Understanding the Functional Expression of
-Coupled SLC4 Transporters in the Renal and Nervous Systems: A Review
Abstract
:1. Introduction
2. The SLC4 Family
3. The -Dependent Transporters
3.1. NBCe1(SLC4A4)
3.2. NBCe2 (SLC4A5)
3.3. NBCn1 (SLC4A7)
3.4. NDCBE (SLC4A8)
3.5. NBCn2 (SLC4A10)
4. Physiology of NBCe1
4.1. NBCe1 in Renal Acid–Base Regulation
4.2. Activity of NBCe1 in the Central Nervous System (CNS)
5. NBCe1-Related Diseases
6. NBC Inhibitors
7. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roos, A.; Boron, W.F. Intracellular pH. Physiol. Rev. 1982, 62, 1377. [Google Scholar] [CrossRef]
- Casey, J.R. Why bicarbonate? Biochem. Cell Biol. 2006, 84, 930–939. [Google Scholar] [CrossRef]
- Vaughan-Jones, R.D.; Spitzer, K.W.; Swietach, P. Intracellular pH regulation in heart. J. Mol. Cell. Cardiol. 2009, 46, 318–331. [Google Scholar] [CrossRef]
- Dart, C.; Vaughan-Jones, R.D. Na(+)-HCO3− symport in the sheep cardiac Purkinje fibre. J. Physiol. 1992, 451, 365. [Google Scholar] [CrossRef] [Green Version]
- Alper, S.L. Molecular physiology of SLC4 anion exchangers. Exp. Physiol. 2006, 91, 153–161. [Google Scholar] [CrossRef]
- Kuhlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 2004, 5, 282–295. [Google Scholar] [CrossRef]
- Cipriano, D.J.; Wang, Y.; Bond, S.; Hinton, A.; Jefferies, K.C.; Jie, Q.; Forgac, M. Structure and regulation of the vacuolar ATPases. Biochim. Biophys. Acta (BBA)—Bioenerg. 2008, 1777, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Zha, X.-M. Acid-sensing ion channels Traffificking and synaptic function. Mol. Brain 2013, 6. [Google Scholar] [CrossRef] [Green Version]
- Bar, E.; Barak, B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia 2019, 67, 2125–2141. [Google Scholar] [CrossRef]
- Assefa, B.T.; Gebre, A.K.; Altaye, B.M. Reactive Astrocytes as Drug Target in Alzheimer’s Disease. Biomed. Res. Int. 2018, 2018, 4160247. [Google Scholar] [CrossRef] [Green Version]
- Tanner, M.R.; Beeton, C. Differences in ion channel phenotype and function between humans and animal models. Front. Biosci. 2018, 23, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Ohya, S.; Kito, H.; Hatano, N.; Muraki, K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol. Ther. 2016, 160, 11–43. [Google Scholar] [CrossRef]
- Donato, L.; Scimone, C.; Alibrandi, S.; Abdalla, E.M.; Nabil, K.M.; D’Angelo, R.; Sidoti, A. New Omics-Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? Int. J. Mol. Sci. 2020, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.C. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J. Physiol. 1976, 255, 715–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, M.F.; Fulton, C.M.; Boron, W.F. The SLC4 family of HCO3−—Transporters. Pflugers Arch. 2004, 447, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.K.; Kurschat, C.E.; Alper, S.L. The SLC4 Anion Exchanger Gene Family. In Seldin and Giebisch’s the Kidney, 4th ed.; Academic Press: Cambridge, MA, USA, 2008; Volume 9. [Google Scholar]
- Cordat, E.; Casey, J.R. Bicarbonate transport in cell physiology and disease. Biochem. J. 2009, 417, 423–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulpaep, W.B.E. Intracellular pH Regulation in the Renal Proximal Tubule of the Salamander. J. Gen. Physiol. 1983, 81, 53–94. [Google Scholar] [CrossRef]
- Romero, M.F.; Hediger, M.A. Expression cloning and characterization of a renal electrogenic Na/HCO3 cotransporter. Nature 1997, 387, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Abuladze, N.; Lee, I.; Newman, D.; Hwang, J.; Boorer, K.; Pushkin, A.; Kurtz, I. Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J. Biol. Chem. 1998, 273, 17689–17695. [Google Scholar] [CrossRef] [Green Version]
