Chatting While Walking Does Not Interfere with Topographical Working Memory
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Experiments
2.1.1. Ethic Statement
2.1.2. Participants
2.1.3. Apparatus
2.1.4. Procedure
2.1.5. Statistical Analysis
2.2. Differences in Each Experiment
2.2.1. Experiment 1: Articulatory Suppression with Syllables without Meaning
Participants
2.2.2. Experiment 2: Articulatory Suppression with Words Underlying Egocentric Representation
Participants
Procedure
2.2.3. Experiment 3: Articulatory Suppression with Words Underlying Allocentric Representation
Participants
Procedure
3. Results
3.1. Experiment 1: Articulatory Suppression with Syllables without Meaning
3.2. Experiment 2: Articulatory Suppression with Words Underlying Egocentric Representation
3.3. Experiment 3: Articulatory Suppression with Words Underlying Allocentric Representation
4. Discussion
4.1. Experiment Parts
4.1.1. Experiment 1: Articulatory Suppression with Syllables without Meaning
4.1.2. Experiment 2: Articulatory Suppression with Words Underlying Egocentric Representation
4.1.3. Experiment 3: Articulatory Suppression with Words Underlying Allocentric Representation
4.2. General Discussion for all Experiments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lynch, K. The Image of the City; MIT Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Palmiero, M.; Piccardi, L. The role of emotional landmarks on topographic memory. Front. Psychol. 2017, 8, 763. [Google Scholar] [CrossRef]
- Piccardi, L.; Guariglia, P.; Nori, R.; Palmiero, M. The role of emotional landmarks in embodied and not-embodied tasks. Brain Sci. 2020, 10, 58. [Google Scholar] [CrossRef]
- Mallot, H.A.; Gillner, S. Route navigating without place recognition: What is recognised in recognition-triggered responses? Perception 2000, 29, 43–55. [Google Scholar] [CrossRef]
- MacDonald, S.E.; Spetch, M.L.; Kelly, D.M.; Cheng, K. Strategies in landmark use by children, adults, and marmoset monkeys. Learn. Motiv. 2004, 35, 322–347. [Google Scholar] [CrossRef]
- Sutton, J.E. The development of landmark and beacon use in young children: Evidence from a touchscreen search task. Dev. Sci. 2006, 9, 108–123. [Google Scholar] [CrossRef]
- Acredolo, L.P.; Evans, D. Developmental changes in the effects of landmarks on infant spatial behaviour. Dev. Psychol. 1980, 16, 312–318. [Google Scholar] [CrossRef]
- DeLoache, J.S.; Brown, A.L. Very young children’s memory for the location of objects in a large-scale environment. Child Dev. 1983, 54, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Lew, A.R.; Foster, K.A.; Crowther, H.L.; Green, M. Indirect landmark use at 6 months of age in a spatial orientation task. Infant Behav. Dev. 2004, 27, 81–90. [Google Scholar] [CrossRef]
- Plumert, J.M.; Hawkins, A.M. Biases in young children’s communication about spatial relations: Containment versus proximity. Child Dev. 2001, 72, 22–36. [Google Scholar] [CrossRef]
- Spetch, M.L.; Parent, M.B. Age and sex differences in children’s spatial search strategies. Psychon. Bull. Rev. 2006, 13, 807–812. [Google Scholar] [CrossRef][Green Version]
- Uttal, D.H.; Sandstrom, L.B.; Newcombe, N.S. One hidden object, two spatial codes: Young children’s use of relational and vector coding. J. Cogn. Dev. 2006, 7, 503–525. [Google Scholar] [CrossRef]
- Siegel, A.W.; White, S.H. The Development of Spatial Representations of Large-Scale Environments; Academic Press Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Tversky, B. Cogntive maps, cognitive collages and spatial mental models. In Spatial Information Theory: A Theoretical Basis for GIS, Proceedings COSIT’93. Lecture Notes in Computer Science; Frank, A.U., Campari, I., Eds.; Springer Science + Business Media: Berlin/Heidelberg, Germany, 1993; Volume 716, pp. 14–24. [Google Scholar]
- Montello, D.R. A New Framework for Understanding the Acquisition of Spatial Knowledge in Large-Scale Environments; Oxford University Press: New York, NY, USA, 1998; pp. 143–154. [Google Scholar]
