Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = proximal renal tubular acidosis (pRTA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3168 KiB  
Article
Left Ventricular Systolic Dysfunction in NBCe1-B/C-Knockout Mice
by Clayton T. Brady, Aniko Marshall, Lisa A. Eagler, Thomas M. Pon, Michael E. Duffey, Brian R. Weil, Jennifer K. Lang and Mark D. Parker
Int. J. Mol. Sci. 2024, 25(17), 9610; https://doi.org/10.3390/ijms25179610 - 5 Sep 2024
Cited by 3 | Viewed by 1242
Abstract
Congenital proximal renal tubular acidosis (pRTA) is a rare systemic disease caused by mutations in the SLC4A4 gene that encodes the electrogenic sodium bicarbonate cotransporter, NBCe1. The major NBCe1 protein variants are designated NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A expression is kidney-specific, NBCe1-B is [...] Read more.
Congenital proximal renal tubular acidosis (pRTA) is a rare systemic disease caused by mutations in the SLC4A4 gene that encodes the electrogenic sodium bicarbonate cotransporter, NBCe1. The major NBCe1 protein variants are designated NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A expression is kidney-specific, NBCe1-B is broadly expressed and is the only NBCe1 variant expressed in the heart, and NBCe1-C is a splice variant of NBCe1-B that is expressed in the brain. No cardiac manifestations have been reported from patients with pRTA, but studies in adult rats with virally induced reduction in cardiac NBCe1-B expression indicate that NBCe1-B loss leads to cardiac hypertrophy and prolonged QT intervals in rodents. NBCe1-null mice die shortly after weaning, so the consequence of congenital, global NBCe1 loss on the heart is unknown. To circumvent this issue, we characterized the cardiac function of NBCe1-B/C-null (KOb/c) mice that survive up to 2 months of age and which, due to the uninterrupted expression of NBCe1-A, do not exhibit the confounding acidemia of the globally null mice. In contrast to the viral knockdown model, cardiac hypertrophy was not present in KOb/c mice as assessed by heart-weight-to-body-weight ratios and cardiomyocyte cross-sectional area. However, echocardiographic analysis revealed reduced left ventricular ejection fraction, and intraventricular pressure–volume measurements demonstrated reduced load-independent contractility. We also observed increased QT length variation in KOb/c mice. Finally, using the calcium indicator Fura-2 AM, we observed a significant reduction in the amplitude of Ca2+ transients in paced KOb/c cardiomyocytes. These data indicate that congenital, global absence of NBCe1-B/C leads to impaired cardiac contractility and increased QT length variation in juvenile mice. It remains to be determined whether the cardiac phenotype in KOb/c mice is influenced by the absence of NBCe1-B/C from neuronal and endocrine tissues. Full article
Show Figures

Figure 1

15 pages, 3001 KiB  
Review
Understanding the Functional Expression of Na+-Coupled SLC4 Transporters in the Renal and Nervous Systems: A Review
by Le Du, Aqeela Zahra, Meng Jia, Qun Wang and Jianping Wu
Brain Sci. 2021, 11(10), 1276; https://doi.org/10.3390/brainsci11101276 - 26 Sep 2021
Cited by 5 | Viewed by 4081
Abstract
Acid-base homeostasis is crucial for numerous physiological processes. Na+/HCO3 cotransporters (NBCs) belong to the solute carrier 4 (SLC4) family, which regulates intracellular pH as well as HCO3 absorption and secretion. However, knowledge of the structural functions [...] Read more.
Acid-base homeostasis is crucial for numerous physiological processes. Na+/HCO3 cotransporters (NBCs) belong to the solute carrier 4 (SLC4) family, which regulates intracellular pH as well as HCO3 absorption and secretion. However, knowledge of the structural functions of these proteins remains limited. Electrogenic NBC (NBCe-1) is thought to be the primary factor promoting the precise acid–base equilibrium in distinct cell types for filtration and reabsorption, as well as the function of neurons and glia. NBC dysregulation is strongly linked to several diseases. As such, the need for special drugs that interfere with the transmission function of NBC is becoming increasingly urgent. In this review, we focus on the structural and functional characteristics of NBCe1, and discuss the roles of NBCe1 in the kidney, central nervous system (CNS), and related disorders, we also summarize the research on NBC inhibitors. NBCe1 and the related pathways should be further investigated, so that new medications may be developed to address the related conditions. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

Back to TopTop