Interest in Genetic Feedback for Alcohol Use Disorder and Related Substance Use and Psychiatric Outcomes among Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Procedures
2.2. Measures
2.2.1. Interest in Receiving Genetic Feedback
2.2.2. Genetic Knowledge
2.2.3. Demographic Variables
2.2.4. Substance Use
2.2.5. Anxiety and Depressive Symptoms
2.2.6. Family History
2.3. Analytic Plan
3. Results
3.1. Interest in Receiving Genetic Feedback
3.2. Variables Related to Interest in Receiving Genetic Feedback
3.2.1. AUD
3.2.2. NUD and CUD
3.2.3. Depression and Anxiety
3.3. Genetic Knowledge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Howard, D.M.; Adams, M.J.; Clarke, T.-K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranzler, H.R.; Zhou, H.; Kember, R.L.; Vickers Smith, R.; Justice, A.C.; Damrauer, S.; Tsao, P.S.; Klarin, D.; Baras, A.; Reid, J.; et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium; Ripke, S.; Walters, J.T.; O’Donovan, M.C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv 2020. [Google Scholar] [CrossRef]
- Bush, W.S.; Moore, J.H. Chapter 11: Genome-Wide Association Studies. PLoS Comput. Biol. 2012, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Barr, P.B.; Ksinan, A.; Su, J.; Johnson, E.C.; Meyers, J.L.; Wetherill, L.; Latvala, A.; Aliev, F.; Chan, G.; Kuperman, S.; et al. Using polygenic scores for identifying individuals at increased risk of substance use disorders in clinical and population samples. Transl. Psychiatry 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Folkersen, L.; Pain, O.; Ingason, A.; Werge, T.; Lewis, C.M.; Austin, J. Impute.me: An Open-Source, Non-profit Tool for Using Data From Direct-to-Consumer Genetic Testing to Calculate and Interpret Polygenic Risk Scores. Front. Genet. 2020, 11. [Google Scholar] [CrossRef]
- Ashida, S.; Goodman, M.; Pandya, C.; Koehly, L.M.; Lachance, C.; Stafford, J.; Kaphingst, K.A. Age Differences in Genetic Knowledge, Health Literacy and Causal Beliefs for Health Conditions. Public Health Genom. 2011, 14, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Chapman, R.; Likhanov, M.; Selita, F.; Zakharov, I.; Smith-Woolley, E.; Kovas, Y. New literacy challenge for the twenty-first century: Genetic knowledge is poor even among well educated. J. Community Genet. 2019, 10, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.D.; Jayaratne, T.E.; Roberts, J.S.; Kardia, S.L.R.; Petty, E.M. Understandings of basic genetics in the United States: Results from a national survey of black and white men and women. Public Health Genom. 2010, 13, 467–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar-Nimrod, I.; MacNevin, G.; Godwin, A.; Lynch, K.; Magory Cohen, T.; Ganesan, A.; Morandini, J. Genetic Knowledge within a National Australian Sample: Comparisons with Other Diverse Populations. Public Health Genom. 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haga, S.B.; Barry, W.T.; Mills, R.; Ginsburg, G.S.; Svetkey, L.; Sullivan, J.; Willard, H.F. Public Knowledge of and Attitudes toward Genetics and Genetic Testing. Genet. Test. Mol. Biomark. 2013, 17, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Jallinoja, P.; Aro, A.R. Knowledge about genes and heredity among Finns. New Genet. Soc. 1999, 18, 101–110. [Google Scholar] [CrossRef]
