Impact of Subharmonic and Aperiodic Laryngeal Dynamics on the Phonatory Process Analyzed in Ex Vivo Rabbit Models
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Fundamental Phonatory Parameters
3.2. Influence of the Glottal Gap on the Phonatory Process
3.3. Influence of the Vibrational Characteristics Subharmonic and Aperiodic on the Phonatory Process
3.4. Descriptive Statistics
4. Discussion
4.1. Fundamental Phonatory Parameters
4.2. Phonation Parameters
4.2.1. GAW Parameters
4.2.2. Aerodynamic Parameters
4.2.3. Harmonic Measures
4.3. Summary
5. Shortcomings
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, K.; Ge, P.; Sheng, X.; Jiang, J.; Qin, H. Survival in Vivo Canine Phonation Model Without Stimulation. Ann. Otol. Rhinol. Laryngol. 2018, 127, 178–184. [Google Scholar] [CrossRef]
- Döllinger, M.; Kniesburges, S.; Kaltenbacher, M.; Echternach, M. Current methods for modelling voice production. HNO 2016, 64, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Döllinger, M. The Next Step in Voice Assessment: High-Speed Digital Endoscopy and Objective Evaluation. Curr. Bioinform. 2009, 4, 101–111. [Google Scholar] [CrossRef]
- Ziethe, A.; Patel, R.; Kunduk, M.; Eysholdt, U.; Graf, S. Clinical Analysis Methods of Voice Disorders. Curr. Bioinform. 2011, 6, 270–285. [Google Scholar] [CrossRef]
- Patel, R.; Dubrovskiy, D.; Döllinger, M. Characterizing vibratory kinematics in children and adults with high-speed digital imaging. J. Speech Lang. Hear. Res. 2014, 57, S674–S686. [Google Scholar] [CrossRef] [PubMed]
- Mau, T.; Muhlestein, J.; Callahan, S.; Weinheimer, K.T.; Chan, R.W. Phonation threshold pressure and flow in excised human larynges. Laryngoscope 2011, 121, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Mills, R.D.; Dodd, K.; Ablavsky, A.; Devine, E.; Jiang, J.J. Parameters from the Complete Phonatory Range of an Excised Rabbit Larynx. J. Voice 2017, 31, 517.e9–517.e17. [Google Scholar] [CrossRef]
- Xue, C.; Pulvermacher, A.; Calawerts, W.; Devine, E.; Jiang, J. An Excised Canine Model of Anterior Glottic Web and Its Acoustic, Aerodynamic, and High-speed Measurements. J. Voice 2017, 31, 246.e21–246.e32. [Google Scholar] [CrossRef]
- Farnsworth, D.W. High-speed motion pictures of the human vocal cords. Bell Lab. Rec. 1940, 18, 203–208. [Google Scholar]
- Patel, R.; Dailey, S.; Bless, D. Comparison of high-speed digital imaging with stroboscopy for laryngeal imaging of glottal disorders. Ann. Otol. Rhinol. Laryngol. 2008, 117, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Krausert, C.R.; Olszewski, A.E.; Taylor, L.N.; McMurray, J.S.; Dailey, S.H.; Jiang, J.J. Mucosal wave measurement and visualization techniques. J. Voice 2011, 25, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.R.; Liu, L.; Galatsanos, N.; Bless, D.M. Differential vibratory characteristics of adductor spasmodic dysphonia and muscle tension dysphonia on high-speed digital imaging. Ann. Otol. Rhinol. Laryngol. 2011, 120, 21–32. [Google Scholar] [CrossRef]
- Naghibolhosseini, M.; Deliyski, D.D.; Zacharias, S.R.C.; de Alarcon, A.; Orlikoff, R.F. Temporal Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech. J. Voice 2018, 32, 256.e1–256.e12. [Google Scholar] [CrossRef]
- Zacharias, S.R.C.; Deliyski, D.D.; Gerlach, T.T. Utility of Laryngeal High-speed Videoendoscopy in Clinical Voice Assessment. J. Voice 2018, 32, 216–220. [Google Scholar] [CrossRef]
