Age-Related Structural and Functional Changes of the Hippocampus and the Relationship with Inhibitory Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stop Signal Task and Stop Signal Reaction Time
2.3. A Bayesian Model of Proactive Control
2.4. MRI Protocol
2.5. Gray Matter Volumes Derived with Voxel-Based Morphometry (VBM)
2.6. Preprocessing and Modeling of BOLD Data of the SST
2.7. Mediation Analysis
3. Results
3.1. Behavioral Performance
3.2. Age-Related Decreases in Hippocampal Gray Matter Volume (GMV)
3.3. Age and Hippocampal Activation in Reactive and Proactive Inhibitory Control
3.4. Age-Related Structural and Functional Changes in the Hippocampus
4. Discussion
4.1. The Hippocampus and Inhibitory Control
4.2. A Broader Role of Hippocampal Structure and Function in Age-Related Cognitive Decline
4.3. Structural and Functional Asymmetry of the Hippocampus
5. Limitations, Other Considerations, and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AAL | Automatic Anatomic Labelling |
AC-PC | Anterior Commissure-Posterior Commissure |
AD | Alzheimer’s Disease |
AR | Autoregressive |
BOLD | Blood oxygenation level dependent |
GS | Go success trials |
GE | Go error trials |
EPI | Echo-planar imaging |
FWE | Familywise error |
FWHM | Full Width at Half Maximum |
GLM | Generalized linear model |
GM | Gray matter |
GMV | Gray matter volume |
goRT | Go trial reaction time |
HRF | Hemodynamic response function |
MCI | Mild cognitive impairment |
MNI | Montreal Neurological Institute |
p(Stop) | Bayesian estimated probability of stop signal |
RT | Reaction time |
SD | Standard deviation |
SE | Stop error trials |
SPM | Statistical Parametric Mapping |
SS | Stop success trials |
SSRT | Stop signal reaction time |
SSD | Stop signal delay |
SST | Stop signal task |
SVC | Small volume correction |
TE | Echo time |
TR | Repetition time |
Appendix A
Region | k | Z Value | MNI Coordinate (mm) | Correlation | r | p | ||
---|---|---|---|---|---|---|---|---|
X | Y | Z | with | |||||
L ant. Hipp. | 632 | 6.36 | −15 | −2 | −14 | Age | −0.2344 | 0.0040 |
SSRT | −0.1366 | 0.0966 | ||||||
Seq. Effect | 0.0526 | 0.5241 | ||||||
L post. Hipp. | 50 | 4.04 | −12 | −36 | 0 | Age | −0.2261 | 0.0056 |
SSRT | −0.1279 | 0.1200 | ||||||
Seq. Effect | 0.1676 | 0.0410 | ||||||
R ant. Hipp. | 84 | 4.35 | 14 | −2 | −15 | Age | −0.2623 | 0.0012 |
SSRT | −0.1499 | 0.0680 | ||||||
Seq. Effect | 0.0827 | 0.3162 | ||||||
R post. Hipp. | 298 | 4.62 | 21 | −21 | −17 | Age | −0.2290 | 0.0050 |
SSRT | −0.1582 | 0.0540 | ||||||
Seq. Effect | 0.1364 | 0.0972 |
t | p | β | F | df | p | adj. R2 | |
---|---|---|---|---|---|---|---|
Ant. Hippocampus | |||||||
Overall model | 3.2110 | 0.0016 | 1.2914 | 4.38 | 146 | 0.0142 | 0.0437 |
Age | −2.9337 | 0.0039 | −0.0346 | ||||
Sex | −0.0004 | 0.9996 | −0.0001 | ||||
Ant. Hippocampus | |||||||
Overall model | 3.4794 | 0.0007 | 2.7778 | 4.53 | 145 | 0.0046 | 0.0667 |
SSRT | −2.1465 | 0.0335 | −0.0084 | ||||
Age | −2.3231 | 0.0216 | −0.0280 | ||||
Sex | 0.1879 | 0.8512 | 0.0527 | ||||
Post. Hippocampus | |||||||
Overall model | −5.089 | 0.0000 | −20.105 | 4.77 | 146 | 0.0099 | 0.0485 |
Age | 3.0856 | 0.0024 | 0.3573 | ||||
Sex | −0.5399 | 0.5901 | −1.4986 | ||||
Post. Hippocampus | |||||||
Overall model | −3.6526 | 0.0004 | −16.594 | 4 | 145 | 0.0090 | 0.0574 |
SEQ | −1.5427 | 0.1251 | −16.534 | ||||
Age | 3.0107 | 0.0031 | 0.3475 | ||||
Sex | −0.4914 | 0.6239 | −1.3584 |
References
