Testing the Effects of a Virtual Reality Game for Aggressive Impulse Management: A Preliminary Randomized Controlled Trial among Forensic Psychiatric Outpatients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedure
2.4. Intervention
2.4.1. Treatment as Usual
2.4.2. VR-GAIME
2.5. Measures
2.5.1. Questionnaires
2.5.2. Paradigms
2.6. Statistical Analyses
3. Results
3.1. Differences among Forensic Psychiatric Outpatients
3.2. Main Effects of Training
3.3. Exploratory Analyses; Individual Differences in Treatment Effects
3.4. Post-Training Questionnaire
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spielberger, C.D.; Jacobs, G.; Russell, S.; Crane, R.S. Assessment of anger: The state-trait anger scale. In Advances in Personality Assessment; Butcher, J.N., Spielberger, C., Eds.; Lawrence Erlbaum: Hillsdael, NJ, USA, 1983; pp. 59–187. [Google Scholar]
- Spielberger, C.D.; Reheiser, E.C. Assessment of emotions: Anxiety, anger, depression, and curiosity. Appl. Psychol. Health Well-Being 2009, 1, 271–302. [Google Scholar] [CrossRef]
- Doyle, M.; Dolan, M. Evaluating the validity of anger regulation problems, interpersonal style, and disturbed mental state for predicting inpatient violence. Behav. Sci. Law 2006, 24, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Holley, S.R.; Ewing, S.T.; Stiver, J.T.; Bloch, L. The Relationship Between Emotion Regulation, Executive Functioning, and Aggressive Behaviors. J. Interpers. Violence 2017, 32, 1692–1707. [Google Scholar] [CrossRef] [PubMed]
- Roberton, T.; Daffern, M.; Bucks, R.S. Beyond anger control: Difficulty attending to emotions also predicts aggression in offenders. Psychol. Violence 2015, 5, 74–83. [Google Scholar] [CrossRef]
- Anderson, C.A.; Bushman, B.J. Human aggression. Psychology 2002, 53, 27–51. [Google Scholar] [CrossRef]
- Weinshenker, N.J.; Siegel, A. Bimodal classification of aggression: Affective defense and predatory attack. Aggress. Violent Behav. 2002, 7, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Lochman, J.E.; Barry, T.; Powell, N.; Young, L. Anger and aggression. In Practitioner’s Guide to Empirically Based Measures of Social Skills; Springer: Berlin/Heidelberg, Germany, 2010; pp. 155–166. [Google Scholar]
- Roberton, T.; Daffern, M.; Bucks, R. Emotion regulation and aggression. Aggress. Violent Behav. 2012, 17, 72–82. [Google Scholar] [CrossRef]
- Dodge, K.A.; Coie, J.D. Social-information-processing factors in reactive and proactive aggression in children’s peer groups. J. Personal. Soc. Psychol. 1987, 53, 1146. [Google Scholar] [CrossRef]
- Cima, M.; Raine, A. Distinct characteristics of psychopathy relate to different subtypes of aggression. Pers. Individ. Differ. 2009, 47, 835–840. [Google Scholar] [CrossRef]
- Henwood, K.S.; Chou, S.; Browne, K.D. A systematic review and meta-analysis on the effectiveness of CBT informed anger management. Aggress. Violent Behav. 2015, 25, 280–292. [Google Scholar] [CrossRef]
- Lipsey, M.W.; Chapman, G.L.; Landenberger, N.A. Cognitive-behavioral programs for offenders. Ann. Am. Acad. Political Soc. Sci. 2001, 578, 144–157. [Google Scholar] [CrossRef]
