Strategy-Specific Patterns of Arc Expression in the Retrosplenial Cortex and Hippocampus during T-Maze Learning in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Behavioral Training
2.3. Fluorescence In Situ Hybridization for Arc Immediate Early Gene (CatFISH)
2.4. Data Processing
3. Results
3.1. Behavioral Strategies in T-Maze Task
3.2. CatFISH
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Witter, M.P.; Canto, C.B.; Couey, J.J.; Koganezawa, N.; O′Reilly, K.C. Architecture of spatial circuits in the hippocampal region. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20120515. [Google Scholar] [CrossRef] [PubMed]
- Milczarek, M.M.; Vann, S.D. The retrosplenial cortex and long-term spatial memory: From the cell to the network. Curr. Opin. Behav. Sci. 2020, 32, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.S.; Czajkowski, R.; Zhang, N.; Jeffery, K.; Nelson, A.J.D. Retrosplenial cortex and its role in spatial cognition. Brain Neurosci. Adv. 2018, 2, 2398212818757098. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, R.; Sugar, J.; Zhang, S.J.; Couey, J.J.; Ye, J.; Witter, M.P. Superficially projecting principal neurons in layer V of medial entorhinal cortex in the rat receive excitatory retrosplenial input. J. Neurosci. 2013, 33, 15779–15792. [Google Scholar] [CrossRef] [PubMed]
- Kononenko, N.L.; Witter, M.P. Presubiculum layer III conveys retrosplenial input to the medial entorhinal cortex. Hippocampus 2012, 22, 881–895. [Google Scholar] [CrossRef]
- Chen, L.L.; Lin, L.H.; Green, E.J.; Barnes, C.A.; McNaughton, B.L. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 1994, 101, 8–23. [Google Scholar] [CrossRef]
- Jacob, P.Y.; Casali, G.; Spieser, L.; Page, H.; Overington, D.; Jeffery, K. An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat. Neurosci. 2017, 20, 173–175. [Google Scholar] [CrossRef]
- Alexander, A.S.; Nitz, D.A. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat. Neurosci. 2015, 18, 1143–1151. [Google Scholar] [CrossRef]
- Alexander, A.S.; Nitz, D.A. Spatially Periodic Activation Patterns of Retrosplenial Cortex Encode Route Sub-spaces and Distance Traveled. Curr. Biol. 2017, 27, 1551–1560.e4. [Google Scholar] [CrossRef]
- Mao, D.; Kandler, S.; McNaughton, B.L.; Bonin, V. Sparse orthogonal population representation of spatial context in the retrosplenial cortex. Nat. Commun. 2017, 8, 243. [Google Scholar] [CrossRef]
- Vedder, L.C.; Miller, A.M.; Harrison, M.B.; Smith, D.M. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation. Cereb. Cortex 2016. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, R.; Jayaprakash, B.; Wiltgen, B.; Rogerson, T.; Guzman-Karlsson, M.C.; Barth, A.L.; Trachtenberg, J.T.; Silva, A.J. Encoding and storage of spatial information in the retrosplenial cortex. Proc. Natl. Acad. Sci. USA 2014, 111, 8661–8666. [Google Scholar] [CrossRef] [PubMed]
- Milczarek, M.M.; Vann, S.D.; Sengpiel, F. Spatial Memory Engram in the Mouse Retrosplenial Cortex. Curr. Biol. 2018, 28, 1975–1980.e6. [Google Scholar] [CrossRef] [PubMed]
- Cowansage, K.K.; Shuman, T.; Dillingham, B.C.; Chang, A.; Golshani, P.; Mayford, M. Direct reactivation of a coherent neocortical memory of context. Neuron 2014, 84, 432–441. [Google Scholar] [CrossRef]
- Guzowski, J.F.; Worley, P.F. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). Curr. Protoc. Neurosci. 2001, 15, 1–8. [Google Scholar] [CrossRef]
- Guzowski, J.F.; McNaughton, B.L.; Barnes, C.A.; Worley, P.F. Imaging neural activity with temporal and cellular resolution using FISH. Curr. Opin. Neurobiol. 2001, 11, 579–584. [Google Scholar] [CrossRef]
- Kubik, S.; Buchtova, H.; Vales, K.; Stuchlik, A. MK-801 Impairs Cognitive Coordination on a Rotating Arena (Carousel) and Contextual Specificity of Hippocampal Immediate-Early Gene Expression in a Rat Model of Psychosis. Front. Behav. Neurosci. 2014, 8, 75. [Google Scholar] [CrossRef][Green Version]