- Yonelinas, A.P.; Ranganath, C.; Ekstrom, A.D.; Wiltgen, B.J. A Contextual Binding Theory of Episodic Memory: Systems Consolidation Reconsidered. Nat. Rev. Neurosci. 2019, 20, 364–375. [Google Scholar] [CrossRef]
- Basu, J.; Siegelbaum, S.A. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harb. Perspect. Biol. 2015, 7, a021733. [Google Scholar] [CrossRef]
- Mueller, S.; Keeser, D.; Reiser, M.F.; Teipel, S.; Meindl, T. Functional and Structural Mr Imaging in Neuropsychiatric Disorders, Part 1: Imaging Techniques and Their Application in Mild Cognitive Impairment and Alzheimer Disease. AJNR Am. J. Neuroradiol. 2012, 33, 1845–1850. [Google Scholar] [CrossRef] [Green Version]
- Ten Kate, M.; Barkhof, F.; Boccardi, M.; Visser, P.J.; Jack, C.R., Jr.; Lovblad, K.O.; Frisoni, G.B.; Scheltens, P.; Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers. Clinical Validity of Medial Temporal Atrophy as a Biomarker for Alzheimer’s Disease in the Context of a Structured 5-Phase Development Framework. Neurobiol. Aging 2017, 52, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negash, S.; Kliot, D.; Howard, D.V.; Howard, J.H., Jr.; Das, S.R.; Yushkevich, P.A.; Pluta, J.B.; Arnold, S.E.; Wolk, D.A. Relationship of Contextual Cueing and Hippocampal Volume in Amnestic Mild Cognitive Impairment Patients and Cognitively Normal Older Adults. J. Int. Neuropsychol. Soc. 2015, 21, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonner-Jackson, A.; Mahmoud, S.; Miller, J.; Banks, S.J. Verbal and Non-Verbal Memory and Hippocampal Volumes in a Memory Clinic Population. Alzheimers Res. Ther. 2015, 7, 61. [Google Scholar] [PubMed] [Green Version]
- Farras-Permanyer, L.; Guardia-Olmos, J.; Pero-Cebollero, M. Mild Cognitive Impairment and Fmri Studies of Brain Functional Connectivity: The State of the Art. Front. Psychol. 2015, 6, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharath, S.; Joshi, H.; John, J.P.; Balachandar, R.; Sadanand, S.; Saini, J.; Kumar, K.J.; Varghese, M. A Multimodal Structural and Functional Neuroimaging Study of Amnestic Mild Cognitive Impairment. Am. J. Geriatr. Psychiatry 2017, 25, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Tahmasian, M.; Pasquini, L.; Scherr, M.; Meng, C.; Forster, S.; Mulej Bratec, S.; Shi, K.; Yakushev, I.; Schwaiger, M.; Grimmer, T.; et al. The Lower Hippocampus Global Connectivity, the Higher Its Local Metabolism in Alzheimer Disease. Neurology 2015, 84, 1956–1963. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, P.; Jia, X.; Qi, Z.; Yu, L.; Yang, Y.; Zhou, W.; Lu, J.; Li, K. Baseline and Longitudinal Patterns of Hippocampal Connectivity in Mild Cognitive Impairment: Evidence from Resting State Fmri. J. Neurol. Sci. 2011, 309, 79–85. [Google Scholar] [CrossRef]
- Lin, L.; Xing, G.; Han, Y. Advances in Resting State Neuroimaging of Mild Cognitive Impairment. Front. Psychiatry 2018, 9, 671. [Google Scholar] [CrossRef] [PubMed]
- Rabi, R.; Vasquez, B.P.; Alain, C.; Hasher, L.; Belleville, S.; Anderson, N.D. Inhibitory Control Deficits in Individuals with Amnestic Mild Cognitive Impairment: A Meta-Analysis. Neuropsychol. Rev. 2020, 30, 97–125. [Google Scholar] [CrossRef] [PubMed]
- Guarino, A.; Favieri, F.; Boncompagni, I.; Agostini, F.; Cantone, M.; Casagrande, M. Executive Functions in Alzheimer Disease: A Systematic Review. Front. Aging Neurosci. 2018, 10, 437. [Google Scholar] [CrossRef] [PubMed]