- Thévenod, F.; Roussa, E.; Schmitt, B.M.; Romero, M.F. Cloning and Immunolocalization of a Rat Pancreatic Na+Bicarbonate Cotransporter. Biochem. Biophys. Res. Commun. 1999, 264, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Boron, W.F.; Chen, L.; Parker, M.D. Modular structure of sodium-coupled bicarbonate transporters. J. Exp. Biol. 2009, 212, 1697–1706. [Google Scholar] [CrossRef] [Green Version]
- Burnham, C.E.; Amlal, H.; Wang, Z.; Shull, G.E.; Soleimani, M. Cloning and functional expression of a human kidney Na+:HCO3− cotransporter. J. Biol. Chem. 1997, 272, 19111–19114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, I.; Romero, M.F.; Khandoudi, N.; Bril, A.; Boron, W.F. Cloning and characterization of a human electrogenic Na+-HCO3− cotransporter isoform (hhNBC). Am. J. Physiol. 1999, 276, C576. [Google Scholar] [CrossRef] [PubMed]
- Fujinaga, J.; Tang, X.-B.; Casey, J.R. Topology of the Membrane Domain of Human Erythrocyte Anion Exchange Protein, AE1. J. Biol. Chem. 1999, 274, 6626–6633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Lee, D.W.; Casey, J.R. Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J. Biol. Chem. 2003, 278, 3112–3120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Kao, L.; Azimov, R.; Abuladze, N.; Newman, D.; Pushkin, A.; Liu, W.; Chang, C.; Kurtz, I. Structural and functional characterization of the C-terminal transmembrane region of NBCe1-A. J. Biol. Chem. 2010, 285, 37178–37187. [Google Scholar] [CrossRef] [Green Version]
- Huynh, K.W.; Jiang, J.; Abuladze, N.; Tsirulnikov, K.; Kao, L.; Shao, X.; Newman, D.; Azimov, R.; Pushkin, A.; Zhou, Z.H.; et al. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat. Commun. 2018, 9, 900. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.Y.; Wang, D.K.; Wang, L.; Chen, L.M. Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: A comparative study of NCBT genes. Genomics 2011, 98, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.D.; Boron, W.F. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol. Rev. 2013, 93, 803–959. [Google Scholar] [CrossRef] [Green Version]
- Gross, E.; Abuladze, N.; Pushkin, A.; Kurtz, I.; Cotton, C.U. The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 HCO(3)(−):1 Na(+). J. Physiol. 2001, 531, 375–382. [Google Scholar] [CrossRef]
- Jensen, L.J.; Schmitt, B.M.; Berger, U.V.; Nsumu, N.N.; Boron, W.F.; Hediger, M.A.; Brown, D.; Breton, S. Localization of Sodium Bicarbonate Cotransporter (NBC) Protein and Messenger Ribonucleic Acid in Rat Epididymis. Biol. Reprod. 1999, 60, 573–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bok, D.; Schibler, M.J.; Pushkin, A.; Sassani, P.; Abuladze, N.; Naser, Z.; Kurtz, I. Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. Am. J. Physiol. Ren. Physiol. 2001, 50, F920. [Google Scholar] [CrossRef] [PubMed]
- Planelles, G.; Thomas, S.R.; Anagnostopoulos, T. Change of apparent stoichiometry of proximal-tubule Na+-HCOcotransport upon experimental reversal of its orientation. Proc. Natl. Acad. Sci. USA 1993, 90, 7406–7410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, E.; Hopfer, U. Activity and stoichiometry of Na+:HCO3- cotransport in immortalized renal proximal tubule cells. J. Membr. Biol. 1996, 152, 245–252. [Google Scholar] [CrossRef]
- Marino, C.R.; Jeanes, V.; Boron, W.F.; Schmitt, B.M. Expression and distribution of the Na(+)-HCO(−)(3) cotransporter in human pancreas. Am. J. Physiol. Liver Physiol. 1999, 277, G487–G494. [Google Scholar] [CrossRef]
- Zhao, H.; Star, R.; Muallem, S. Membrane localization of H+ and HCO3- transporters in the rat pancreatic duct. J. Gen. Physiol. 1994, 104, 57–85. [Google Scholar] [CrossRef]
- Majumdar, D.; Maunsbach, A.B.; Shacka, J.J.; Williams, J.B.; Berger, U.V.; Schultz, K.P.; Harkins, L.E.; Boron, W.F.; Roth, K.A.; Bevensee, M.O. Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain. Neuroscience 2008, 155, 818–832. [Google Scholar] [CrossRef] [Green Version]