- Brännström, L.; Kaunitz, C.; Andershed, A.-K.; South, S.; Smedslund, G. Aggression replacement training (ART) for reducing antisocial behavior in adolescents and adults: A systematic review. Aggress. Violent Behav. 2016, 27, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Schamborg, S.; Tully, R.J. A systematic review of the effectiveness of anger management interventions among adult male offenders in secure settings. Arch. Forensic Psychol. 2015, 1, 28–54. [Google Scholar]
- Howells, K.; Day, A. Readiness for anger management: Clinical and theoretical issues. Clin. Psychol. Rev. 2002, 23, 319–337. [Google Scholar] [CrossRef]
- Vigil-Colet, A.; Ruiz-Pamies, M.; Anguiano-Carrasco, C.; Lorenzo-Seva, U. The impact of social desirability on psychometric measures of aggression. Psicothema 2012, 24, 310–315. [Google Scholar]
- Smeijers, D.; Bulten, E.; Buitelaar, J.; Verkes, R.J. Associations between Neurocognitive Characteristics, Treatment Outcome and Drop-out among Aggressive Forensic Psychiatric Outpatients. Int. J. Offender Ther. Comp. Criminol. 2018, 2, 3853–3872. [Google Scholar] [CrossRef]
- Smeijers, D. Severe Aggressive Behavior. Towards Understanding Some of the Underlying Characteristics and Treatment Responsivity. Ph.D. Thesis, Radboud University, Nijmegen, The Netherlands, June 2017. [Google Scholar]
- Veenstra, L.; Bushman, B.J.; Koole, S.L. The facts on the furious: A brief review of the psychology of trait anger. Curr. Opin. Psychol. 2018, 19, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Carver, C.S.; Harmon-Jones, E. Anger is an approach-related affect: Evidence and implications. Psychol. Bull. 2009, 135, 183–204. [Google Scholar] [CrossRef]
- Veenstra, L.; Schneider, I.K.; Bushman, B.J.; Koole, S.L. Drawn to danger: Trait anger predicts automatic approach behaviour to angry faces. Cogn. Emot. 2016, 31, 765–771. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Harmon-Jones, C.; Price, T.F. What is approach motivation? Emot. Rev. 2013, 5, 291–295. [Google Scholar] [CrossRef]
- Koole, S.L.; Veenstra, L.; Domachowska, I.; Dillon, K.; Schneider, I.K. Embodied Anger Management: Approach-Related Postures Moderate Whether Trait Anger Becomes Translated into State Anger and Aggression. Motiv. Sci. 2021. (accepted for publication). [Google Scholar]
- Veenstra, L.; Koole, S.L. Disarming darkness: Effects of ambient lighting on approach motivation and state anger among people with varying trait anger. J. Environ. Psychol. 2018, 60, 34–40. [Google Scholar] [CrossRef]
- Veenstra, L.; Schneider, I.K.; Koole, S.L. The effects of motivational training on state anger and aggressive impulses among people varying in trait anger. Motiv. Sci. 2017, 3, 354. [Google Scholar] [CrossRef]
- Wiers, R.W.; Eberl, C.; Rinck, M.; Becker, E.S.; Lindenmeyer, J. Retraining Automatic Action Tendencies Changes Alcoholic Patients’ Approach Bias for Alcohol and Improves Treatment Outcome. Psychol. Sci. 2011, 22, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Wiers, R.W.; Rinck, M.; Kordts, R.; Houben, K.; Strack, F. Retraining automatic action-tendencies to approach alcohol in hazardous drinkers. Addiction 2010, 105, 279–287. [Google Scholar] [CrossRef]
- Rinck, M.; Telli, S.; Kampmann, I.; Woud, M.L.; Kerstholt, M.; Te Velthuis, S.; Wittkowski, M.; Becker, E.S. Training approach-avoidance of smiling faces affects emotional vulnerability in socially anxious individuals. Front. Hum. Neurosci. 2013, 7, 481. [Google Scholar] [CrossRef] [Green Version]
- Deffenbacher, J.L. Cognitive-behavioral conceptualization and treatment of anger. Cogn. Behav. Pract. 2011, 18, 212–221. [Google Scholar] [CrossRef]
