Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Groups and Injections
2.3. Immunohistochemistry
2.4. Immunofluorescence
2.5. Cell Counting and Statistical Analysis
3. Results
3.1. Nesfatin-1, c-Fos and Glutamate Receptor Immunoreactivity in the Hypothalamic Neurons
3.2. Effects of Glutamatergic Agonists and Antagonists on the Activation of Nesfatin-1 Neurons
3.2.1. Supraoptic Nucleus
3.2.2. Paraventricular Nucleus
3.2.3. Arcuate Nucleus
3.3. Expression of Glutamate Receptor Subunits in Nesfatin-1 Neurons
4. Discussion
4.1. Effects of Glutamatergic Agonists and Antagonists on the Activation of Nesfatin-1 Neurons
4.2. Expressions of Glutamate Receptor Subunit Proteins in Nesfatin-1 Neurons
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | Avidin-biotin complex |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
ARC | Arcuate nucleus |
DAB | Diaminobenzidine |
DMH | Dorsomedial hypothalamic nucleus |
GluRs | Glutamate receptor subunits |
LH | Lateral hypothalamic area |
NMDA | N-methyl-D-aspartate |
PFA | Paraformaldehyde |
PVN | Paraventricular nucleus |
SON | Supraoptic nucleus |
VMH | Ventromedial hypothalamic nucleus |
References
- Oh, S.; Shimizu, H.; Satoh, T. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006, 443, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galiano, D.; Navarro, V.M.; Gaytan, F.; Tena-Sempere, M. Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. J. Mol. Endocrinol. 2010, 45, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Stengel, A.; Tache, Y. Nesfatin-1-Role as possible new potent regulator of food intake. Regul. Pept. 2010, 163, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.H.; Hung, H.C.; Kastin, A.J. Nesfatin-1 crosses the blood brain barrier without saturation. Peptides 2007, 28, 2223–2228. [Google Scholar] [CrossRef]
- Price, T.O.; Samson, W.K.; Niehoff, M.L.; Banks, W.A. Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides 2007, 28, 2372–2381. [Google Scholar] [CrossRef]
- Brailoiu, G.C.; Dun, S.L.; Brailoiu, E.; Inan, S.; Yang, J.; Chang, J.K.; Dun, N.J. Nesfatin-1: Distribution and interaction with a G protein-coupled receptor in the rat brain. Endocrinology 2007, 148, 5088–5094. [Google Scholar] [CrossRef] [Green Version]
- Foo, K.S.; Brismar, H.; Broberger, C. Distribution and Neuropeptide Coexistence of Nucleobindin-2 Mrna/Nesfatin-Like Immunoreactivity in the Rat CNS. Neuroscience 2008, 156, 563–579. [Google Scholar] [CrossRef]
- Goebel, M.; Stengel, A.; Wang, L.X.; Lambrecht, N.W.G.; Tache, Y. Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci. Lett. 2009, 452, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Goebel-Stengel, M.; Wang, L.X.; Stengel, A.; Tache, Y. Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res. 2011, 1396, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Dore, R.; Levata, L.; Lehnert, H.; Schulz, C. Nesfatin-1: Functions and physiology of a novel regulatory peptide. J. Endocrinol. 2017, 232, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Prinz, P.; Teuffel, P.; Lembke, V.; Kobelt, P.; Goebel-Stengel, M.; Hofmann, T.; Rose, M.; Klapp, B.F.; Stengel, A. Nesfatin-130-59 injected intracerebroventricularly differentially affects food intake microstructure in rats under normal weight and diet-induced obese conditions. Front. Neurosci. 2015, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Brann, D.W.; Mahesh, V.B. Excitatory amino acids: Function and significance in reproduction and neuroendocrine regulation. Front. Neuroendocrin. 1994, 15, 3–49. [Google Scholar] [CrossRef]