- Schmidlen, T.J.; Scheinfeldt, L.; Zhaoyang, R.; Kasper, R.; Sweet, K.; Gordon, E.S.; Keller, M.; Stack, C.; Gharani, N.; Daly, M.B.; et al. Genetic Knowledge among Participants in the Coriell Personalized Medicine Collaborative. J. Genet. Couns. 2016, 25, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molster, C.; Charles, T.; Samanek, A.; O’Leary, P. Australian Study on Public Knowledge of Human Genetics and Health. PHG 2009, 12, 84–91. [Google Scholar] [CrossRef]
- Dick, D.M.; Nasim, A.; Edwards, A.C.; Salvatore, J.E.; Cho, S.B.; Adkins, A.; Meyers, J.; Yan, J.; Cooke, M.; Clifford, J.; et al. Spit for Science: Launching a longitudinal study of genetic and environmental influences on substance use and emotional health at a large US university. Front. Genet. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Schulenberg, J.E.; Johnston, L.D.; O’Malley, P.M.; Bachman, J.G.; Miech, R.A.; Patrick, M.E. Monitoring the Future National Survey Results on Drug Use, 1975–2017. Volume II, College Students & Adults Ages 19–55; Institute for Social Research: Ann Arbor, MI, USA, 2018. [Google Scholar]
- Wartella, E.; Rideout, V.; Montague, H.; Beaudoin-Ryan, L.; Lauricella, A. Teens, Health and Technology: A National Survey. Media Commun. 2016, 4, 13–23. [Google Scholar] [CrossRef]
- Scott, D.M.; Nwulia, E.; Kwagyan, J.; Cain, G.; Marshall, V.J.; Kalu, N.; Ewing, A.; Taylor, R.E. Genetic Testing for the Susceptibility to Alcohol Dependence: Interest and Concerns in an African American Population. Genet. Test. Mol. Biomark. 2014, 18, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Chiu, A.; Hartz, S.; Smock, N.; Chen, J.; Qazi, A.; Onyeador, J.; Ramsey, A.T.; Bierut, L.J.; Chen, L.-S. Most Current Smokers Desire Genetic Susceptibility Testing and Genetically-Efficacious Medication. J. Neuroimmune Pharmacol. 2018, 13, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carver, R.B.; Castéra, J.; Gericke, N.; Evangelista, N.A.M.; El-Hani, C.N. Young Adults’ Belief in Genetic Determinism, and Knowledge and Attitudes towards Modern Genetics and Genomics: The PUGGS Questionnaire. PLoS ONE 2017, 12, e0169808. [Google Scholar] [CrossRef] [PubMed]
- Bohn, M.J.; Babor, T.F.; Kranzler, H.R. The Alcohol Use Disorders Identification Test (AUDIT): Validation of a screening instrument for use in medical settings. J. Stud. Alcohol 1995, 56, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Adamson, S.J.; Sellman, J.D. A prototype screening instrument for cannabis use disorder: The Cannabis Use Disorders Identification Test (CUDIT) in an alcohol-dependent clinical sample. Drug Alcohol Rev. 2003, 22, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Substance Abuse and Mental Health Services Administration. Results from the 2013 National Survey on Drug Use and Health: Summary of National Findings; NSDUH Series H-48; Substance Abuse and Mental Health Services Administration: Rockville, MD, USA, 2014.
- Derogatis, L.R.; Cleary, P.A. Confirmation of the dimensional structure of the scl-90: A study in construct validation. J. Clin. Psychol. 1977, 33, 981–989. [Google Scholar] [CrossRef]