- McAlear, S.D.; Liu, X.; Williams, J.B.; McNicholas-Bevensee, C.M.; Bevensee, M.O. Electrogenic Na/HCO3 cotransporter (NBCe1) variants expressed in Xenopus oocytes: Functional comparison and roles of the amino and carboxy termini. J. Gen. Physiol. 2006, 127, 639–658. [Google Scholar] [CrossRef] [Green Version]
- Pushkin, A.; Abuladze, N.; Newman, D.; Lee, I.; Xu, G.; Kurtz, I. Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family. Biochim. Biophys. Acta 2000, 1493, 215–218. [Google Scholar] [CrossRef]
- Sassani, P.; Pushkin, A.; Gross, E.; Gomer, A.; Abuladze, N.; Dukkipati, R.; Carpenito, G.; Kurtz, I. Functional characterization of NBC4: A new electrogenic sodium-bicarbonate cotransporter. Am. J. Physiol. Cell Physiol. 2002, 282, C408–C416. [Google Scholar] [CrossRef] [Green Version]
- Abuladze, N.; Pushkin, A.; Tatishchev, S.; Newman, D.; Sassani, P.; Kurtz, I. Expression and localization of rat NBC4c in liver and renal uroepithelium. Am. J. Physiol. Cell Physiol. 2004, 287, C781–C789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virkki, L.V.; Wilson, D.A.; Vaughan-Jones, R.D.; Boron, W.F. Functional characterization of human NBC4 as an electrogenic Na+-HCO cotransporter (NBCe2). Am. J. Physiol. Cell Physiol. 2002, 282, C1278–C1289. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, H.; Hirata, T.; Nakamura, N.; Kato, A.; Kawahara, K.; Wakabayashi, S.; Chang, M.H.; Romero, M.F.; Hirose, S. Identification and properties of a novel variant of NBC4 (Na(+)/HCO(3)− co-transporter 4) that is predominantly expressed in the choroid plexus. Biochem. J. 2013, 450, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Pushkin, A.; Abuladze, N.; Lee, I.; Newman, D.; Hwang, J.; Kurtz, I. Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J. Biol. Chem. 1999, 274, 16569–16575. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.; Aalkjaer, C.; Boulpaep, E.L.; Boron, W. An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 2000, 5. [Google Scholar] [CrossRef]
- Boedtkjer, E.; Praetorius, J.; Fuchtbauer, E.M.; Aalkjaer, C. Antibody-independent localization of the electroneutral Na+-HCO3− cotransporter NBCn1 (slc4a7) in mice. Am. J. Physiol. Cell Physiol. 2008, 294, C591–C603. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Van Paesschen, W.; Stalmans, I.; Horita, S.; Yamada, H.; Bergmans, B.A.; Legius, E.; Riant, F.; De Jonghe, P.; Li, Y.; et al. Defective membrane expression of the Na(+)-HCO(3)(−) cotransporter NBCe1 is associated with familial migraine. Proc. Natl. Acad. Sci. USA 2010, 107, 15963–15968. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.F.; Henry, D.; Nelson, S.; Harte, P.J.; Dillon, A.K.; Sciortino, C.M. Cloning and characterization of a Na+-driven anion exchanger (NDAE1). A new bicarbonate transporter. J. Biol. Chem. 2000, 275, 24552–24559. [Google Scholar] [CrossRef] [Green Version]
- Grichtchenko, I.; Choi, I.; Zhong, X.; Bray-Ward, P.; Russell, J.M.; Boron, W. Cloning, characterization, and chromosomal mapping of a human electroneutral Na(+)-driven Cl-HCO3 exchanger. J. Biol. Chem. 2001, 276, 8358–8363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damkier, H.H.; Nielsen, S.; Praetorius, J. Molecular expression of SLC4-derived Na+-dependent anion transporters in selected human tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R2136–R2146. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Park, H.J.; Lee, S.; Kim, Y.H.; Choi, I. The sodium-driven chloride/bicarbonate exchanger NDCBE in rat brain is upregulated by chronic metabolic acidosis. Brain Res. 2011, 1377, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Barone, S.; Zahedi, K.; Brooks, M.; Soleimani, M. Slc4a8 in the Kidney: Expression, Subcellular Localization and Role in Salt Reabsorption. Cell Physiol. Biochem. 2018, 50, 1361–1375. [Google Scholar] [CrossRef]
