Neurophysiol. 2011, 105, 69–87. [Google Scholar] [CrossRef]
- Zerbi, V.; Floriou-Servou, A.; Markicevic, M.; Vermeiren, Y.; Sturman, O.; Privitera, M.; von Ziegler, L.; Ferrari, K.D.; Weber, B.; De Deyn, P.P.; et al. Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron 2019, 103, 702–718.e5. [Google Scholar] [CrossRef]
- Chiew, K.S.; Braver, T.S. Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Front. Psychol. 2013, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Van der Wel, P.; van Steenbergen, H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 2018, 25, 2005–2015. [Google Scholar] [CrossRef]
- Yebra, M.; Galarza-Vallejo, A.; Soto-Leon, V.; Gonzalez-Rosa, J.J.; de Berker, A.O.; Bestmann, S.; Oliviero, A.; Kroes, M.C.W.; Strange, B.A. Action boosts episodic memory encoding in humans via engagement of a noradrenergic system. Nat. Commun. 2019, 10, 3534. [Google Scholar] [CrossRef] [Green Version]
- Gallant, S.N.; Kennedy, B.L.; Bachman, S.L.; Huang, R.; Lee, T.-H.; Mather, M. Behavioral and fMRI evidence that arousal enhances bottom-up attention and memory selectivity in young but not older adults. bioRxiv 2021, 1–45, preprint. [Google Scholar] [CrossRef]
- Bland, A.R. Different varieties of uncertainty in human decision-making. Front. Neurosci. 2012, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Darcq, E.; Kieffer, B.L. PI 3K signaling in the locus coeruleus: A new molecular pathway for ADHD research. EMBO Mol. Med. 2015, 7, 859–861. [Google Scholar] [CrossRef]
- Bruno, K.J.; Freet, C.S.; Twining, R.C.; Egami, K.; Grigson, P.S.; Hess, E.J. Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol. Dis. 2007, 25, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Rowe, D.; Robinson, P.; Gordon, E. Stimulant drug action in attention deficit hyperactivity disorder (ADHD): Inference of neurophysiological mechanisms via quantitative modelling. Clin. Neurophysiol. 2005, 116, 324–335. [Google Scholar] [CrossRef]
- McCall, J.G.; Siuda, E.R.; Bhatti, D.L.; Lawson, L.A.; McElligott, Z.A.; Stuber, G.D.; Bruchas, M.R. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife 2017, 6, e18247. [Google Scholar] [CrossRef]
- Naegeli, C.; Zeffiro, T.; Piccirelli, M.; Jaillard, A.; Weilenmann, A.; Hassanpour, K.; Schick, M.; Rufer, M.; Orr, S.P.; Mueller-Pfeiffer, C. Locus coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder. Biol. Psychiatry 2018, 83, 254–262. [Google Scholar] [CrossRef]
- Serova, L.I.; Nwokafor, C.; Van Bockstaele, E.J.; Reyes, B.A.; Lin, X.; Sabban, E.L. Single prolonged stress PTSD model triggers progressive severity of anxiety, altered gene expression in locus coeruleus and hypothalamus and effected sensitivity to NPY. Eur. Neuropsychopharmacol. 2019, 29, 482–492. [Google Scholar] [CrossRef]
- Liu, K.Y.; Kievit, R.A.; Tsvetanov, K.A.; Betts, M.J.; Düzel, E.; Rowe, J.B.; Howard, R.; Hämmerer, D. Noradrenergic-dependent functions are associated with age-related locus coeruleus signal intensity differences. Nat. Commun. 2020, 11, 1712. [Google Scholar] [CrossRef] [PubMed]
- Clewett, D.V.; Lee, T.-H.; Greening, S.; Ponzio, A.; Margalit, E.; Mather, M. Neuromelanin marks the spot: Identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol. Aging 2016, 37, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Marcyniuk, B.; Mann, D.; Yates, P. Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged. Neurosci. Lett. 1986, 64, 247–252. [Google Scholar] [CrossRef]
- Olpe, H.-R.; Steinmann, M.W. Age-related decline in the activity of noradrenergic neurons of the rat locus coeruleus. Brain Res. 1982, 251, 174–176. [Google Scholar] [CrossRef]
- Leslie, F.M.; Loughlin, S.E.; Sternberg, D.B.; McGaugh, J.L.; Young, L.E.; Zornetzer, S.F. Noradrenergic changes and memory loss in aged mice. Brain Res. 1985, 359, 292–299. [Google Scholar] [CrossRef]