- Mohr, D.C.; Burns, M.N.; Schueller, S.M.; Clarke, G.; Klinkman, M. Behavioral intervention technologies: Evidence review and recommendations for future research in mental health. Gen. Hosp. Psychiatry 2013, 35, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Michael, D.R.; Chen, S. Serious Games: Games That Educate, Train and Inform; Cengage Learning PTR: Boston, MA, USA, 2006. [Google Scholar]
- Stapleton, A.J. Serious games: Serious opportunities. In Proceedings of the Australian Game Developers Conference, Academic Summit, Melbourne, Autralia, 2–4 December 2004. [Google Scholar]
- Parsons, T.D. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Riva, G. Virtual reality: An experiential tool for clinical psychology. Br. J. Guid. Couns. 2009, 37, 337–345. [Google Scholar] [CrossRef]
- Servotte, J.C.; Goosse, M.; Campbell, S.H.; Dardenne, N.; Pilote, B.; Simoneau, I.L.; Guillaume, M.; Bragard, I.; Ghuysen, A. Virtual reality experience: Immersion, sense of presence, and cybersickness. Clin. Simul. Nurs. 2020, 38, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, R.E.; Dijk, A.V.; Verhulp, E.E.; Castro, B.O.D. Interactive virtual reality assessment of aggressive social information processing in boys with behavior problems: A pilot study. Clin. Psychol. Psychother. 2021, 28, 489–499. [Google Scholar] [CrossRef]
- Geraets, C.N.; van der Stouwe, E.C.; Pot-Kolder, R.; Veling, W. Advances in immersive virtual reality interventions for mental disorders–a new reality? Curr. Opin. Psychol. 2021, 41, 40–45. [Google Scholar] [CrossRef]
- Kahn, J.; Ducharme, P.; Rotenberg, A.; Gonzalez-Heydrich, J. “RAGE-Control”: A game to build emotional strength. Games Health Res. Dev. Clin. Appl. 2013, 2, 53–57. [Google Scholar] [CrossRef]
- Opriş, D.; Pintea, S.; García-Palacios, A.; Botella, C.; Szamosközi, Ş.; David, D. Virtual reality exposure therapy in anxiety disorders: A quantitative meta-analysis. Depress. Anxiety 2012, 29, 85–93. [Google Scholar] [CrossRef]
- Rosenberg, R.S.; Baughman, S.L.; Bailenson, J.N. Virtual superheroes: Using superpowers in virtual reality to encourage prosocial behavior. PLoS ONE 2013, 8, e55003. [Google Scholar] [CrossRef]
- Seitz, C.A.; Poyrazli, S.; Harrisson, M.A.; Flickinger, T.; Turkson, M. Virtual Reality Exposure Therapy for Military Veterans with Posttraumatic Stress Disorder: A Systematic Review. New Sch. Psychol. Bull. 2014, 11, 15–29. [Google Scholar]
- Tárrega, S.; Castro-Carreras, L.; Fernández-Aranda, F.; Granero, R.; Giner-Bartolomé, C.; Aymamí, N.; Gómez-Peña, M.; Santamaría, J.J.; Forcano, L.; Steward, T.; et al. A serious videogame as an additional therapy tool for training emotional regulation and impulsivity control in severe gambling disorder. Front. Psychol. 2015, 6, 1721. [Google Scholar] [CrossRef] [Green Version]
- Benbouriche, M.; Nolet, K.; Trottier, D.; Renaud, P. Virtual reality applications in forensic psychiatry. In Proceedings of the 2014 Virtual Reality International Conference, France, Laval, 9–11 April 2014; pp. 1–14. [Google Scholar]
- Cornet, L.J.M.; den Besten, A.L.; van Gelder, J.-L. Virtual Reality en Augmented Reality in Justitiele Context; University of Twente: Enschede, The Netherlands, 2019. [Google Scholar]