- Wang, C.Z.; Yano, H.; Nagashima, K.; Seino, S. The Na+-driven Cl−/HCO3− exchanger. Cloning, tissue distribution, and functional characterization. J. Biol. Chem. 2000, 275, 35486–35490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, M.D.; Musa-Aziz, R.; Rojas, J.D.; Choi, I.; Daly, C.M.; Boron, W.F. Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl- self-exchange activity. J. Biol. Chem. 2008, 283, 12777–12788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.M.; Choi, I.; Haddad, G.G.; Boron, W.F. Chronic continuous hypoxia decreases the expression of SLC4A7 (NBCn1) and SLC4A10 (NCBE) in mouse brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R2412–R2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, S.; Ruusuvuori, E.; Sipila, S.T.; Haapanen, A.; Damkier, H.H.; Kurth, I.; Hentschke, M.; Schweizer, M.; Rudhard, Y.; Laatikainen, L.M.; et al. Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc. Natl. Acad. Sci. USA 2008, 105, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebat, J.; Lakshmi, B.; Malhotra, D.; Troge, J.; Lese-Martin, C.; Walsh, T.; Yamrom, B.; Yoon, S.; Krasnitz, A.; Kendall, J.; et al. Strong association of de novo copy number mutations with autism. Science 2007, 316, 445–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurnett, C.A.; Veile, R.; Zempel, J.; Blackburn, L.; Lovett, M.; Bowcock, A. Disruption of Sodium Bicarbonate Transporter SLC4A10 in a Patient With Complex Partial Epilepsy and Mental Retardation. Arch. Neurol. 2008, 65, 550–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krepischi, A.C.; Knijnenburg, J.; Bertola, D.R.; Kim, C.A.; Pearson, P.L.; Bijlsma, E.; Szuhai, K.; Kok, F.; Vianna-Morgante, A.M.; Rosenberg, C. Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia 2010, 51, 2457–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleimani, M.; Burnham, C.E. Na+:HCO(3−) cotransporters (NBC): Cloning and characterization. J. Membr. Biol. 2001, 183, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Burnham, C.E.; Flagella, M.; Wang, Z.; Amlal, H.; Shull, G.E.; Soleimani, M. Cloning, renal distribution, and regulation of the rat Na+-HCO3− cotransporter. Am. J. Physiol. 1998, 274, F1119–F1126. [Google Scholar] [CrossRef]
- Romero, M.F.; Fong, P.; Berger, U.V.; Hediger, M.A.; Boron, W.F. Cloning and functional expression of rNBC, an electrogenic Na(+)-HCO3− cotransporter from rat kidney. Am. J. Physiol. 1998, 274, F425–F432. [Google Scholar] [CrossRef]
- Shumaker, H.; Amlal, H.; Frizzell, R.; Ulrich, C.D.; Soleimani, M. CFTR drives Na+-nHCO-3 cotransport in pancreatic duct cells: A basis for defective HCO-3 secretion in CF. Am. J. Physiol. 1999, 276, C16–C25. [Google Scholar] [CrossRef]
- Salerno, E.E.; Patel, S.P.; Marshall, A.; Marshall, J.; Alsufayan, T.; Mballo, C.S.A.; Quade, B.N.; Parker, M.D. Extrarenal Signs of Proximal Renal Tubular Acidosis Persist in Nonacidemic Nbce1b/c-Null Mice. J. Am. Soc. Nephrol. 2019, 30, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, J.; Chen, L.M. Structure and Function of SLC4 Family [Formula: See text] Transporters. Front. Physiol. 2015, 6, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesler, M. Regulation and Modulation of pH in the Brain. Physiol. Rev. 2003, 83, 1183–1221. [Google Scholar] [CrossRef]
- Majumdar, D.; Bevensee, M.O. Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: Function, localization, and relevance to neurologic function. Neuroscience 2010, 171, 951–972. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, B.M.; Berger, U.V.; Douglas, R.M.; Bevensee, M.O.; Hediger, M.A.; Haddad, G.G.; Boron, W.F. Na/HCO3 Cotransporters in Rat Brain: Expression in Glia, Neurons, and Choroid Plexus. J. Neurosci. 2000, 20, 6839–6848. [Google Scholar] [CrossRef] [PubMed]