- Piccardi, L.; Palermo, L.; Bocchi, A.; Guariglia, C.; D’Amico, S. Does spatial locative comprehension predict landmark-based navigation? PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, L.; Nori, R.; Boccia, M.; Barbetti, S.; Verde, P.; Guariglia, C.; Ferlazzo, F. A dedicated system for topographical working memory: Evidence from domain-specific interference tests. Exp. Brain Res. 2015, 233, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Verde, P.; Boccia, M.; Colangeli, S.; Barbetti, S.; Nori, R.; Ferlazzo, F.; Piccolo, F.; Vitalone, R.; Lucertini, E.; Piccardi, L. Domain-specific interference tests on navigational working memory in military pilots. Aerosp. Med. Hum. Perform. 2016, 87, 528–533. [Google Scholar] [CrossRef]
- Logie, R.H.; Marchetti, C. Visuo-spatial working memory: Visual, spatial or central executive. In Mental Images in Human Cognition; Logie, R.H., Denis, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 105–115. [Google Scholar]
- Logie, R.H.; Pearson, D. The inner eye and the inner scribe of visuospatial working memory: Evidence from developmental fractioning. Eur. J. Cogn. Psychol. 1997, 9, 241–257. [Google Scholar] [CrossRef]
- Wolbers, T.; Wiener, J.M. Challenges for identifying the neural mechanisms that support spatial navigation: The impact of spatial scale. Front. Hum. Neurosci. 2014, 4, 571. [Google Scholar] [CrossRef]
- Taylor, H.A.; Tversky, B. Spatial mental models derived from survey and route descriptions. J. Mem. Lang. 1992, 31, 261–292. [Google Scholar] [CrossRef]
- Taylor, H.A.; Tversky, B. Perspective in spatial descriptions. J. Mem. Lang. 1996, 35, 371–391. [Google Scholar] [CrossRef]
- Piccardi, L.; Risetti, M.; Nori, R. Familiarity and environmental representations of a city: A self-report study. Psychol. Rep. 2011, 109, 309–326. [Google Scholar] [CrossRef]
- Iaria, G.; Bogod, N.; Fox, C.J.; Barton, J.J. Developmental topographical disorientation: Case one. Neuropsychologia 2009, 47, 30–40. [Google Scholar] [CrossRef]
- Bianchini, F.; Incoccia, C.; Palermo, L.; Piccardi, L.; Zompanti, L.; Sabatini, U.; Guariglia, C. Developmental topographical disorientation in a healthy subject. Neuropsychologia 2010, 48, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Corsi, P.M. Human memory and the medial temporal region of the brain. Diss. Abstr. Int. 1972, 34, 891B. [Google Scholar]
- Piccardi, L.; Bianchini, F.; Argento, O.; De Nigris, A.; Maialetti, A.; Palermo, L.; Guariglia, C. The Walking Corsi Test (WalCT): Standardization of the topographical memory test in an Italian population. Neurol. Sci. 2013, 34, 971–978. [Google Scholar] [CrossRef]
- Piccardi, L.; Iaria, G.; Ricci, M.; Bianchini, F.; Zompanti, L.; Guariglia, C. Walking in the Corsi test: Which type of memory do you need? Neurosci. Lett. 2008, 432, 127–131. [Google Scholar] [CrossRef]
- Wen, W.; Ishikawa, T.; Sato, T. Individual differences in the encoding processes of egocentric and allocentric survey knowledge. Cogn. Sci. 2013, 37, 176–192. [Google Scholar] [CrossRef]
- Salmaso, D.; Longoni, A.M. Hand preference in an Italian sample. Percept. Mot. Skills 1983, 57, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, F.; Di Vita, A.; Palermo, L.; Piccardi, L.; Blundo, C.; Guariglia, C. A selective egocentric topographical working memory deficit in the early stages of Alzheimer’s disease. Am. J. Alzheimers Dis. Other Dement. 2014, 29, 749–754. [Google Scholar] [CrossRef]
- Montello, D.R.; Lovelace, K.L.; Golledge, R.G.; Self, C.M. Sex-related differences and similarities in geographic and environmental spatial abilities. Ann. Am. Assoc. Geogr. 1999, 89, 515–534. [Google Scholar] [CrossRef]
- Lawton, C.A. Gender, spatial abilities, and wayfinding. In Handbook of Gender Research in Psychology, Vol 1: Gender Research in General and Experimental Psychology; Chrisler, J.C., McCreary, D.R., Eds.; Springer: New York, NY, USA, 2010; pp. 317–341. [Google Scholar]