- Mueller, A.; Hong, D.S.; Shepard, S.; Moore, T. Linking ADHD to the neural circuitry of attention. Trends Cogn. Sci. 2017, 21, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Bachman, S.L.; Dahl, M.J.; Werkle-Bergner, M.; Düzel, S.; Forlim, C.G.; Lindenberger, U.; Kühn, S.; Mather, M. Locus coeruleus MRI contrast is associated with cortical thickness in older adults. Neurobiol. Aging 2021, 100, 72–82. [Google Scholar] [CrossRef]
- Kempadoo, K.A.; Mosharov, E.V.; Choi, S.J.; Sulzer, D.; Kandel, E.R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl. Acad. Sci. USA 2016, 113, 14835–14840. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, R.S.; Elshafei, H.; Hemmerlin, J.; Bouet, R.; Bidet-Caulet, A. Why are children so distractible? Development of attention and motor control from childhood to adulthood. Child Dev. 2021, 92, e716–e737. [Google Scholar] [CrossRef]
- Kannass, K.N.; Oakes, L.M.; Shaddy, D.J. A longitudinal investigation of the development of attention and distractibility. J. Cogn. Dev. 2006, 7, 381–409. [Google Scholar] [CrossRef]
- Palfrey, J.S.; Levine, M.D.; Walker, D.K.; Sullivan, M. The emergence of attention deficits in early childhood: A prospective study. J. Dev. Behav. Pediatrics 1985, 6, 339–348. [Google Scholar] [CrossRef]
- Liu, K.Y.; Acosta-Cabronero, J.; Cardenas-Blanco, A.; Loane, C.; Berry, A.J.; Betts, M.J.; Kievit, R.A.; Henson, R.N.; Duzel, E.; Cam, C.A.N.; et al. In vivo visualization of age-related differences in the locus coeruleus. Neurobiol. Aging 2019, 74, 101–111. [Google Scholar] [CrossRef]
- Jacobs, H.I.L.; Muller-Ehrenberg, L.; Priovoulos, N.; Roebroeck, A. Curvilinear locus coeruleus functional connectivity trajectories over the adult lifespan: A 7T MRI study. Neurobiol. Aging 2018, 69, 167–176. [Google Scholar] [CrossRef]
- Bondareff, W.; Mountjoy, C.Q.; Roth, M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 1982, 32, 164–168. [Google Scholar] [CrossRef]
- Casey, B.; Heller, A.S.; Gee, D.G.; Cohen, A.O. Development of the emotional brain. Neurosci. Lett. 2019, 693, 29–34. [Google Scholar] [CrossRef]
- Toga, A.W.; Thompson, P.M.; Sowell, E.R. Mapping brain maturation. Focus 2006, 29, 148–390. [Google Scholar]
- Nomi, J.S.; Bolt, T.S.; Ezie, C.C.; Uddin, L.Q.; Heller, A.S. Moment-to-moment BOLD signal variability reflects regional changes in neural flexibility across the lifespan. J. Neurosci. 2017, 37, 5539–5548. [Google Scholar] [CrossRef] [Green Version]
- Elliott, M.L.; Knodt, A.R.; Cooke, M.; Kim, M.J.; Melzer, T.R.; Keenan, R.; Ireland, D.; Ramrakha, S.; Poulton, R.; Caspi, A. General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage 2019, 189, 516–532. [Google Scholar] [CrossRef]
- Lee, T.-H.; Miernicki, M.E.; Telzer, E.H. Behavioral and neural concordance in parent-child dyadic sleep patterns. Dev. Cogn. Neurosci. 2017, 26, 77–83. [Google Scholar] [CrossRef]
- Lee, T.-H.; Miernicki, M.E.; Telzer, E.H. Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads. NeuroImage 2017, 152, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-H.; Telzer, E.H. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence. Dev. Cogn. Neurosci. 2016, 20, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Nooner, K.B.; Colcombe, S.; Tobe, R.; Mennes, M.; Benedict, M.; Moreno, A.; Panek, L.; Brown, S.; Zavitz, S.; Li, Q. The NKI-Rockland sample: A model for accelerating the pace of discovery science in psychiatry. Front. Neurosci. 2012, 6, 152. [Google Scholar] [CrossRef] [Green Version]
- Landis, D.; Courtney, W.; Dieringer, C.; Kelly, R.; King, M.; Miller, B.; Wang, R.; Wood, D.; Turner, J.A.; Calhoun, V.D. COINS Data Exchange: An open platform for compiling, curating, and disseminating neuroimaging data. NeuroImage 2016, 124, 1084–1088. [Google Scholar] [CrossRef] [Green Version]
- Pruim, R.H.; Mennes, M.; van Rooij, D.; Llera, A.; Buitelaar, J.K.; Beckmann, C.F. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 2015, 112, 267–277. [Google Scholar] [CrossRef]
- Avants, B.B.; Tustison, N.J.; Stauffer, M.; Song, G.; Wu, B.; Gee, J.C. The Insight ToolKit image registration framework. Front. Neuroinformatics 2014, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Keren, N.I.; Lozar, C.T.; Harris, K.C.; Morgan, P.S.; Eckert, M.A. In vivo mapping of the human locus coeruleus. NeuroImage 2009, 47, 1261–1267. [Google Scholar] [CrossRef] [Green Version]