- Rasp, O.; Lohscheller, J.; Döllinger, M.; Eysholdt, U.; Hoppe, U. The pitch rise paradigm: A new task for real-time endoscopy of non-stationary phonation. Folia Phoniatr. Logop. 2006, 58, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Semmler, M.; Kniesburges, S.; Parchent, J.; Jakubaß, B.; Zimmermann, M.; Bohr, C.; Schützenberger, A.; Döllinger, M. Endoscopic Laser-Based 3D Imaging for Functional Voice Diagnostics. Appl. Sci. 2017, 7, 600. [Google Scholar] [CrossRef]
- Deliyski, D.D.; Powell, M.E.; Zacharias, S.R.; Gerlach, T.T.; de Alarcon, A. Experimental Investigation on Minimum Frame Rate Requirements of High-Speed Videoendoscopy for Clinical Voice Assessment. Biomed. Signal Process. Control 2015, 17, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Döllinger, M.; Lohscheller, J.; McWhorter, A.; Kunduk, M. Variability of normal vocal fold dynamics for different vocal loading in one healthy subject investigated by phonovibrograms. J. Voice 2009, 23, 175–181. [Google Scholar] [CrossRef]
- Ahmad, K.; Yan, Y.; Bless, D.M. Vocal fold vibratory characteristics in normal female speakers from high-speed digital imaging. J. Voice 2012, 26, 239–253. [Google Scholar] [CrossRef]
- Yamauchi, A.; Imagawa, H.; Yokonishi, H.; Nito, T.; Yamasoba, T.; Goto, T.; Takano, S.; Sakakibara, K.; Tayama, N. Evaluation of vocal fold vibration with an assessment form for high-speed digital imaging: Comparative study between healthy young and elderly subjects. J. Voice 2012, 26, 742–750. [Google Scholar] [CrossRef]
- Yan, Y.; Damrose, E.; Bless, D. Functional analysis of voice using simultaneous high-speed imaging and acoustic recordings. J. Voice 2007, 21, 604–616. [Google Scholar] [CrossRef]
- Kosztyla-Hojna, B.; Moskal, D.; Falkowski, D.; Lobaczuk-Sitnik, A.; Kraszewska, A.; Skorupa, M.; Kita, J.; Kuryliszyn-Moskal, A. High-speed digital imaging in the diagnosis of voice pathologies. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2016, 41, 26–31. [Google Scholar]
- Voigt, D.; Döllinger, M.; Yang, A.; Eysholdt, U.; Lohscheller, J. Automatic diagnosis of vocal fold paresis by employing Phonovibrogram features and machine learning methods. Comput. Methods Programs Biomed. 2010, 99, 275–288. [Google Scholar] [CrossRef]
- Titze, I.R. Workshop on Acoustic Voice Production: Summary Statement; National Center for Voice and Speech: Iowa City, IA, USA, 1995. [Google Scholar]
- Mehta, D.D.; Deliyski, D.D.; Quatieri, T.F.; Hillman, R.E. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings. J. Speech Lang. Hear. Res. 2011, 54, 47–54. [Google Scholar] [CrossRef]
- Deliyski, D.D.; Petrushev, P.P.; Bonilha, H.S.; Gerlach, T.T.; Martin-Harris, B.; Hillman, R.E. Clinical implementation of laryngeal high-speed videoendoscopy: Challenges and evolution. Folia Phoniatr. Logop. 2008, 60, 33–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J.J.; Wallace, S.M.; Zhou, L. Comparison of nonlinear dynamic methods and perturbation methods for voice analysis. J. Acoust. Soc. Am. 2005, 118, 2551–2560. [Google Scholar] [CrossRef]
- Jiang, J.J.; Zhang, Y.; Ford, C.N. Nonlinear dynamics of phonations in excised larynx experiments. J. Acoust. Soc. Am. 2003, 114, 2198–2205. [Google Scholar] [CrossRef]
- Behrman, A.; Agresti, C.J.; Blumstein, E.; Lee, N. Microphone and electroglottographic data from dysphonic patients: Type 1, 2 and 3 signals. J. Voice 1998, 12, 249–260. [Google Scholar] [CrossRef]