- Brann, D.W. Glutamate: A major excitatory transmitter in neuroendocrine regulation. Neuroendocrinology 1995, 61, 213–225. [Google Scholar] [CrossRef]
- Hollmann, M.; Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 1994, 17, 31–108. [Google Scholar] [CrossRef]
- Pelkey, K.A.; Mcbain, C.J. Ionotropic Glutamate Receptors in Synaptic Plasticity. In The Glutamate Receptors, 1st ed.; Gereau, R.W., Swanson, G.T., Eds.; Humana Press: Totowa, NJ, USA, 2008; Volume XI, pp. 179–247. [Google Scholar]
- Eyigor, O.; Centers, A.; Jennes, L. Distribution of ionotropic glutamate receptor subunit mRNAs in the rat hypothalamus. J. Comp. Neurol. 2001, 431, 101–124. [Google Scholar] [CrossRef]
- Bettler, B.; Mulle, C. Review: Neurotransmitter receptors II. AMPA and kainate receptors. Neuropharmacology 1995, 34, 123–139. [Google Scholar] [CrossRef]
- Mori, H.; Mishina, M. Structure and function of the NMDA receptor channel. Neuropharmacology 1995, 34, 1219–1237. [Google Scholar] [CrossRef]
- Sagar, S.M.; Sharp, F.R.; Curran, T. Expression of c-fos protein in brain: Metabolic mapping at the cellular level. Science 1988, 240, 1328–1331. [Google Scholar] [CrossRef]
- Hoffman, G.E.; Smith, M.S.; Verbalis, J.G. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front. Neuroendocrin. 1993, 14, 173–213. [Google Scholar] [CrossRef]
- Kovacs, K.J. Measurement of Immediate-Early Gene Activation- c-fos and Beyond. J. Neuroendocrinol. 2008, 20, 665–672. [Google Scholar] [CrossRef]
- Hoffman, G.E.; Lyo, D. Anatomical markers of activity in neuroendocrine systems: Are we all ‘fos-ed out’? J. Neuroendocrinol. 2002, 14, 259–268. [Google Scholar] [CrossRef]
- Aydin, B.; Guvenc, G.; Altinbas, B.; Niaz, N.; Yalcin, M. Modulation of nesfatin-1 induced cardiovascular effects by the central cholinergic system. Neuropeptides 2018, 70, 9–15. [Google Scholar] [CrossRef]
- Becker, J.B.; Arnold, A.P.; Berkley, K.J.; Blaustein, J.D.; Eckel, L.A.; Hampson, E.; Herman, J.P.; Marts, S.; Sadee, W.; Steiner, M.; et al. Strategies and methods for research on sex differences in brain and behavior. Endocrinology 2005, 146, 1650–1673. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Academic Press: London, UK, 2009; pp. Plate 37–Plate 56. [Google Scholar]
- Niciu, M.J.; Kelmendi, B.; Sanacora, G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol. Biochem. Behav. 2012, 100, 656–664. [Google Scholar] [CrossRef] [Green Version]
- Minbay, F.Z.; Eyigor, O.; Çavusoglu, I. Kainic acid activates oxytocinergic neurons through non-NMDA glutamate receptors. Int. J. Neurosci. 2006, 116, 587–600. [Google Scholar] [CrossRef]
- Gynther, M.; Petsalo, A.; Hansen, S.H.; Bunch, L.; Pickering, D.S. Blood-Brain Barrier permeability and brain uptake mechanism of kainic acid and dihydrokainic acid. Neurochem. Res. 2015, 40, 542–549. [Google Scholar] [CrossRef]
- Ramirez, C.; Tercero, I.; Pineda, A.; Burgos, J.S. Simvastatin is the statin that most efficiently protects against kainate-induced excitotoxicity and memory impairment. J. Alzheimers Dis. 2011, 24, 161–174. [Google Scholar] [CrossRef]