- Johns, E.K.; Phillips, N.A.; Belleville, S.; Goupil, D.; Babins, L.; Kelner, N.; Ska, B.; Gilbert, B.; Massoud, F.; de Boysson, C.; et al. The Profile of Executive Functioning in Amnestic Mild Cognitive Impairment: Disproportionate Deficits in Inhibitory Control. J. Int. Neuropsychol. Soc. 2012, 18, 541–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, D.; Dong, X.; Sun, H.; Xu, Y.; Ma, Y.; Wang, X. The Overall Impairment of Core Executive Function Components in Patients with Amnestic Mild Cognitive Impairment: A Cross-Sectional Study. BMC Neurol. 2012, 12, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wylie, S.A.; Ridderinkhof, K.R.; Eckerle, M.K.; Manning, C.A. Inefficient Response Inhibition in Individuals with Mild Cognitive Impairment. Neuropsychologia 2007, 45, 1408–1419. [Google Scholar] [PubMed]
- Alichniewicz, K.K.; Brunner, F.; Klunemann, H.H.; Greenlee, M.W. Neural Correlates of Saccadic Inhibition in Healthy Elderly and Patients with Amnestic Mild Cognitive Impairment. Front. Psychol. 2013, 4, 467. [Google Scholar] [CrossRef] [Green Version]
- Belanger, S.; Belleville, S.; Gauthier, S. Inhibition Impairments in Alzheimer’s Disease, Mild Cognitive Impairment and Healthy Aging: Effect of Congruency Proportion in a Stroop Task. Neuropsychologia 2010, 48, 581–590. [Google Scholar] [CrossRef]
- Cespon, J.; Galdo-Alvarez, S.; Diaz, F. Inhibition Deficit in the Spatial Tendency of the Response in Multiple-Domain Amnestic Mild Cognitive Impairment. An Event-Related Potential Study. Front. Aging Neurosci. 2015, 7, 68. [Google Scholar]
- Nguyen, L.T.; Mudar, R.A.; Chiang, H.S.; Schneider, J.M.; Maguire, M.J.; Kraut, M.A.; Hart, J., Jr. Theta and Alpha Alterations in Amnestic Mild Cognitive Impairment in Semantic Go/Nogo Tasks. Front. Aging Neurosci. 2017, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Moser, M.B.; Moser, E.I. Functional Differentiation in the Hippocampus. Hippocampus 1998, 8, 608–619. [Google Scholar] [CrossRef]
- Small, S.A. The Longitudinal Axis of the Hippocampal Formation: Its Anatomy, Circuitry, and Role in Cognitive Function. Rev. Neurosci. 2002, 13, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, M.S.; Dong, H.W. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron 2010, 65, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppenk, J.; Evensmoen, H.R.; Moscovitch, M.; Nadel, L. Long-Axis Specialization of the Human Hippocampus. Trends Cogn. Sci. 2013, 17, 230–240. [Google Scholar]
- Manns, J.R.; Eichenbaum, H. Evolution of Declarative Memory. Hippocampus 2006, 16, 795–808. [Google Scholar] [CrossRef]
- Robinson, J.L.; Barron, D.S.; Kirby, L.A.; Bottenhorn, K.L.; Hill, A.C.; Murphy, J.E.; Katz, J.S.; Salibi, N.; Eickhoff, S.B.; Fox, P.T. Neurofunctional Topography of the Human Hippocampus. Hum. Brain Mapp. 2015, 36, 5018–5037. [Google Scholar] [CrossRef] [Green Version]
- Poppenk, J.; Moscovitch, M. A Hippocampal Marker of Recollection Memory Ability among Healthy Young Adults: Contributions of Posterior and Anterior Segments. Neuron 2011, 72, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Anacker, C.; Hen, R. Adult Hippocampal Neurogenesis and Cognitive Flexibility—Linking Memory and Mood. Nat. Rev. Neurosci. 2017, 18, 335–346. [Google Scholar]
- Nadel, L.; Hoscheidt, S.; Ryan, L.R. Spatial Cognition and the Hippocampus: The Anterior-Posterior Axis. J. Cogn. Neurosci. 2013, 25, 22–28. [Google Scholar] [CrossRef]
- Zeidman, P.; Maguire, E.A. Anterior Hippocampus: The Anatomy of Perception, Imagination and Episodic Memory. Nat. Rev. Neurosci. 2016, 17, 173–182. [Google Scholar] [CrossRef]