- Yassa, M.A.; Stark, C.E. Pattern separation in the hippocampus. Trends Neurosci. 2011, 34, 515–525. [Google Scholar] [CrossRef]
- Vann, S.D.; Aggleton, J.P.; Maguire, E.A. What does the retrosplenial cortex do? Nat. Rev. Neurosci. 2009, 10, 792–802. [Google Scholar] [CrossRef]
- Spiers, H.J.; Maguire, E.A. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 2006, 31, 1826–1840. [Google Scholar] [CrossRef]
- Maguire, E.A. The retrosplenial contribution to human navigation: A review of lesion and neuroimaging findings. Scand. J. Psychol. 2001, 42, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Epstein, R.A.; Parker, W.E.; Feiler, A.M. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci. 2007, 27, 6141–6149. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Sharp, P.E. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav. Neurosci. 2001, 115, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Whishaw, I.Q.; Maaswinkel, H.; Gonzalez, C.L.; Kolb, B. Deficits in allothetic and idiothetic spatial behavior in rats with posterior cingulate cortex lesions. Behav. Brain Res. 2001, 118, 67–76. [Google Scholar] [CrossRef]
- Vann, S.D.; Aggleton, J.P. Testing the importance of the retrosplenial guidance system: Effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behav. Brain Res. 2004, 155, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Pothuizen, H.H.; Aggleton, J.P.; Vann, S.D. Do rats with retrosplenial cortex lesions lack direction? Eur. J. Neurosci. 2008, 28, 2486–2498. [Google Scholar] [CrossRef]
- Cooper, B.G.; Mizumori, S.J. Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J. Neurosci. 2001, 21, 3986–4001. [Google Scholar] [CrossRef]
- Maviel, T.; Durkin, T.P.; Menzaghi, F.; Bontempi, B. Sites of neocortical reorganization critical for remote spatial memory. Science 2004, 305, 96–99. [Google Scholar] [CrossRef]
- Tse, D.; Takeuchi, T.; Kakeyama, M.; Kajii, Y.; Okuno, H.; Tohyama, C.; Bito, H.; Morris, R.G. Schema-dependent gene activation and memory encoding in neocortex. Science 2011, 333, 891–895. [Google Scholar] [CrossRef]
- Malinowska, M.; Niewiadomska, M.; Wesierska, M. Spatial memory formation differentially affects c-Fos expression in retrosplenial areas during place avoidance training in rats. Acta Neurobiol. Exp. 2016, 76, 244–255. [Google Scholar] [CrossRef][Green Version]
- Vann, S.D.; Brown, M.W.; Erichsen, J.T.; Aggleton, J.P. Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests. J. Neurosci. 2000, 20, 2711–2718. [Google Scholar] [CrossRef] [PubMed]
- Dudchenko, P.A. How do animals actually solve the T maze? Behav. Neurosci. 2001, 115, 850–860. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czajkowski, R.; Zglinicki, B.; Rejmak, E.; Konopka, W. Strategy-Specific Patterns of Arc Expression in the Retrosplenial Cortex and Hippocampus during T-Maze Learning in Rats. Brain Sci. 2020, 10, 854. https://doi.org/10.3390/brainsci10110854
Czajkowski R, Zglinicki B, Rejmak E, Konopka W. Strategy-Specific Patterns of Arc Expression in the Retrosplenial Cortex and Hippocampus during T-Maze Learning in Rats. Brain Sciences. 2020; 10(11):854. https://doi.org/10.3390/brainsci10110854
Chicago/Turabian StyleCzajkowski, Rafał, Bartosz Zglinicki, Emilia Rejmak, and Witold Konopka. 2020. "Strategy-Specific Patterns of Arc Expression in the Retrosplenial Cortex and Hippocampus during T-Maze Learning in Rats" Brain Sciences 10, no. 11: 854. https://doi.org/10.3390/brainsci10110854
APA StyleCzajkowski, R., Zglinicki, B., Rejmak, E., & Konopka, W. (2020). Strategy-Specific Patterns of Arc Expression in the Retrosplenial Cortex and Hippocampus during T-Maze Learning in Rats. Brain Sciences, 10(11), 854. https://doi.org/10.3390/brainsci10110854