- Giffard, R.G.; Papadopoulos, M.C.; Van Hooft, J.A.; Xu, L.; Giuffrida, R.; Monyer, H. The Electrogenic Sodium Bicarbonate Cotransporter: Developmental Expression in Rat Brain and Possible Role in Acid Vulnerability. J. Neurosci. 2000, 20, 1001–1008. [Google Scholar] [CrossRef] [Green Version]
- Sohn, Y.; Yoo, K.Y.; Park, O.K.; Kwon, S.H.; Lee, C.H.; Choi, J.H.; Hwang, I.K.; Seo, J.Y.; Cho, J.H.; Won, M.H. Na+/HCO3− cotransporter immunoreactivity changes in neurons and expresses in astrocytes in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochem. Res. 2011, 36, 2459–2469. [Google Scholar] [CrossRef]
- Brouns, R.; Verkerk, R.; Aerts, T.; De Surgeloose, D.; Wauters, A.; Scharpe, S.; De Deyn, P.P. The role of tryptophan catabolism along the kynurenine pathway in acute ischemic stroke. Neurochem. Res. 2010, 35, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Fantinelli, J.C.; Orlowski, A.; Aiello, E.A.; Mosca, S.M. The electrogenic cardiac sodium bicarbonate co-transporter (NBCe1) contributes to the reperfusion injury. Cardiovasc. Pathol. 2014, 23, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Otani, H.; Mishima, K.; Imamura, H.; Inagaki, C. Involvement of anion exchange in the hypoxia/reoxygenation-induced changes in pHi and [Ca2+]i in cardiac myocyte. Eur. J. Pharmacol. 2001, 411, 35–43. [Google Scholar] [CrossRef]
- Dietz, R.M.; Kiedrowski, L.; Shuttleworth, C.W. Contribution of Na(+)/Ca(2+) exchange to excessive Ca(2+) loading in dendrites and somata of CA1 neurons in acute slice. Hippocampus 2007, 17, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Pignataro, G.; Sirabella, R.; Anzilotti, S.; Di Renzo, G.; Annunziato, L. Does Na(+)/Ca(2)(+) exchanger, NCX, represent a new druggable target in stroke intervention? Transl. Stroke Res. 2014, 5, 145–155. [Google Scholar] [CrossRef]
- Yamazaki, O.; Yamada, H.; Suzuki, M.; Horita, S.; Shirai, A.; Nakamura, M.; Satoh, N.; Fujita, T.; Seki, G. Identification of dominant negative effect of L522P mutation in the electrogenic Na(+)-HCO(3)(−) cotransporter NBCe1. Pflugers Arch. 2013, 465, 1281–1291. [Google Scholar] [CrossRef]
- Kurtz, I. NBCe1 as a model carrier for understanding the structure-function properties of Na(+) -coupled SLC4 transporters in health and disease. Pflugers Arch. 2014, 466, 1501–1516. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, T.; Inatomi, J.; Sekine, T.; Cha, S.H.; Kanai, Y.; Kunimi, M.; Tsukamoto, K.; Satoh, H.; Shimadzu, M.; Tozawa, F.; et al. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat. Genet. 1999, 23, 264–266. [Google Scholar] [CrossRef]
- Gawenis, L.R.; Bradford, E.M.; Prasad, V.; Lorenz, J.N.; Simpson, J.E.; Clarke, L.L.; Woo, A.L.; Grisham, C.; Sanford, L.P.; Doetschman, T.; et al. Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3− cotransporter. J. Biol. Chem. 2007, 282, 9042–9052. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.F.; Yang, S.S.; Seki, G.; Yamada, H.; Horita, S.; Yamazaki, O.; Fujita, T.; Usui, T.; Tsai, J.D.; Yu, I.S.; et al. Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis. Kidney Int. 2011, 79, 730–741. [Google Scholar] [CrossRef] [Green Version]
- Sussman, C.R.; Zhao, J.; Plata, C.; Lu, J.; Daly, C.; Angle, N.; DiPiero, J.; Drummond, I.A.; Liang, J.O.; Boron, W.F.; et al. Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish. Am. J. Physiol. Cell Physiol. 2009, 297, C865–C875. [Google Scholar] [CrossRef] [Green Version]