- Winkler, A.M.; Ridgway, G.R.; Webster, M.A.; Smith, S.M.; Nichols, T.E. Permutation inference for the general linear model. Neuroimage 2014, 92, 381–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Gao, E.; Burkhalter, A. Gateways of ventral and dorsal streams in mouse visual cortex. J. Neurosci. 2011, 31, 1905–1918. [Google Scholar] [CrossRef] [Green Version]
- Burton, H.; Sinclair, R.J.; Wingert, J.R.; Dierker, D.L. Multiple parietal operculum subdivisions in humans: Tactile activation maps. Somatosens. Mot. Res. 2008, 25, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Warrier, C.; Wong, P.; Penhune, V.; Zatorre, R.; Parrish, T.; Abrams, D.; Kraus, N. Relating structure to function: Heschl’s gyrus and acoustic processing. J. Neurosci. 2009, 29, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Kovach, C.K.; Daw, N.D.; Rudrauf, D.; Tranel, D.; O’Doherty, J.P.; Adolphs, R. Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends. J. Neurosci. 2012, 32, 8434–8442. [Google Scholar] [CrossRef] [Green Version]
- Sowell, E.R.; Thompson, P.M.; Toga, A.W. Mapping changes in the human cortex throughout the span of life. Neuroscientist 2004, 10, 372–392. [Google Scholar] [CrossRef]
- Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R. Locus coeruleus: A new look at the blue spot. Nat. Rev. Neurosci. 2020, 21, 644–659. [Google Scholar] [CrossRef]
- Mattson, M.P.; Arumugam, T.V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab. 2018, 27, 1176–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyberg, L.; Salami, A.; Andersson, M.; Eriksson, J.; Kalpouzos, G.; Kauppi, K.; Lind, J.; Pudas, S.; Persson, J.; Nilsson, L.G. Longitudinal evidence for diminished frontal cortex function in aging. Proc. Natl. Acad. Sci. USA 2010, 107, 22682–22686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salat, D.H.; Buckner, R.L.; Snyder, A.Z.; Greve, D.N.; Desikan, R.S.; Busa, E.; Morris, J.C.; Dale, A.M.; Fischl, B. Thinning of the cerebral cortex in aging. Cereb. Cortex 2004, 14, 721–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cliff, M.; Joyce, D.W.; Lamar, M.; Dannhauser, T.; Tracy, D.K.; Shergill, S.S. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading. Cortex 2013, 49, 1304–1313. [Google Scholar] [CrossRef]
- Hämmerer, D.; Callaghan, M.F.; Hopkins, A.; Kosciessa, J.; Betts, M.; Cardenas-Blanco, A.; Kanowski, M.; Weiskopf, N.; Dayan, P.; Dolan, R.J.; et al. Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proc. Natl. Acad. Sci. USA 2018, 115, 2228–2233. [Google Scholar] [CrossRef] [Green Version]
- Sudre, G.; Szekely, E.; Sharp, W.; Kasparek, S.; Shaw, P. Multimodal mapping of the brain’s functional connectivity and the adult outcome of attention deficit hyperactivity disorder. Proc. Natl. Acad. Sci. USA 2017, 114, 11787–11792. [Google Scholar] [CrossRef] [Green Version]
- Prado, J.; Carp, J.; Weissman, D.H. Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network. NeuroImage 2011, 54, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Hart, H.; Radua, J.; Nakao, T.; Mataix-Cols, D.; Rubia, K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 2013, 70, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Kam, J.W.Y.; Lin, J.J.; Solbakk, A.K.; Endestad, T.; Larsson, P.G.; Knight, R.T. Default network and frontoparietal control network theta connectivity supports internal attention. Nat. Hum. Behav. 2019, 3, 1263–1270. [Google Scholar] [CrossRef]
- Corbetta, M.; Patel, G.; Shulman, G.L. The reorienting system of the human brain: From environment to theory of mind. Neuron 2008, 58, 306–324. [Google Scholar] [CrossRef] [Green Version]
- Alakörkkö, T.; Saarimäki, H.; Glerean, E.; Saramäki, J.; Korhonen, O. Effects of spatial smoothing on functional brain networks. Eur. J. Neurosci. 2017, 46, 2471–2480. [Google Scholar] [CrossRef]