- Kendler, K.S.; Edwards, A.; Myers, J.; Cho, S.B.; Adkins, A.; Dick, D. The predictive power of family history measures of alcohol and drug problems and internalizing disorders in a college population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168B, 337–346. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- DeLisi, L.E.; Bertisch, H. A preliminary comparison of the hopes of researchers, clinicians, and families for the future ethical use of genetic findings on schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141B, 110–115. [Google Scholar] [CrossRef]
- Laegsgaard, M.M.; Kristensen, A.S.; Mors, O. Potential consumers’ attitudes toward psychiatric genetic research and testing and factors influencing their intentions to test. Genet. Test. Mol. Biomark. 2009, 13, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Meiser, B.; Kasparian, N.A.; Mitchell, P.B.; Strong, K.; Simpson, J.M.; Tabassum, L.; Mireskandari, S.; Schofield, P.R. Attitudes to genetic testing in families with multiple cases of bipolar disorder. Genet. Test. 2008, 12, 233–243. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Exploring the Current Landscape of Consumer Genomics: Proceedings of a Workshop; The National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
- Dick, D.M.; Barr, P.; Guy, M.; Nasim, A.; Scott, D. Review: Genetic research on alcohol use outcomes in African American populations: A review of the literature, associated challenges, and implications. Am. J. Addict. 2017, 26, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Chou, S.P.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; Huang, B.; et al. Epidemiology of DSM-5 Alcohol Use Disorder: Results From the National Epidemiologic Survey on Alcohol and Related Conditions III. JAMA Psychiatry 2015, 72, 757–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA Psychiatry 2018, 75, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auerbach, R.P.; Mortier, P.; Bruffaerts, R.; Alonso, J.; Benjet, C.; Cuijpers, P.; Demyttenaere, K.; Ebert, D.D.; Green, J.G.; Hasking, P.; et al. WHO World Mental Health Surveys International College Student Project: Prevalence and distribution of mental disorders. J. Abnorm. Psychol. 2018, 127, 623–638. [Google Scholar] [CrossRef] [PubMed]
Outcome | Interested (%) | Not Interested (%) |
---|---|---|
Alcohol use disorder | 79.0% | 21.0% |
Nicotine use disorder | 63.4% | 36.6% |
Cannabis use disorder | 66.3% | 33.7% |
Depression | 88.8% | 11.2% |
Anxiety | 90.2% | 9.8% |
Number of Participants | Frequency | |
---|---|---|
All 5 conditions | 123 | 60.0% |
AUD, Depression, Anxiety | 23 | 11.2% |
None of the conditions | 18 | 8.8% |
Depression & Anxiety only | 16 | 7.8% |
All conditions except NUD | 8 | 3.9% |
All conditions except CUD | 6 | 2.9% |
Only Anxiety | 4 | 2.0% |
CUD, Depression, Anxiety | 3 | 1.5% |
AUD & Anxiety only | 1 | 0.5% |
All conditions except AUD | 1 | 0.5% |
AUD & Depression only | 1 | 0.5% |
CUD & Depression only | 1 | 0.5% |
Variables | Mean (SD) | n (%) |
---|---|---|
Age | 24.48 (0.36) | - |
Sex a | - | 156 (76.5%) |
Race/Ethnicity a | - | 83 (41.1%) |
Depressive Symptoms | 11.37 (3.95) | - |
Anxiety Symptoms | 8.8 (3.8) | - |
Alcohol Frequency | 2.9 (1.08) | - |
Nicotine Use a | - | 40 (19.5%) |
Cannabis Use a | - | 82 (40.4%) |
Family History of Alcohol Problems a | - | 120 (59.4%) |
Family History of Depression/Anxiety a | - | 143 (71.1%) |
Family History of Other Drug Problems a | - | 90 (44.6%) |
Overall Genetic Knowledge | 7.47 (3.58) | - |