- Usui, T.; Hara, M.; Satoh, H.; Moriyama, N.; Kagaya, H.; Amano, S.; Oshika, T.; Ishii, Y.; Ibaraki, N.; Hara, C.; et al. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. J. Clin. Investig. 2001, 108, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, A.; Karatas, H. Mouse Models of Familial Hemiplegic Migraine for Studying Migraine Pathophysiology. Curr. Neuropharmacol. 2019, 17, 961–973. [Google Scholar] [CrossRef]
- Hoffmann, E.K. Anion exchange and anion-cation co-transport systems in mammalian cells. Philos Trans. R. Soc. Lond. B Biol. Sci. 1982, 299, 519–535. [Google Scholar] [CrossRef]
- Park, J.; Han, J.H.; Myung, S.H.; Kim, T.H. Isothiocyanate groups of 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS) inhibit cell penetration of octa-arginine (R8)-fused peptides. J. Pept. Sci. 2020, 26, e3237. [Google Scholar] [CrossRef]
- Ko, S.; Luo, X.; Hager, H.; Rojek, A.; Choi, J.Y.; Licht, C.; Suzuki, M.; Muallem, S.; Nielsen, S.; Ishibashi, K. AE4 is a DIDS-sensitive Cl(−)/HCO(−)(3) exchanger in the basolateral membrane of the renal CCD and the SMG duct. AJP Cell Physiol. 2002, 283, C1206–C1218. [Google Scholar] [CrossRef]
- Cabantchik, Z.I.; Rothstein, A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membr. Biol. 1972, 10, 311–330. [Google Scholar] [CrossRef]
- Lu, J.; Boron, W.F. Reversible and irreversible interactions of DIDS with the human electrogenic Na/HCO3 cotransporter NBCe1-A: Role of lysines in the KKMIK motif of TM5. Am. J. Physiol. Cell Physiol. 2007, 292, C1787–C1798. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Williams, J.B.; Sumpter, B.R.; Bevensee, M.O. Inhibition of the Na/bicarbonate cotransporter NBCe1-A by diBAC oxonol dyes relative to niflumic acid and a stilbene. J. Membr. Biol. 2007, 215, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Ch’en, F.F.; Villafuerte, F.C.; Swietach, P.; Cobden, P.M.; Vaughan-Jones, R.D. S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart. Br. J. Pharmacol. 2008, 153, 972–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidtmann, H.; Ruminot, I.; Becker, H.M.; Deitmer, J.W. Inhibition of monocarboxylate transporter by N-cyanosulphonamide S0859. Eur. J. Pharmacol. 2015, 762, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Larsen, A.M.; Krogsgaard-Larsen, N.; Lauritzen, G.; Olesen, C.W.; Honore Hansen, S.; Boedtkjer, E.; Pedersen, S.F.; Bunch, L. Gram-scale solution-phase synthesis of selective sodium bicarbonate co-transport inhibitor S0859: In vitro efficacy studies in breast cancer cells. ChemMedChem 2012, 7, 1808–1814. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, O.; Rossmann, H.; Berger, U.V.; Colledge, W.H.; Ratcliff, R.; Evans, M.J.; Gregor, M.; Seidler, U. cAMP-mediated regulation of murine intestinal/pancreatic Na+/HCO3− cotransporter subtype pNBC1. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 284, G37–G45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducoudret, O.; Diakov, A.; Muller-Berger, S.; Romero, M.F.; Fromter, E. The renal Na-HCO3-cotransporter expressed in Xenopus laevis oocytes: Inhibition by tenidap and benzamil and effect of temperature on transport rate and stoichiometry. Pflugers Arch. 2001, 442, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Bunch, L.; Pedersen, S.F. Physiology, pharmacology and pathophysiology of the pH regulatory transport proteins NHE1 and NBCn1: Similarities, differences, and implications for cancer therapy. Curr. Pharm. Des. 2012, 18, 1345–1371. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Zahra, A.; Jia, M.; Wang, Q.; Wu, J.
Understanding the Functional Expression of
Du L, Zahra A, Jia M, Wang Q, Wu J.
Understanding the Functional Expression of
Du, Le, Aqeela Zahra, Meng Jia, Qun Wang, and Jianping Wu.
2021. "Understanding the Functional Expression of
Du, L., Zahra, A., Jia, M., Wang, Q., & Wu, J.
(2021). Understanding the Functional Expression of