- Nee, C.; van Gelder, J.L.; Otte, M.; Vernham, Z.; Meenaghan, A. Learning on the job: Studying expertise in residential burglars using virtual environments. Criminology 2019, 57, 481–511. [Google Scholar] [CrossRef]
- Renaud, P.; Rouleau, J.L.; Proulx, J.; Trottier, D.; Goyette, M.; Bradford, J.P.; Fedoroff, P.; Dufresne, M.-H.; Dassylva, B.; Côté, G.; et al. Virtual characters designed for forensic assessment and rehabilitation of sex offenders: Standardized and made-to-measure. J. Virtual Real. Broadcasting 2010, 7. [Google Scholar] [CrossRef]
- Tuente, K.S.; Bogaerts, S.; Bulten, E.; Keulen-de Vos, M.; Vos, M.; Bokern, H.; van Ijzendoorn, S.; Geraets, C.N.W.; Veling, W. Virtual reality aggression prevention therapy (VRAPT) versus waiting list control for forensic psychiatric inpatients: A multicenter randomized controlled trial. J. Clin. Med. 2020, 9, 2258. [Google Scholar] [CrossRef] [PubMed]
- Smeijers, D.; Koole, S.L. Testing the effects of a virtual reality game for aggressive impulse management (VR-GAIME): Study protocol. Front. Psychiatry 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.; Goldstein, A.P. Aggression replacement training. J. Couns. Dev. 1987, 65, 356–362. [Google Scholar] [CrossRef]
- Goldstein, A.P.; Glick, B.; Gibbs, J.C. Aggression Replacement Training: A Comprehensive Intervention for Aggressive Youth; Research Press: Champaign, IL, USA, 1998. [Google Scholar]
- Hornsveld, R.H.; Nijman, H.L.; Hollin, C.R.; Kraaimaat, F.W. Aggression control therapy for violent forensic psychiatric patients: Method and clinical practice. Int. J. Offender Ther Comp. Criminol. 2008, 52, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Hornsveld, R.H.; Kraaimaat, F.W.; Muris, P.; Zwets, A.J.; Kanters, T. Aggression Replacement Training for violent young men in a forensic psychiatric outpatient clinic. J. Interpers. Violence 2014, 30, 3174–3191. [Google Scholar] [CrossRef]
- Smeijers, D.; Bulten, E.; Buitelaar, J.; Verkes, R.J. Treatment Responsivity of Aggressive Forensic Psychiatric Outpatients. Int. J. Offender Ther. Comp. Criminol. 2017, 62, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Schmand, B.A.; Bakker, D.; Saan, R.J.; Louman, J. De Nederlandse Leestest voor Volwassenen: Een maat voor het premorbide intelligentieniveau. Tijdschrift Gerontologie Geriatrie 1991, 22, 15–19. [Google Scholar]
- Weertman, A.; Arntz, A.; Kerkhofs, M. SCID-II: Gestructureerd Klinisch Interview voor DSM-IV as II Persoonlijk-Heidsstoornissen; Swets & Zeitlinger: Lisse, The Netherlands, 2000. [Google Scholar]
- Coccaro, E.F.; Kavoussi, R.J.; Berman, M.E.; Lish, J.D. Intermittent explosive disorder-revised: Development, reliability, and validity of research criteria. Compr. Psychiatry 1998, 39, 368–376. [Google Scholar] [CrossRef]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33. [Google Scholar]
- Van Vliet, I.; De Beurs, E. Het Mini Internationaal Neuropsychiatrisch Interview (MINI). Een kort gestructureerd diag-nostisch psychiatrisch interview voor DSM-IV en ICD-10-stoornissen. Tijdschr. Psychiatr. 2007, 49, 393–397. [Google Scholar]
- Rinck, M.; Wiers, R.W.; Becker, E.S.; Lindenmeyer, J. Relapse prevention in abstinent alcoholics by cognitive bias modification: Clinical effects of combining approach bias modification and attention bias modification. J. Consult. Clin. Psychol. 2018, 86, 1005. [Google Scholar] [CrossRef]