Alcohol Use Disorder | Nicotine Use Disorder | Cannabis Use Disorder | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Interested (n = 162) | Not Interested (n = 43) | t/χ2 (p Value) | Interested (n = 130) | Not Interested (n = 75) | t/χ2 (p Value) | Interested (n = 136) | Not Interested (n = 69) | t/χ2 (p Value) |
Age a | 24.49 (0.35) | 24.43 (0.38) | 0.892 (0.376) | 24.5 (0.36) | 24.43 (0.35) | 1.281 (0.202) | 24.51 (0.35) | 24.42 (0.36) | 1.672 (0.097) |
Sex | |||||||||
Male | 77% | 23% | 0.128 (0.721) | 58% | 42% | 0.649 (0.421) | 67% | 33% | 0.007 (0.935) |
Female | 79% | 21% | 65% | 35% | 66% | 34% | |||
Race/Ethnicity | |||||||||
White | 84% | 16% | 4.893 (0.027) | 66% | 34% | 0.888 (0.346) | 67% | 33% | 0.103 (0.749) |
Rac/Eth Minority | 71% | 29% | 59% | 41% | 65% | 35% | |||
Depressive Symptoms a | 11.48 (3.83) | 10.93 (4.43) | 0.740 (0.462) | 11.55 (3.71) | 11.05 (4.36) | 0.817 (0.415) | 11.57 (3.83) | 10.97 (4.20) | 0.984 (0.327) |
Anxiety Symptoms a | 8.75 (3.71) | 9.00 (4.17) | −0.358 (0.721) | 8.65 (3.51) | 9.05 (4.28) | −0.684 (0.495) | 8.81 (3.70) | 8.78 (4.03) | 0.051 (0.960) |
Alcohol Frequency a | 1.93 (1.05) | 1.77 (1.19) | 0.825 (0.413) | 1.88 (1.09) | 1.93 (1.08) | −0.359 (0.720) | 1.91 (1.06) | 1.87 (1.12) | 0.259 (0.796) |
Nicotine Use | |||||||||
No | 78% | 22% | 1.071 (0.301) | 59% | 41% | 5.892 (0.015) | 62% | 38% | 7.748 (0.005) |
Yes | 85% | 15% | 80% | 20% | 85% | 15% | |||
Cannabis Use | |||||||||
No | 74% | 26% | 4.437 (0.035) | 56% | 44% | 6.983 (0.008) | 53% | 47% | 24.907 (0.000) |
Yes | 87% | 13% | 74% | 26% | 87% | 13% | |||
FH of ALC Prob | |||||||||
No | 72% | 28% | 3.766 (0.052) | 63% | 37% | 0.012 (0.913) | 67% | 33% | 0.004 (0.952) |
Yes | 83% | 17% | 64% | 36% | 67% | 33% | |||
FH of Dep/Anx | |||||||||
No | 74% | 26% | 0.968 (0.325) | 60% | 40% | 0.392 (0.531) | 57% | 43% | 3.502 (0.061) |
Yes | 80% | 20% | 65% | 35% | 71% | 29% | |||
FH of Drug Prob | |||||||||
No | 80% | 20% | 0.406 (0.524) | 65% | 35% | 0.189 (0.664) | 68% | 32% | 0.119 (0.730) |
Yes | 77% | 23% | 62% | 38% | 66% | 34% | |||
Genetic Knowledge a | 7.77 (3.54) | 6.35 (3.57) | 2.327 (0.023) | 7.65 (3.66) | 7.17 (3.45) | 0.924 (0.357) | 7.75 (3.59) | 6.93 (3.53) | 1.568 (0.119) |
Depression | Anxiety | |||||
---|---|---|---|---|---|---|
Variable | Interested (n = 182) | Not Interested (n = 23) | t/χ2 (p Value) | Interested (n = 185) | Not Interested (n = 20) | t/χ2 (p Value) |
Age a | 24.47 (0.35) | 24.51 (0.45) | −0.393 (0.698) | 24.48 (0.35) | 24.48 (0.44) | 0.025 (0.980) |
Sex | ||||||
Male | 90% | 10% | 0.046 (0.830) | 90% | 10% | 0.027 (0.870) |
Female | 88% | 12% | 90% | 10% | ||
Race/Ethnicity | ||||||
White | 90% | 10% | 0.487 (0.485) | 92% | 8% | 1.775 (0.183) |
Rac/Eth Minority | 87% | 13% | 87% | 13% | ||
Depressive Symptoms a | 11.67 (3.91) | 8.86 (3.44) | 3.558 (0.001) | 11.55 (3.91) | 9.58 (4.02) | 2.043 (0.053) |
Anxiety Symptoms a | 8.91 (3.80) | 7.86 (3.78) | 1.227 (0.231) | 8.79 (3.76) | 8.84 (4.26) | −0.047 (0.963) |
Alcohol Frequency a | 1.87 (1.07) | 2.09 (1.16) | −0.835 (0.411) | 1.87 (1.09) | 2.15 (1.04) | −1.138 (0.267) |
Nicotine Use | ||||||
No | 88% | 12% | 0.690 (0.406) | 89% | 11% | 1.277 (0.259) |
Yes | 93% | 7% | 95% | 5% | ||
Cannabis Use | ||||||
No | 85% | 15% | 5.056 (0.025) | 88% | 12% | 1.726 (0.189) |
Yes | 95% | 5% | 94% | 6% | ||