- Duarte, I.C.; Ferreira, C.; Marques, J.; Castelo-Branco, M. Anterior/Posterior Competitive Deactivation/Activation Dichotomy in the Human Hippocampus as Revealed by a 3d Navigation Task. PLoS ONE 2014, 9, e86213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Evensmoen, H.R.; Lehn, H.; Pintzka, C.W.; Haberg, A.K. Persistent Posterior and Transient Anterior Medial Temporal Lobe Activity During Navigation. Neuroimage 2010, 52, 1654–1666. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, A.; Cohen, R.A.; Porges, E.C.; Nissim, N.R.; Woods, A.J. Cognitive Aging and the Hippocampus in Older Adults. Front. Aging Neurosci. 2016, 8, 298. [Google Scholar] [CrossRef] [PubMed]
- Bettio, L.E.B.; Rajendran, L.; Gil-Mohapel, J. The Effects of Aging in the Hippocampus and Cognitive Decline. Neurosci. Biobehav. Rev. 2017, 79, 66–86. [Google Scholar] [CrossRef] [PubMed]
- Reuben, A.; Brickman, A.M.; Muraskin, J.; Steffener, J.; Stern, Y. Hippocampal Atrophy Relates to Fluid Intelligence Decline in the Elderly. J. Int. Neuropsychol. Soc. 2011, 17, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp, K.V.; Kaplan, R.F.; Springate, B.; Moscufo, N.; Wakefield, D.B.; Guttmann, C.R.; Wolfson, L. Processing Speed in Normal Aging: Effects of White Matter Hyperintensities and Hippocampal Volume Loss. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2014, 21, 197–213. [Google Scholar] [CrossRef]
- Rubin, R.D.; Watson, P.D.; Duff, M.C.; Cohen, N.J. The Role of the Hippocampus in Flexible Cognition and Social Behavior. Front. Hum. Neurosci. 2014, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, L.; Andersson, M.; Lundquist, A.; Salami, A.; Wahlin, A. Frontal Contribution to Hippocampal Hyperactivity During Memory Encoding in Aging. Front. Mol. Neurosci. 2019, 12, 229. [Google Scholar]
- Abela, A.R.; Dougherty, S.D.; Fagen, E.D.; Hill, C.J.; Chudasama, Y. Inhibitory Control Deficits in Rats with Ventral Hippocampal Lesions. Cereb. Cortex 2013, 23, 1396–1409. [Google Scholar] [CrossRef] [Green Version]
- Chudasama, Y.; Doobay, V.M.; Liu, Y. Hippocampal-Prefrontal Cortical Circuit Mediates Inhibitory Response Control in the Rat. J. Neurosci. 2012, 32, 10915–10924. [Google Scholar] [CrossRef]
- Messanvi, F.; Perkins, A.; du Hoffmann, J.; Chudasama, Y. Fronto-Temporal Galanin Modulates Impulse Control. Psychopharmacology 2020, 237, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Byeon, J.S. Learning-Dependent Changes in the Neuronal Correlates of Response Inhibition in the Prefrontal Cortex and Hippocampus. Exp. Neurobiol. 2014, 23, 178–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, R.J.; Ko, C.H.; Hong, N.S. Attenuation of Context-Specific Inhibition on Reversal Learning of a Stimulus-Response Task in Rats with Neurotoxic Hippocampal Damage. Behav. Brain Res. 2002, 136, 113–126. [Google Scholar] [CrossRef]
- McDonald, R.J.; Balog, R.J.; Lee, J.Q.; Stuart, E.E.; Carrels, B.B.; Hong, N.S. Rats with Ventral Hippocampal Damage Are Impaired at Various Forms of Learning Including Conditioned Inhibition, Spatial Navigation, and Discriminative Fear Conditioning to Similar Contexts. Behav. Brain Res. 2018, 351, 138–151. [Google Scholar] [CrossRef]
- Hu, S.; Job, M.; Jenks, S.K.; Chao, H.H.; Li, C.R. Imaging the Effects of Age on Proactive Control in Healthy Adults. Brain Imaging Behav. 2019, 13, 1526–1537. [Google Scholar] [CrossRef]
- Hu, S.; Ide, J.S.; Chao, H.H.; Castagna, B.; Fischer, K.A.; Zhang, S.; Li, C.R. Structural and Functional Cerebral Bases of Diminished Inhibitory Control During Healthy Aging. Hum. Brain Mapp. 2018, 39, 5085–5096. [Google Scholar] [CrossRef]