- Wistedt, B.; Rasmussen, A.; Pedersen, L.; Malm, U.; Träskman-Bendz, L.; Wakelin, J.; Bech, P. The development of an observer-scale for measuring social dysfunction and aggression. Pharmacopsychiatry 1990, 23, 249–252. [Google Scholar] [CrossRef]
- Carver, C.S.; White, T.L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. J. Personal. Soc. Psychol. 1994, 67, 319. [Google Scholar] [CrossRef]
- Franken, I.H.; Muris, P.; Rassin, E. Psychometric properties of the Dutch BIS/BAS scales. J. Psychopathol. Behav. Assess. 2005, 27, 25–30. [Google Scholar] [CrossRef]
- Cima, M.; Raine, A.; Meesters, C.; Popma, A. Validation of the Dutch Reactive Proactive Questionnaire (RPQ): Differential Correlates of Reactive and Proactive Aggression From Childhood to Adulthood. Aggress. Behav. 2013, 39, 99–113. [Google Scholar] [CrossRef]
- Raine, A.; Dodge, K.; Loeber, R.; Gatzke-Kopp, L.; Lynam, D.; Reynolds, C.; Stouthamer-Loeber, M.; Liu, J. The reactive-proactive aggression questionnaire: Differential correlates of reactive and proactive aggression in adolescent boys. Aggress. Behav. 2006, 32, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Buss, A.H.; Perry, M. The aggression questionnaire. J. Personal. Soc. Psychol. 1992, 63, 452–459. [Google Scholar] [CrossRef]
- Morren, M.; Meesters, C. Validation of the Dutch version of the Aggression Questionnaire in adolescent male offenders. Aggress. Behav. 2002, 28, 87–96. [Google Scholar] [CrossRef]
- Paulhus, D.L.; Neumann, C.S.; Hare, R. Manual for the Self-Report Psychopathy Scale, 4th ed.; Multi-Health Systems: Toronto, ON, Canada, 2015. [Google Scholar]
- Gordts, S.; Uzieblo, K.; Neumann, C.; Van den Bussche, E.; Rossi, G. Validity of the Self-Report Psychopathy Scales (SRP-III full and short versions) in a community sample. Assessment 2015, 24, 308–325. [Google Scholar] [CrossRef]
- Spielberger, C.D. Preliminary Manual for the State-Trait Anger Scale (STAS); University of South Florida Human Resources Institute: Tampa, FL, USA, 1980. [Google Scholar]
- Van der Ploeg, H.; Defares, P.; Spielberger, C. Handleiding bij de Zelf-Analyse Vragenlijst, ZAV; Swets & Zeitlinger: Lisse, The Netherlands, 1982. [Google Scholar]
- Harmon-Jones, C.; Bastian, B.; Harmon-Jones, E. The discrete emotions questionnaire: A new tool for measuring state self-reported emotions. PLoS ONE 2016, 11, e0159915. [Google Scholar] [CrossRef]
- DeWall, C.N.; Finkel, E.J.; Lambert, N.M.; Slotter, E.B.; Bodenhausen, G.V.; Pond, R.S., Jr.; Renzetti, C.M.; Fincham, F.D. The voodoo doll task: Introducing and validating a novel method for studying aggressive inclinations. Aggress. Behav. 2013, 39, 419–439. [Google Scholar] [CrossRef] [Green Version]
- Smeijers, D.; Rinck, M.; Bulten, E.; Verkes, R.J. Extensive Hostile Interpretation Bias Regarding Emotional Facial Expressions among Forensic Psychiatric Outpatients. Aggress. Behav. 2017, 4, 386–397. [Google Scholar] [CrossRef]
- Langner, O.; Dotsch, R.; Bijlstra, G.; Wigboldus, D.H.; Hawk, S.T.; Van Knippenberg, A.D. Presentation and validation of the Radboud Faces Database. Cogn. Emot. 2010, 24, 1377–1388. [Google Scholar] [CrossRef]