- Döllinger, M.; Kobler, J.; Berry, D.A.; Mehta, D.D.; Luegmair, G.; Bohr, C. Experiments on Analysing Voice Production: Excised (Human, Animal) and In Vivo (Animal) Approaches. Curr. Bioinform. 2011, 6, 286–304. [Google Scholar] [CrossRef] [PubMed]
- Titze, I.R. Human Speech: A Restricted Use of the Mammalian Larynx. J. Voice 2017, 31, 135–141. [Google Scholar] [CrossRef]
- Herbst, C.T.; Lohscheller, J.; Svec, J.G.; Henrich, N.; Weissengruber, G.; Fitch, W.T. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. J. Exp. Biol. 2014, 217 Pt 6, 955–963. [Google Scholar] [CrossRef]
- Ling, C.; Li, Q.; Brown, M.E.; Kishimoto, Y.; Toya, Y.; Devine, E.E.; Choi, K.-O.; Nishimoto, K.; Norman, I.G.; Tsegyal, T.; et al. Bioengineered vocal fold mucosa for voice restoration. Sci. Transl. Med. 2015, 7, 314ra187. [Google Scholar] [CrossRef] [PubMed]
- Bohr, C.; Döllinger, M.; Kniesburges, S.; Traxdorf, M. 3D visualization and analysis of vocal fold dynamics. HNO 2016, 64, 254–261. [Google Scholar] [CrossRef]
- Luegmair, G.; Kniesburges, S.; Zimmermann, M.; Sutor, A.; Eysholdt, U.; Döllinger, M. Optical Reconstruction of High-Speed Surface Dynamics in an Uncontrollable Environment. IEEE Trans. Med. Imaging 2010, 29, 1979–1991. [Google Scholar] [CrossRef]
- Thibeault, S.L.; Gray, S.D.; Bless, D.M.; Chan, R.W.; Ford, C.N. Histologic and rheologic characterization of vocal fold scarring. J. Voice 2002, 16, 96–104. [Google Scholar] [CrossRef]
- Hertegard, S.; Larsson, H.; Nagubothu, S.S.; Tolf, A.; Svensson, B. Elasticity measurements in scarred rabbit vocal folds using air pulse stimulation. Logop. Phoniatr. Vocol. 2009, 34, 190–195. [Google Scholar] [CrossRef]
- Maytag, A.L.; Robitaille, M.J.; Rieves, A.L.; Madsen, J.; Smith, B.L.; Jiang, J.J. Use of the rabbit larynx in an excised larynx setup. J. Voice 2013, 27, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Döllinger, M.; Kniesburges, S.; Berry, D.A.; Birk, V.; Wendler, O.; Durr, S.; Alexiou, C.; Schützenberger, A. Investigation of phonatory characteristics using ex vivo rabbit larynges. J. Acoust. Soc. Am. 2018, 144, 142. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Stickler, B.; Gaechter, J.; Bigenzahn, W. Long-term results after external vocal fold medialization thyroplasty with titanium vocal fold medialization implant (TVFMI). Eur. Arch. Otorhinolaryngol. 2013, 270, 1689–1694. [Google Scholar] [CrossRef] [PubMed]
- Giraldez-Rodriguez, L.A.; Johns, M., 3rd. Glottal insufficiency with aspiration risk in dysphagia. Otolaryngol. Clin. N. Am. 2013, 46, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.; Titze, I.R. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Ann. Biomed. Eng. 2003, 31, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Birk, V.; Döllinger, M.; Sutor, A.; Berry, D.A.; Gedeon, D.; Traxdorf, M.; Wendler, O.; Bohr, C.; Kniesburges, S. Automated setup for ex vivo larynx experiments. J. Acoust. Soc. Am. 2017, 141, 1349. [Google Scholar] [CrossRef]
- Chen, G.; Kreiman, J.; Gerratt, B.R.; Neubauer, J.; Shue, Y.L.; Alwan, A. Development of a glottal area index that integrates glottal gap size and open quotient. J. Acoust. Soc. Am. 2013, 133, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Dippold, S.; Voigt, D.; Richter, B.; Echternach, M. High-Speed Imaging Analysis of Register Transitions in Classically and Jazz-Trained Male Voices. Folia Phoniatr. Logop. 2015, 67, 21–28. [Google Scholar] [CrossRef]
- Patel, R.R.; Walker, R.; Sivasankar, P.M. Spatiotemporal Quantification of Vocal Fold Vibration after Exposure to Superficial Laryngeal Dehydration: A Preliminary Study. J. Voice 2016, 30, 427–433. [Google Scholar] [CrossRef]