- Hu, S.; Chao, H.H.; Winkler, A.D.; Li, C.S. The Effects of Age on Cerebral Activations: Internally Versus Externally Driven Processes. Front. Aging Neurosci. 2012, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Tseng, Y.C.; Winkler, A.D.; Li, C.S. Neural Bases of Individual Variation in Decision Time. Hum. Brain Mapp. 2014, 35, 2531–2542. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Ide, J.S.; Zhang, S.; Li, C.R. The Right Superior Frontal Gyrus and Individual Variation in Proactive Control of Impulsive Response. J. Neurosci. 2016, 36, 12688–12696. [Google Scholar]
- Hu, S.; Li, C.S.R. Neural Processes of Preparatory Control for Stop Signal Inhibition. Hum. Brain Mapp. 2012, 33, 2785–2796. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, F.; Aron, A.R.; Band, G.P.; Beste, C.; Bissett, P.G.; Brockett, A.T.; Brown, J.W.; Chamberlain, S.R.; Chambers, C.D.; Colonius, H.; et al. A Consensus Guide to Capturing the Ability to Inhibit Actions and Impulsive Behaviors in the Stop-Signal Task. Elife 2019, 8, e46323. [Google Scholar] [CrossRef] [PubMed]
- Ide, J.S.; Shenoy, P.; Yu, A.J.; Li, C.S. Bayesian Prediction and Evaluation in the Anterior Cingulate Cortex. J. Neurosci. 2013, 33, 2039–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Ide, J.S.; Zhang, S.; Li, C.S. Anticipating Conflict: Neural Correlates of a Bayesian Belief and Its Motor Consequence. Neuroimage 2015, 119, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.J.; Dayan, P.; Cohen, J.D. Dynamics of Attentional Selection under Conflict: Toward a Rational Bayesian Account. J. Exp. Psychol.-Hum. Percept. Perform. 2009, 35, 700–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, A.J.; Cohen, J.D. Sequential Effects: Superstition or Rational Behavior? In Advances in Neural Information Processing Systems; Nips, 2008; Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Eds.; MIT: Vancouver, BC, Canada, 2009; pp. 1873–1880. [Google Scholar]
- O’Doherty, J.; Dayan, P.; Schultz, J.; Deichmann, R.; Friston, K.; Dolan, R.J. Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning. Science 2004, 304, 452–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daw, N.D.; O’Doherty, J.P.; Dayan, P.; Seymour, B.; Dolan, R.J. Cortical Substrates for Exploratory Decisions in Humans. Nature 2006, 441, 876–879. [Google Scholar]
- Ashburner, J.; Friston, K.J. Nonlinear Spatial Normalization Using Basis Functions. Hum. Brain Mapp. 1999, 7, 254–266. [Google Scholar] [CrossRef]
- Friston, K.; Holmes, A.P.; Worsley, K.J.; Poline, J.B.; Frith, C.D.; Frackowiak, R. Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Hum. Brain Mapp. 1995, 2, 189–210. [Google Scholar] [CrossRef]
- Friston, K.J.; Josephs, O.; Zarahn, E.; Holmes, A.P.; Rouquette, S.; Poline, J.B. To Smooth or Not to Smooth? Bias and Efficiency in Fmri Time-Series Analysis. Neuroimage 2000, 12, 196–208. [Google Scholar] [CrossRef]
- Della-Maggiore, V.; Chau, W.; Peres-Neto, P.R.; McIntosh, A.R. An Empirical Comparison of Spm Preprocessing Parameters to the Analysis of Fmri Data. Neuroimage 2002, 17, 19–28. [Google Scholar] [CrossRef]
- Ide, J.S.; Li, C.S. Error-Related Functional Connectivity of the Habenula in Humans. Front. Hum. Neurosci. 2011, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKinnon, D.P.; Fairchild, A.J.; Fritz, M.S. Mediation Analysis. Annu. Rev. Psychol. 2007, 58, 593–614. [Google Scholar] [CrossRef] [PubMed]