- Heck, R.H.; Thomas, S.L.; Tabata, L.N. Multilevel and Longitudinal Modeling with IBM SPSS; Rouledge: New York, NY, USA, 2013. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- West, B.T.; Welch, K.B.; Galecki, A.T. Linear Mixed Models: A Practical Guide Using Statistical Software; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Becker, E.S.; Ferentzi, H.; Ferrari, G.; Möbius, M.; Brugman, S.; Custers, J.; Geurtzen, N.; Wouters, J. Always approach the bright side of life: A general positivity training reduces stress reactions in vulnerable individuals. Cogn. Ther. Res. 2016, 40, 57–71. [Google Scholar] [CrossRef] [Green Version]
N | |
---|---|
Total | 254 |
Reason: | 24 |
Negative decision by therapist due to severity of psychopathology | 69 |
Dropout after intake/not suitable for treatment | 92 |
Refused to participate | |
Exclusion criteria: | |
- Female | 10 |
- Current major depression | 2 |
- Lifetime bipolar disorder | 1 |
- Lifetime psychosis | 6 |
- Current severe alcohol/drug dependency | 2 |
- Insufficient understanding of Dutch language | 3 |
- No current aggressive behavior (only past) | 45 |
Mean/N | |
---|---|
Age | M = 36.13 (SD = 12.88) |
IQ* | M = 83.68 (SD = 14.98) |
Alcohol use, unit/week | M = 2.06 (SD = 4.56) |
Cannabis use, joint/week | M = 2.07 (SD = 4.09) |
Obligatory admission | N = 5 |
Voluntary admission | N = 25 |
Diagnosis: | |
- Antisocial personality disorder | N = 11 |
- Borderline personality disorder | N = 4 |
- Intermittent explosive disorder | N = 23 |
- ADHD | N = 9 |
- History of depressive disorder | N = 13 |
VR-GAIME (N = 15) | Control (N = 16) | Total Sample (N = 31) | |
---|---|---|---|
Questionnaires | |||
SDAS pre-treatment | M = 14.47 (SD = 8.55) | M = 13.25 (SD = 8.35) | M = 13.84 (SD = 8.33) |
SDAS half-way | M = 14.00 (SD = 6.74) | M = 12.25 (SD = 8.35) | M = 13.07 (SD = 7.57) |
SDAS post-treatment | M = 12.20 (SD = 7.13) | M = 9.00 (SD = 6.91) | M = 10.60 (SD = 7.09) |
DEQ pre-treatment | M = 2.94 (SD = 0.81) | M = 3.21 (SD = 0.86) | M = 3.08 (SD = 0.83) |
DEQ half-way | M = 2.69 (SD = 0.67) | M = 2.82 (SD = 0.62) | M = 2.76 (SD = 0.64) |
DEQ post-treatment | M = 2.74 (SD = 0.93) | M = 3.00 (SD = 0.93) | M = 2.87 (SD = 0.92) |
SRP-SF pre-treatment | M = 74.00 (SD = 11.86) | M = 69.5 (SD = 15.15) | M = 71.68 (SD = 13.63) |
AQ pre-treatment | M = 96.73 (SD = 18.80) | M = 89.75 (SD = 14.52) | M = 93.13 (SD = 16.82) |
AQ post-treatment | M = 90.93 (SD = 22.35) | M = 84.60 (SD = 18.13) | M = 87.77 (SD = 20.25) |
RPQ reactive pre-treatment | M = 15.13 (SD = 4.21) | M = 13.88 (SD = 4.01) | M = 14.48 (SD = 4.09) |
RPQ reactive post-treatment | M = 10.93 (SD = 5.32) | M = 10.27 (SD = 5.89) | M = 10.60 (SD = 5.52) |
RPQ proactive pre-treatment | M = 6.13 (SD = 4.22) | M = 4.81 (SD = 5.55) | M = 5.45 (SD = 4.91) |
RPQ proactive post-treatment | M = 4.07 (SD = 4.18) | M = 3.73 (SD = 3.83) | M = 3.90 (SD = 3.94) |
STAS state pre-treatment | M = 12.67 (SD = 6.73) | M = 12.44 (SD = 5.54) | M = 12.55 (SD = 6.04) |
STAS state post-treatment | M = 14.73 (SD = 7.18) | M = 12.60 (SD = 5.48) | M = 13.67 (SD = 6.36) |
STAS trait pre-treatment | M = 26.33 (SD = 7.81) | M = 24.81 (SD = 8.27) | M = 25.55 (SD = 7.95) |
STAS trait post-treatment | M = 24.33 (SD = 8.26) | M = 21.67 (SD = 5.65) | M = 23.00 (SD = 7.09) |
BIS pre-treatment | M = 17.33 (SD = 1.84) | M = 16.88 (SD = 1.89) | M = 17.09 (SD = 1.85) |
BIS pre-treatment | M = 17.53 (SD = 1.85) | M = 18.40 (SD = 1.99) | M = 17.97 (SD = 1.94) |
BAS Reward pre-treatment | M = 16.53 (SD = 1.77) | M = 16.56 (SD = 2.13) | M = 16.55 (SD = 1.93) |
BAS Reward post-treatment | M = 16.47 (SD = 2.67) | M = 16.33 (SD = 2.74) | M = 16.40 (SD = 2.66) |