- Hankir, M.K.; Parkinson, J.R.; Bloom, S.R.; Bell, J.D. The effects of glutamate receptor agonists and antagonists on mouse hypothalamic and hippocampal neuronal activity shown through manganese enhanced MRI. NeuroImage 2012, 59, 968–978. [Google Scholar] [CrossRef]
- Gok-Yurtseven, D.; Kafa, I.M.; Minbay, Z.; Eyigor, O. Glutamatergic activation of A1 and A2 noradrenergic neurons in the rat brain stem. Croat. Med. J. 2019, 60, 352–360. [Google Scholar] [CrossRef]
- Knapp, D.J.; Braun, C.J.; Duncan, G.E.; Qian, Y.; Fernandes, A.; Crews, F.T.; Breese, G.R. Regional specificity of ethanol and NMDA action in brain revealed with Fos-like immunohistochemistry and differential routes of drug administration. Alcohol. Clin. Exp. Res. 2001, 25, 1662–1672. [Google Scholar] [CrossRef]
- Shin, S.W.; Park, J.W.; Suh, M.H.; Suh, S.I.; Choe, B.K. Persistent expression of Fas/FasL mRNA in the mouse hippocampus after a single NMDA injection. J. Neurochem. 1998, 71, 1773–1776. [Google Scholar] [CrossRef] [PubMed]
- Mitsikostas, D.D.; Sanchez del Rio, M.; Waeber, C.; Huang, Z.; Cutrer, F.M.; Moskowitz, M.A. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Br. J. Pharmacol. 1999, 127, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyigor, O.; Minbay, Z.; Cavusoglu, I. Activation of orexin neurons through non-NMDA glutamate receptors evidenced by c-Fos immunohistochemistry. Endocrine 2010, 37, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Eyigor, O.; Minbay, Z.; Kafa, I.M. Glutamate and Orexin Neurons. Vitam. Horm. 2012, 89, 209–222. [Google Scholar]
- Serter, S.; Gok Yurtseven, D.; Cakir, C.; Minbay, Z.; Eyigor, O. Glutamatergic Activation of Neuronostatin Neurons in the Periventricular Nucleus of the Hypothalamus. Brain Sci. 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, Y. Gonadal steroid action and brain sex differentiation in the rat. J. Neuroendocrinol. 2009, 21, 410–414. [Google Scholar] [CrossRef]
- Ayada, C.; Toru, Ü.; Korkut, Y. Nesfatin-1 and its effects on different systems. Hippokratia. 2015, 19, 4–10. [Google Scholar]
- Malarkey, E.B.; Parpura, V. Mechanisms of glutamate release from astrocytes. Neurochem. Int. 2008, 52, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Van den Pol, A.N.; Hermans-Borgmeyer, I.; Hofer, M.; Ghosh, P.; Heinemann, S. Ionotropic glutamate receptor gene expression in hypothalamus: Localization of AMPA kainate and NMDA receptor RNA with in situ hybridization. J. Comp. Neurol. 1994, 343, 428–444. [Google Scholar] [CrossRef]
- Herman, J.P.; Eyigor, O.; Ziegler, D.R.; Jennes, L. Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. J. Comp. Neurol. 2000, 422, 352–362. [Google Scholar] [CrossRef]
- Eyigor, O.; Minbay, Z.; Cavusoglu, I.; Jennes, L. Localization of kainate receptor subunit GluR5-immunoreactive cells in the rat hypothalamus. Mol. Brain Res. 2005, 136, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Petralia, R.S.; Wang, Y.X.; Wenthold, R.J. Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J. Comp. Neurol. 1994, 349, 85–110. [Google Scholar] [CrossRef] [PubMed]
- Petralia, R.S.; Wang, Y.X.; Wenthold, R.J. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J. Neurosci. 1994, 14, 6102–6120. [Google Scholar] [CrossRef]