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Mathiasen, M.L.; O’Mara, S.M.; Aggleton, J.P. The Anterior Thalamic Nuclei and Nucleus Reuniens: So Similar but So Different. Neurosci. Biobehav. Rev. 2020, 119, 268–280. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, S.F.; Guo, W.; Fernandez, C.; Wagner, A.D. Prefrontal Reinstatement of Contextual Task Demand Is Predicted by Separable Hippocampal Patterns. Nat. Commun. 2020, 11, 2053. [Google Scholar] [CrossRef] [PubMed]
- Burman, D.D. Hippocampal Connectivity with Sensorimotor Cortex During Volitional Finger Movements: Laterality and Relationship to Motor Learning. PLoS ONE 2019, 14, e0222064. [Google Scholar]
- De Loof, E.; Vassena, E.; Janssens, C.; De Taeye, L.; Meurs, A.; Van Roost, D.; Boon, P.; Raedt, R.; Verguts, T. Preparing for Hard Times: Scalp and Intracranial Physiological Signatures of Proactive Cognitive Control. Psychophysiology 2019, 56, e13417. [Google Scholar] [CrossRef]
- Parro, C.; Dixon, M.L.; Christoff, K. The Neural Basis of Motivational Influences on Cognitive Control. Hum. Brain Mapp. 2018, 39, 5097–5111. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Zhang, X.; Fei, N.; Zhu, Y.; Sun, J.; Liu, P.; Yang, X.; Qin, W. Decreased Cortical and Subcortical Response to Inhibition Control after Sleep Deprivation. Brain Imaging Behav. 2019, 13, 638–650. [Google Scholar]
- Van Rooij, S.J.H.; Stevens, J.S.; Ely, T.D.; Hinrichs, R.; Michopoulos, V.; Winters, S.J.; Ogbonmwan, Y.E.; Shin, J.; Nugent, N.R.; Hudak, L.A.; et al. The Role of the Hippocampus in Predicting Future Posttraumatic Stress Disorder Symptoms in Recently Traumatized Civilians. Biol. Psychiatry 2018, 84, 106–115. [Google Scholar] [CrossRef]
- Meyer, H.C.; Odriozola, P.; Cohodes, E.M.; Mandell, J.D.; Li, A.; Yang, R.; Hall, B.S.; Haberman, J.T.; Zacharek, S.J.; Liston, C.; et al. Ventral Hippocampus Interacts with Prelimbic Cortex During Inhibition of Threat Response Via Learned Safety in Both Mice and Humans. Proc. Natl. Acad. Sci. USA 2019, 116, 26970–26979. [Google Scholar] [CrossRef]
- Ruan, Q.; D’Onofrio, G.; Sancarlo, D.; Bao, Z.; Greco, A.; Yu, Z. Potential Neuroimaging Biomarkers of Pathologic Brain Changes in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review. BMC Geriatr. 2016, 16, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanchi, D.; Giannakopoulos, P.; Borgwardt, S.; Rodriguez, C.; Haller, S. Hippocampal and Amygdala Gray Matter Loss in Elderly Controls with Subtle Cognitive Decline. Front. Aging Neurosci. 2017, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickerson, B.C.; Salat, D.H.; Greve, D.N.; Chua, E.F.; Rand-Giovannetti, E.; Rentz, D.M.; Bertram, L.; Mullin, K.; Tanzi, R.E.; Blacker, D.; et al. Increased Hippocampal Activation in Mild Cognitive Impairment Compared to Normal Aging and Ad. Neurology 2005, 65, 404–411. [Google Scholar] [PubMed] [Green Version]
- Leal, S.L.; Landau, S.M.; Bell, R.K.; Jagust, W.J. Hippocampal Activation Is Associated with Longitudinal Amyloid Accumulation and Cognitive Decline. Elife 2017, 6, e22978. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.L.; O’Keefe, K.M.; LaViolette, P.S.; DeLuca, A.N.; Blacker, D.; Dickerson, B.C.; Sperling, R.A. Longitudinal Fmri in Elderly Reveals Loss of Hippocampal Activation with Clinical Decline. Neurology 2010, 74, 1969–1976. [Google Scholar] [CrossRef] [Green Version]