BAS Drive pre-treatment | M = 11.53 (SD = 2.53) | M = 11.63 (SD = 3.01) | M = 11.58 (SD = 2.74) |
BAS Drive post-treatment | M = 11.13 (SD = 2.72) | M = 10.93 (SD = 4.03) | M = 11.03 (SD = 3.38) |
BAS Fun pre-treatment | M = 11.60 (SD = 1.99) | M = 11.25 (SD = 1.98) | M = 11.42 (SD = 1.96) |
BAS Fun pre-treatment | M = 11.33 (SD = 1.95) | M = 10.60 (SD = 2.19) | M = 1.97 (SD = 2.08) |
Paradigms | |||
VDT pre-treatment | M = 6.67 (SD = 7.81) | M = 4.19 (SD = 5.31) | M = 5.39 (SD = 6.64) |
VDT pre-treatment | M = 6.93 (SD = 8.96) | M = 7.47 (SD = 10.99) | M = 7.20 (SD = 9.86) |
HIBT anger pre-treatment | M = 54.52 (SD = 21.01) | M = 60.23 (SD = 24.92) | M = 57.46 (SD = 22.91) |
HIBT anger pre-treatment | M = 59.11 (SD = 21.31) | M = 58.48 (SD = 24.85) | M = 58.79 (SD = 22.79) |
HIBT disgust pre-treatment | M = 49.79 (SD = 21.49) | M = 51.28 (SD = 32.79) | M = 50.56 (SD = 27.46) |
HIBT disgust pre-treatment | M = 56.32 (SD = 23.11) | M = 48.43 (SD = 29.23) | M = 52.24 (SD = 26.28) |
HIBT fear pre-treatment | M = 26.45 (SD = 25.92) | M = 24.73 (SD = 31.99) | M = 25.56 (SD = 28.74) |
HIBT fear pre-treatment | M = 29.13 (SD = 30.93) | M = 29.02 (SD = 33.38) | M = 29.07 (SD = 31.64) |
HIBT happy pre-treatment | M = 12.86 (SD = 14.70) | M = 9.46 (SD = 15.69) | M = 11.10 (SD = 15.07) |
HIBT happy pre-treatment | M = 15.35 (SD = 19.96) | M = 9.98 (SD = 12.67) | M = 12.57 (SD = 16.52) |
VR-GAIME | |||
Correctly approached | |||
Session 1 | M = 18.60 (SD = 2.29) | M = 32.13 (SD = 11.84) | - |
Session 2 | M = 16.60 (SD = 7.53) | M = 34.38 (SD = 8.76) | - |
Session 3 | M = 17.33 (SD = 6.65) | M = 36.00 (SD = 8.33) | - |
Session 4 | M = 16.67 (SD = 6.43) | M = 34.69 (SD = 9.77) | - |
Session 5 | M = 15.86 (SD = 5.16) | M = 36.56 (SD = 8.91) | - |
Correctly avoided | |||
Session 1 | M = 17.07 (SD = 5.16) | - | - |
Session 2 | M = 18.67 (SD = 3.33) | - | - |
Session 3 | M = 19.40 (SD = 0.63) | - | - |
Session 4 | M = 18.93 (SD = 1.49) | - | - |
Session 5 | M = 18.07 (SD = 3.15) | - | - |
Model | Parameter | Estimate | 95% CI | t | df | p |
---|---|---|---|---|---|---|
Basic model 1 | Intercept | 13.41 | 9.11 – 17.71 | 6.38 | 28.99 | <0.001 |
SDAS self-report | Time | −1.97 | −4.15 – 0.22 | −1.84 | 29.05 | 0.076 |
Condition | 1.19 | −4.98 – 7.37 | 0.39 | 29.01 | 0.396 | |
Time × Condition | 0.93 | −2.19 – 4.05 | 0.61 | 28.63 | 0.548 | |
Basic model 2 | Intercept | 10.54 | 7.34 – 13.73 | 6.69 | 34.20 | <0.001 |
SDAS clinician | Time | −1.79 | −3.53 – 0.05 | −2.12 | 25.23 | 0.044 |
Condition | 3.19 | −1.40 – 7.79 | 1.41 | 34.39 | 0.167 | |
Time × Condition | 0.28 | −2.25 – 2.81 | 0.22 | 26.09 | 0.825 | |
Basic model 3 | Intercept | 3.06 | 2.72 – 3.39 | 18.68 | 25.22 | <0.001 |
DEQ | Time | −0.09 | −0.31 – 0.13 | −0.86 | 35.98 | 0.398 |
Condition | −0.26 | −0.76 – 0.23 | −1.09 | 25.71 | 0.285 | |
Time × Condition | 0.04 | −0.28 – 0.35 | 0.25 | 36.14 | 0.803 | |
Model including main effects baseline characteristics | Intercept | 13.08 | 10.17 – 15.99 | 10.18 | 8.87 | <0.001 |
SDAS self-report | Time | −1.49 | −2.96 – −0.03 | −2.08 | 30.38 | 0.046 |
Condition | 2.72 | −1.32 – 6.76 | 1.48 | 10.93 | 0.167 | |
SRP-SF | −0.19 | −0.61 – 0.22 | −1.08 | 12.61 | 0.324 | |
AQ | −0.16 | −0.48 – 0.15 | −1.14 | 10.56 | 0.279 | |
STAS state | 0.01 | −0.67 – 0.69 | 0.03 | 10.11 | 0.976 | |