- Wengler, K.; He, X.; Abi-Dargham, A.; Horga, G. Reproducibility assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses. NeuroImage 2020, 208, 116457. [Google Scholar] [CrossRef]
- Betts, M.J.; Kirilina, E.; Otaduy, M.C.G.; Ivanov, D.; Acosta-Cabronero, J.; Callaghan, M.F.; Lambert, C.; Cardenas-Blanco, A.; Pine, K.; Passamonti, L.; et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019, 142, 2558–2571. [Google Scholar] [CrossRef]
- Watanabe, T.; Tan, Z.; Wang, X.; Martinez-Hernandez, A.; Frahm, J. Magnetic resonance imaging of noradrenergic neurons. Brain Struct. Funct. 2019, 224, 1609–1625. [Google Scholar] [CrossRef] [Green Version]
- Plini, E.R.G.; O’Hanlon, E.; Boyle, R.; Sibilia, F.; Rikhye, G.; Kenney, J.; Whelan, R.; Melnychuk, M.C.; Robertson, I.H.; Dockree, P.M. Examining the Role of the Noradrenergic Locus Coeruleus for Predicting Attention and Brain Maintenance in Healthy Old Age and Disease: An MRI Structural Study for the Alzheimer’s Disease Neuroimaging Initiative. Cells 2021, 10, 1829. [Google Scholar] [CrossRef]
- Dahl, M.J.; Mather, M.; Werkle-Bergner, M.; Kennedy, B.L.; Guzman, S.; Hurth, K.; Miller, C.A.; Qiao, Y.; Shi, Y.; Chui, H.C.; et al. Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer’s disease. medRxiv 2021. preprint. [Google Scholar] [CrossRef]
- Betts, M.J.; Cardenas-Blanco, A.; Kanowski, M.; Jessen, F.; Duzel, E. In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. NeuroImage 2017, 163, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Tona, K.D.; Keuken, M.C.; de Rover, M.; Lakke, E.; Forstmann, B.U.; Nieuwenhuis, S.; van Osch, M.J.P. In vivo visualization of the locus coeruleus in humans: Quantifying the test-retest reliability. Brain Struct. Funct. 2017, 222, 4203–4217. [Google Scholar] [CrossRef]
- Ye, R.; Rua, C.; O’Callaghan, C.; Jones, P.S.; Hezemans, F.H.; Kaalund, S.S.; Tsvetanov, K.A.; Rodgers, C.T.; Williams, G.; Passamonti, L.; et al. An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field. NeuroImage 2021, 225, 117487. [Google Scholar] [CrossRef]
- Glover, G.H.; Li, T.Q.; Ress, D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 2000, 44, 162–167. [Google Scholar] [CrossRef]
t | H | BA | MNI | Note | |||
---|---|---|---|---|---|---|---|
x | y | z | |||||
Positive quadratic age effect | |||||||
Parahippocampal gyrus | 4.79 | R | 36 | 30 | −22 | −16 | Visual |
Precuneus | 4.71 | R | 7 | 8 | −48 | 52 | Visual |
Lateral occipital gyrus | 4.37 | R | 19 | 46 | −66 | 18 | Visual |
Fusiform gyrus, temporal occipital | 4.52 | R | 37 | 40 | −48 | −22 | Visual |
Fusiform gyrus, occipital | 4.16 | L | 19 | −28 | −78 | −12 | Visual |
4.07 | R | 37 | 34 | −70 | −16 | Visual | |
Cerebellum | 4.58 | R | - | 4 | −56 | −18 | Somatosensory |
4.17 | L | - | −4 | −48 | −16 | Somatosensory | |
Opercular cortex, central | 4.25 | R | 6 | 54 | −2 | 6 | Somatosensory |
Operculum, parietal | 3.81 | L | 13 | −46 | −34 | 20 | Somatosensory |
3.27 | R | 13 | 42 | −26 | 18 | Somatosensory | |
Heschl’s Gyrus | 4.54 | R | 41 | 38 | −24 | 12 | Auditory |
Planum temporale | 3.33 | L | 41 | −42 | −34 | 12 | Auditory |
Negative quadratic age effect | |||||||
Frontal pole | 3.897 | L | 10 | −28 | 52 | 2 | Frontal |
Frontal medial cortex | 3.160 | L | 11 | −4 | 40 | −18 | Frontal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, I.; Neal, J.; Lee, T.-H. Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults. Brain Sci. 2021, 11, 1485. https://doi.org/10.3390/brainsci11111485
Song I, Neal J, Lee T-H. Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults. Brain Sciences. 2021; 11(11):1485. https://doi.org/10.3390/brainsci11111485
Chicago/Turabian StyleSong, Inuk, Joshua Neal, and Tae-Ho Lee. 2021. "Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults" Brain Sciences 11, no. 11: 1485. https://doi.org/10.3390/brainsci11111485
APA StyleSong, I., Neal, J., & Lee, T.-H. (2021). Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults. Brain Sciences, 11(11), 1485. https://doi.org/10.3390/brainsci11111485