- Celone, K.A.; Calhoun, V.D.; Dickerson, B.C.; Atri, A.; Chua, E.F.; Miller, S.L.; DePeau, K.; Rentz, D.M.; Selkoe, D.J.; Blacker, D.; et al. Alterations in Memory Networks in Mild Cognitive Impairment and Alzheimer’s Disease: An Independent Component Analysis. J. Neurosci. 2006, 26, 10222–10231. [Google Scholar]
- Trelle, A.N.; Henson, R.N.; Simons, J.S. Neural Evidence for Age-Related Differences in Representational Quality and Strategic Retrieval Processes. Neurobiol. Aging 2019, 84, 50–60. [Google Scholar] [CrossRef]
- Sasse, L.K.; Peters, J.; Brassen, S. Cognitive Control Modulates Effects of Episodic Simulation on Delay Discounting in Aging. Front. Aging Neurosci. 2017, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Oedekoven, C.S.; Jansen, A.; Keidel, J.L.; Kircher, T.; Leube, D. The Influence of Age and Mild Cognitive Impairment on Associative Memory Performance and Underlying Brain Networks. Brain Imaging Behav. 2015, 9, 776–789. [Google Scholar] [CrossRef]
- Shi, F.; Liu, B.; Zhou, Y.; Yu, C.; Jiang, T. Hippocampal Volume and Asymmetry in Mild Cognitive Impairment and Alzheimer’s Disease: Meta-Analyses of Mri Studies. Hippocampus 2009, 19, 1055–1064. [Google Scholar]
- Fraser, M.A.; Shaw, M.E.; Anstey, K.J.; Cherbuin, N. Longitudinal Assessment of Hippocampal Atrophy in Midlife and Early Old Age: Contrasting Manual Tracing and Semi-Automated Segmentation (Freesurfer). Brain Topogr. 2018, 31, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Wang, T.; Wang, J.; Li, G.; Wang, J.; Li, X.; Li, W.; Hu, M.; Xiao, S. Asymmetry of Hippocampus and Amygdala Defect in Subjective Cognitive Decline among the Community Dwelling Chinese. Front. Psychiatry 2018, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, B.A.; Hadid, S.A.; Blessing, E.; Bachman, A.H. Sexual Dimorphism and Hemispheric Asymmetry of Hippocampal Volumetric Integrity in Normal Aging and Alzheimer Disease. AJNR Am. J. Neuroradiol. 2019, 40, 276–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mormino, E.C.; Brandel, M.G.; Madison, C.M.; Marks, S.; Baker, S.L.; Jagust, W.J. Abeta Deposition in Aging Is Associated with Increases in Brain Activation During Successful Memory Encoding. Cereb. Cortex 2012, 22, 1813–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltanifar, M.; Knight, K.; Dupuis, A.; Schachar, R.; Escobar, M. A Time Series-Based Point Estimation of Stop Signal Reaction Times: More Evidence on the Role of Reactive Inhibition-Proactive Inhibition Interplay on the Ssrt Estimations. Brain Sci. 2020, 10, 598. [Google Scholar] [CrossRef]
- Ide, J.S.; Hu, S.; Zhang, S.; Yu, A.J.; Li, C.S. Impaired Bayesian Learning for Cognitive Control in Cocaine Dependence. Drug Alcohol Depend. 2015, 151, 220–227. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Li, C.-s.R. Age-Related Structural and Functional Changes of the Hippocampus and the Relationship with Inhibitory Control. Brain Sci. 2020, 10, 1013. https://doi.org/10.3390/brainsci10121013
Hu S, Li C-sR. Age-Related Structural and Functional Changes of the Hippocampus and the Relationship with Inhibitory Control. Brain Sciences. 2020; 10(12):1013. https://doi.org/10.3390/brainsci10121013
Chicago/Turabian StyleHu, Sien, and Chiang-shan R. Li. 2020. "Age-Related Structural and Functional Changes of the Hippocampus and the Relationship with Inhibitory Control" Brain Sciences 10, no. 12: 1013. https://doi.org/10.3390/brainsci10121013
APA StyleHu, S., & Li, C.-s. R. (2020). Age-Related Structural and Functional Changes of the Hippocampus and the Relationship with Inhibitory Control. Brain Sciences, 10(12), 1013. https://doi.org/10.3390/brainsci10121013