STAS trait | 0.56 | 0.13 – 1.00 | 2.83 | 11.14 | 0.016 | |
RPQ proactive | 0.49 | −0.38 – 1.37 | 1.23 | 12.69 | 0.242 | |
RPQ reactive | 0.91 | 0.13 – 1.70 | 2.59 | 10.02 | 0.027 | |
BIS | −0.23 | −1.29 – 0.83 | −0.49 | 10.26 | 0.637 | |
BAS reward | 1.12 | −0.81 – 3.04 | 1.28 | 11.16 | 0.228 | |
BAS drive | 0.28 | −1.06 – 1.62 | 0.47 | 9.68 | 0.649 | |
BAS fun | −1.55 | −3.14 – 0.05 | −2.18 | 9.27 | 0.056 | |
VDT | −0.29 | −0.66 – 0.09 | −1.68 | 10.43 | 0.123 | |
HIBT angry | 0.14 | −0.04 – 0.33 | 1.77 | 8.31 | 0.114 | |
HIBT happy | 0.19 | −0.14 – 0.53 | 1.27 | 11.54 | 0.229 | |
HIBT fear | 0.04 | −0.09 – 0.16 | 0.66 | 10.49 | 0.525 | |
HIBT disgust | −0.12 | −0.26 – 0.03 | −1.93 | 6.81 | 0.097 | |
Model including significant main effects + interaction effects | Intercept | 13.22 | 10.50 – 15.95 | 9.89 | 32.31 | <0.001 |
SDAS self-report | Time | −1.28 | −2.78 – 0.23 | −1.75 | 24.55 | 0.093 |
Condition | 0.69 | −2.49 – 3.87 | 0.45 | 23.49 | 0.656 | |
STAS trait | 0.47 | 0.03 – 0.90 | 2.19 | 26.36 | 0.038 | |
RPQ reactive | 0.87 | 0.18 – 1.56 | 2.59 | 26.36 | 0.015 | |
BAS fun | −0.37 | −2.08 – 1.34 | −0.45 | 25.77 | 0.660 | |
Time × STAS trait | −0.12 | −0.43 – 0.19 | −0.82 | 28.14 | 0.419 | |
Time × RPQ reactive | 0.20 | −0.31 – 0.71 | 0.81 | 29.51 | 0.425 | |
Time × BAS fun | −0.11 | −1.31 – 1.13 | −0.15 | 28.24 | 0.880 | |
Time × Condition × STAS trait | 0.24 | −0.18 – 0.65 | 1.18 | 24.25 | 0.250 | |
Time × Condition × RPQ reactive | −0.55 | −1.19 – 0.09 | −1.79 | 23.41 | 0.087 | |
Time × Condition × BAS fun | −0.52 | −2.17 – 1.13 | −0.65 | 22.05 | 0.521 | |
Final model | Intercept | 13.19 | 10.55 – 15.85 | 10.11 | 34.67 | <0.001 |
SDAS self-report | Time | −1.26 | −2.75 – 0.23 | −1.73 | 29.10 | 0.094 |
Condition | 0.81 | −2.24 – 3.85 | 0.55 | 25.41 | 0.590 | |
STAS trait | 0.40 | 0.12 – 0.69 | 2.88 | 26.59 | 0.008 | |
RPQ reactive | 0.99 | 0.38 – 1.61 | 3.29 | 33.06 | 0.002 | |
BAS fun | −0.61 | −1.74 – 0.51 | −1.13 | 25.43 | 0.270 | |
Time × RPQ reactive | 0.06 | −0.38 – 0.51 | 0.29 | 36.76 | 0.774 | |
Time × Condition × RPQ reactive | −0.46 | −0.96 – 0.04 | −1.89 | 26.78 | 0.070 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smeijers, D.; Bulten, E.H.; Verkes, R.-J.; Koole, S.L. Testing the Effects of a Virtual Reality Game for Aggressive Impulse Management: A Preliminary Randomized Controlled Trial among Forensic Psychiatric Outpatients. Brain Sci. 2021, 11, 1484. https://doi.org/10.3390/brainsci11111484
Smeijers D, Bulten EH, Verkes R-J, Koole SL. Testing the Effects of a Virtual Reality Game for Aggressive Impulse Management: A Preliminary Randomized Controlled Trial among Forensic Psychiatric Outpatients. Brain Sciences. 2021; 11(11):1484. https://doi.org/10.3390/brainsci11111484
Chicago/Turabian StyleSmeijers, Danique, Erik H. Bulten, Robbert-Jan Verkes, and Sander L. Koole. 2021. "Testing the Effects of a Virtual Reality Game for Aggressive Impulse Management: A Preliminary Randomized Controlled Trial among Forensic Psychiatric Outpatients" Brain Sciences 11, no. 11: 1484. https://doi.org/10.3390/brainsci11111484
APA StyleSmeijers, D., Bulten, E. H., Verkes, R.-J., & Koole, S. L. (2021). Testing the Effects of a Virtual Reality Game for Aggressive Impulse Management: A Preliminary Randomized Controlled Trial among Forensic Psychiatric Outpatients. Brain Sciences, 11(11), 1484. https://doi.org/10.3390/brainsci11111484