- Picucci, L.; Caffò, A.O.; Bosco, A. Besides navigation accuracy: Gender differences in strategy selection and level of spatial confidence. J. Environ. Psychol. 2011, 31, 430–438. [Google Scholar] [CrossRef]
- Munion, A.; Stefanucci, J.K.; Rovira, E.; Squire, P.; Hendricks, M. Gender differences in spatialnavigation: Characterizingwayfindingbehaviors. Psychon. Bull. Rev. 2019, 26, 1933–1940. [Google Scholar] [CrossRef]
- Gagnon, K.T.; Thomas, B.J.; Munion, A.; Creem-Regehr, S.H.; Cashdan, E.A.; Stefanucci, J.K. Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition 2018, 180, 108–117. [Google Scholar] [CrossRef]
- Tedesco, A.M.; Bianchini, F.; Piccardi, L.; Clausi, S.; Berthoz, A.; Molinari, M.; Guariglia, C.; Leggio, M. Does the cerebellum contribute to human navigation by processing sequential information? Neuropsychology 2017, 31, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Boccia, M.; Di Vita, A.; Diana, S.; Margiotta, R.; Imbriano, L.; Rendace, L.; Campanelli, A.; D’Antonio, F.; Trebbastoni, A.; de Lena, C.; et al. Is losing one’s way a sign of cognitive decay? Topographical memory deficit as an early marker of pathological aging. J. Alzheimers Dis. 2019, 68, 679–693. [Google Scholar] [CrossRef]
- Piccardi, L.; De Luca, M.; Di Vita, A.; Palermo, L.; Tanzilli, A.; Dacquino, C.; Pizzamiglio, M.R. Evidence of taxonomy for developmental topographical disorientation: Developmental landmark agnosia case 1. Appl. Neuropsychol. Child 2019, 8, 187–198. [Google Scholar] [CrossRef] [PubMed]
LTSTM | LTSTM + M | LTSTM + SM | LTSTM + AS | LTSTM + SE | |
---|---|---|---|---|---|
Females | 5.65 (1.53) SE = 0.34 | 5.95 (1.79) SE = 0.40 | 5.6 (1.10) SE = 0.25 | 5.75 (1.65) SE = 0.37 | 3.9 (1.37) SE = 0.31 |
Males | 6.85 (1.39) SE = 0.31 | 6.6 (1.47) SE = 0.33 | 6.35 (1.42) SE = 0.32 | 6 (1.95) SE = 0.44 | 5.05 (2.06) SE = 0.46 |
Total | 6.25 (1.57) SE = 0.25 | 6.28 (1.65) SE = 0.26 | 5.98 (1.31) SE = 0.21 | 5.88 (1.79) SE = 0.28 | 4.48 (1.83) SE = 0.29 |
Groups | LTSTM | LTSTM + M | LTSTM + SM | LTSTM + AS | LTSTM + SE |
---|---|---|---|---|---|
Females | 5.04 (1.49) SE = 0.30 | 5.25 (1.73) SE = 0.35 | 5.79 (1.35) SE = 0.28 | 5.75 (1.7) SE = 0.35 | 3.54 (1.64) SE = 0.34 |
Males | 6.69 (0.87) SE = 0.22 | 7.63 (1.54) SE = 0.39 | 6.63 (1.02) SE = 0.26 | 7.31 (1.49) SE = 0.37 | 3.94 (2.52) SE = 0.63 |
Total | 5.86 (1.51) SE = 0.21 | 6.44 (2.02) SE = 0.27 | 6.21 (1.28) SE = 0.20 | 6.53 (1.78) SE = 0.26 | 3.74 (2.05) SE = 0.33 |
TSTM-L | TSTM-L + M | TSTM-L + SM | TSTM-L + AS | TSTM-L + SE | |
---|---|---|---|---|---|
Females | 6.32 (1.25) SE = 0.27 | 6 (1.51) SE = 0.32 | 5.95 (0.9) SE = 0.19 | 6.05 (1.84) SE = 0.39 | 4.59 (1.14) SE = 0.24 |
Males | 6.44 (1.29) SE = 0.30 | 6.94 (1.7) SE = 0.4 | 6.67 (1.08) SE = 0.26 | 7.22 (1.11) SE = 0.26 | 5.22 (1.06) SE = 0.25 |
Total | 6.38 (1.25) SE = 0.20 | 6.47 (1.65) SE = 0.26 | 6.31 (1.04) SE = 0.16 | 6.63 (1.65) SE = 0.25 | 4.91(1.14) SE = 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccardi, L.; Bocchi, A.; Palmiero, M.; Boccia, M.; D’Amico, S.; Nori, R. Chatting While Walking Does Not Interfere with Topographical Working Memory. Brain Sci. 2020, 10, 811. https://doi.org/10.3390/brainsci10110811
Piccardi L, Bocchi A, Palmiero M, Boccia M, D’Amico S, Nori R. Chatting While Walking Does Not Interfere with Topographical Working Memory. Brain Sciences. 2020; 10(11):811. https://doi.org/10.3390/brainsci10110811
Chicago/Turabian StylePiccardi, Laura, Alessia Bocchi, Massimiliano Palmiero, Maddalena Boccia, Simonetta D’Amico, and Raffaella Nori. 2020. "Chatting While Walking Does Not Interfere with Topographical Working Memory" Brain Sciences 10, no. 11: 811. https://doi.org/10.3390/brainsci10110811
APA StylePiccardi, L., Bocchi, A., Palmiero, M., Boccia, M., D’Amico, S., & Nori, R. (2020). Chatting While Walking Does Not Interfere with Topographical Working Memory. Brain Sciences, 10(11), 811. https://doi.org/10.3390/brainsci10110811