- Doherty, F.C.; Sladek, C.D. NMDA receptor subunit expression in the supraoptic nucleus of adult rats: Dominance of NR2B and NR2D. Brain Res. 2011, 1388, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, J.R. Homomeric and heteromeric ion channels formed from the kainite type subunits GluR6 and KA2 have very small, but different, unitary conductance. J. Neurophysiol. 1996, 76, 510–519. [Google Scholar] [CrossRef]
- Alt, A.; Weiss, B.; Ogden, A.M.; Knauss, J.L.; Oler, J.; Ho, K.; Large, T.H.; Bleakman, D. Pharmacological characterization of glutamatergic agonists and antagonists at recombinant human homomeric and heteromeric kainate receptors in vitro. Neuropharmacology 2004, 46, 793–806. [Google Scholar] [CrossRef]
- Nishimura, S.; Iizuka, M.; Wakamori, M.; Akiba, I.; Imoto, K.; Barsoumian, E.L. Stable expression of human homomeric and heteromeric AMPA receptor subunits in HEK293 cells. Recept. Channels 2000, 7, 139–150. [Google Scholar]
- Monyer, H.; Sprengel, R.; Schoepfer, R.; Herb, A.; Higuchi, M.; Lomeli, H.; Burnashev, N.; Sakmann, B.; Seeburg, P.H. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 1992, 256, 1217–1221. [Google Scholar] [CrossRef]
- Mayer, M.L. Structural biology of glutamate receptor ion channel complexes. Curr. Opin. Struct. Biol. 2016, 41, 119–127. [Google Scholar] [CrossRef]
Antibodies | Dilution | Incubation Time | Temperature | Supplier | Catalog Number |
---|---|---|---|---|---|
Rabbit anti-c-Fos | 1:10,000 | 24 h | RT | Oncogene | PC-38 |
Rabbit anti-Nesfatin-1 | 1:20,000 | 24 h | RT | Phoenix Pharmaceuticals | H-003-22 |
Mouse anti-GluN1 (IgG) | 1:300 | 48 h | +4 °C | BD Pharmingen | 556,308 |
Mouse anti-GluN2A (IgG) | 1:1,000 | 48 h | +4 °C | Millipore | MAB5216 |
Mouse anti-GluA1 (IgG) | 1:500 | 48 h | +4 °C | Acris | AM60040PU-N |
Mouse anti-GluA2 (IgG) | 1:1,000 | 48 h | +4 °C | Millipore | MAB397 |
Mouse anti-GluA3 (IgG) | 1:1,000 | 48 h | +4 °C | Millipore | MAB5416 |
Goat anti-GluA4 (IgG) | 1:500 | 48 h | +4 °C | LifeSpan BioSciences | LS-B3606 |
Mouse anti-GluK1/2/3 (IgM) | 1:900 | 48 h | +4 °C | Chemicon | MAB379 |
Goat anti-GluK5 (IgG) | 1:2,000 | 72 h | +4 °C | Santa Cruz | sc-8915 |
Hypothalamic Nuclei | |||
---|---|---|---|
Subunits | Supraoptic Nucleus | Paraventricular Nucleus | Arcuate Nucleus |
GluN1 | +++ | ++ | ++ |
GluN2A | +++ | + | + |
GluA1 | +++ | + | ++ |
GluA2 | +++ | ++ | + |
GluA3 | +++ | + | + |
GluA4 | ++ | ++ | + |
GluK1/2/3 | +++ | + | + |
GluK5 | +++ | ++ | ++ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gok Yurtseven, D.; Serter Kocoglu, S.; Minbay, Z.; Eyigor, O. Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus. Brain Sci. 2020, 10, 630. https://doi.org/10.3390/brainsci10090630
Gok Yurtseven D, Serter Kocoglu S, Minbay Z, Eyigor O. Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus. Brain Sciences. 2020; 10(9):630. https://doi.org/10.3390/brainsci10090630
Chicago/Turabian StyleGok Yurtseven, Duygu, Sema Serter Kocoglu, Zehra Minbay, and Ozhan Eyigor. 2020. "Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus" Brain Sciences 10, no. 9: 630. https://doi.org/10.3390/brainsci10090630
APA StyleGok Yurtseven, D., Serter Kocoglu, S., Minbay, Z., & Eyigor, O. (2020). Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus. Brain Sciences, 10(9), 630. https://doi.org/10.3390/brainsci10090630