FH of ALC Prob | ||||||
No | 83% | 17% | 4.425 (0.035) | 85% | 15% | 3.467 (0.063) |
Yes | 93% | 7% | 93% | 7% | ||
FH of Dep/Anx | ||||||
No | 79% | 21% | 6.879 (0.009) | 83% | 17% | 4.837 (0.028) |
Yes | 92% | 8% | 93% | 7% | ||
FH of Drug Prob | ||||||
No | 88% | 12% | 0.309 (0.578) | 88% | 12% | 0.820 (0.365) |
Yes | 90% | 10% | 92% | 8% | ||
Genetic Knowledge a | 7.57 (3.59) | 6.7 (3.55) | 1.114 (0.275) | 7.57 (3.56) | 6.55 (3.75) | 1.165 (0.256) |
Statement | Correct | Incorrect | Don’t Know |
---|---|---|---|
A gene codes directly for a psychiatric condition. (false) | 42.4% | 21.0% | 36.6% |
Most psychiatric conditions are caused by a single gene. (false) | 61.0% | 6.3% | 32.7% |
A single gene can influence several different psychiatric conditions. (true) | 71.2% | 7.3% | 21.5% |
A person’s substance use disorder is influenced by one gene only. (false) | 74.1% | 2.4% | 23.4% |
A person’s depression is influenced by one gene only. (false) | 77.1% | 1.5% | 21.5% |
Most psychiatric conditions are influenced by many different genes. (true) | 73.7% | 2.9% | 23.4% |
Most psychiatric conditions are caused by environmental factors only (such as parenting or trauma). (false) | 58.5% | 19.5% | 22.0% |
A gene can only influence a single psychiatric condition. (false) | 72.2% | 3.9% | 23.9% |
Most psychiatric conditions are caused by both genes and environmental factors. (true) | 80.0% | 5.9% | 14.1% |
A person’s substance use disorder is influenced by many different genes. (true) | 68.8% | 7.3% | 23.9% |
A person’s depression is influenced by many different genes. (true) | 68.3% | 7.3% | 24.4% |
Genetic Knowledge | ||||
---|---|---|---|---|
Univariate Analyses | ||||
Variable | Estimate | Std. Error | z Value | p Value |
Age | 1.374 | 0.746 | 1.842 | 0.067 |
Sex | 0.085 | 0.594 | 0.143 | 0.886 |
Race/Ethnicity | −0.779 | 0.499 | −1.561 | 0.120 |
Depressive Symptoms | −0.013 | 0.063 | −0.206 | 0.837 |
Anxiety Symptoms | −0.042 | 0.066 | −0.644 | 0.520 |
Alcohol Frequency | −0.310 | 0.231 | −1.340 | 0.182 |
Nicotine Use (Binary) | −0.681 | 0.631 | −1.079 | 0.282 |
Cannabis Use (Binary) | −0.397 | 0.509 | −0.780 | 0.436 |
Family History of Alcohol Problems | 0.145 | 0.509 | 0.285 | 0.776 |
Family History of Depression/Anxiety | 0.548 | 0.553 | 0.991 | 0.323 |
Family History of Other Drug Problems | −0.630 | 0.501 | −1.257 | 0.210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Driver, M.N.; Kuo, S.I.-C.; Dick, D.M.; on behalf of the Spit for Science Working Group. Interest in Genetic Feedback for Alcohol Use Disorder and Related Substance Use and Psychiatric Outcomes among Young Adults. Brain Sci. 2020, 10, 1007. https://doi.org/10.3390/brainsci10121007
Driver MN, Kuo SI-C, Dick DM, on behalf of the Spit for Science Working Group. Interest in Genetic Feedback for Alcohol Use Disorder and Related Substance Use and Psychiatric Outcomes among Young Adults. Brain Sciences. 2020; 10(12):1007. https://doi.org/10.3390/brainsci10121007
Chicago/Turabian StyleDriver, Morgan N., Sally I-Chun Kuo, Danielle M. Dick, and on behalf of the Spit for Science Working Group. 2020. "Interest in Genetic Feedback for Alcohol Use Disorder and Related Substance Use and Psychiatric Outcomes among Young Adults" Brain Sciences 10, no. 12: 1007. https://doi.org/10.3390/brainsci10121007