- Schützenberger, A.; Kunduk, M.; Döllinger, M.; Alexiou, C.; Dubrovskiy, D.; Semmler, M.; Seger, A.; Bohr, C. Laryngeal High-Speed Videoendoscopy: Sensitivity of Objective Parameters towards Recording Frame Rate. BioMed Res. Int. 2016, 2016, 4575437. [Google Scholar] [CrossRef]
- Schlegel, P.; Semmler, M.; Kunduk, M.; Döllinger, M.; Bohr, C.; Schützenberger, A. Influence of Analyzed Sequence Length on Parameters in Laryngeal High-Speed Videoendoscopy. Appl. Sci. 2018, 8, 2666. [Google Scholar] [CrossRef]
- Titze, I.R. Principles of Voice Production; Prentice Hall: Englewood Cliff, NJ, USA, 1994. [Google Scholar]
- Munhall, K.G.; Ostry, D.J.; Parush, A. Characteristics of velocity profiles of speech movements. J. Exp. Psychol. Hum. Percept. Perform. 1985, 11, 457–474. [Google Scholar] [CrossRef]
- Henrich, N.; Sundin, G.; Ambroise, D.; d’Alessandro, C.; Castellengo, M.; Doval, B. Just noticeable differences of open quotient and asymmetry coefficient in singing voice. J. Voice 2003, 17, 481–494. [Google Scholar] [CrossRef]
- Holmberg, E.B.; Hillman, R.E.; Perkell, J.S. Glottal airflow and transglottal air pressure measurements for male and female speakers in soft, normal, and loud voice. J. Acoust. Soc. Am. 1988, 84, 511–529. [Google Scholar] [CrossRef]
- Baken, R.J.; Orlikoff, R.F. Clinical Measurement of Speech and Voice, 2nd ed.; Cengage Learning: Clifton Park, NY, USA, 1985. [Google Scholar]
- Wang, S.G.; Park, H.J.; Lee, B.J.; Lee, S.M.; Ko, B.; Lee, S.M.; Park, Y.M. A new videokymography system for evaluation of the vibration pattern of entire vocal folds. Auris Nasus Larynx 2016, 43, 315–321. [Google Scholar] [CrossRef]
- Qiu, Q.; Schutte, H.K.; Gu, L.; Yu, Q. An automatic method to quantify the vibration properties of human vocal folds via videokymography. Folia Phoniatr. Logop. 2003, 55, 128–136. [Google Scholar] [CrossRef]
- Van den Berg, J.W.; Zantema, J.T.; Doornenbal, P., Jr. On the Air Resistance and the Bernoulli Effect of the Human Larynx. J. Acoust. Soc. Am. 1957, 29, 626–631. [Google Scholar] [CrossRef]
- Hillenbrand, J.; Cleveland, R.A.; Erickson, R.L. Acoustic Correlates of Breathy Vocal Quality. J. Speech Lang. Hear. Res. 1994, 37, 769–778. [Google Scholar] [CrossRef]
- Yamauchi, A.; Yokonishi, H.; Imagawa, H.; Sakakibara, K.I.; Nito, T.; Tayama, N. Quantitative Analysis of Vocal Fold Vibration in Vocal Fold Paralysis with the Use of High-speed Digital Imaging. J. Voice 2016, 30, 766.e13–766.e22. [Google Scholar] [CrossRef]
- Wolfe, V.; Fitch, J.; Cornell, R. Acoustic Prediction of Severity in Commonly Occurring Voice Problems. J. Speech Lang. Hear. Res. 1995, 38, 273–279. [Google Scholar] [CrossRef]
- Birk, V.; Kniesburges, S.; Semmler, M.; Berry, D.A.; Bohr, C.; Döllinger, M.; Schützenberger, A. Influence of glottal closure on the phonatory process in ex vivo porcine larynges. J. Acoust. Soc. Am. 2017, 142, 2197. [Google Scholar] [CrossRef]
- Bielamowicz, S.; Kreiman, J.; Gerratt, B.R.; Dauer, M.S.; Berke, G.S. Comparison of voice analysis systems for perturbation measurement. J. Speech Lang. Hear. Res. 1996, 39, 126–134. [Google Scholar] [CrossRef]
- Yumoto, E.; Gould, W.J.; Baer, T. Harmonics-to-noise ratio as an index of the degree of hoarseness. J. Acoust. Soc. Am. 1982, 71, 1544–1549. [Google Scholar] [CrossRef]
- Davenport, P.B.; Carter, K.F.; Echternach, J.M.; Tuck, C.R. Integrating High-Reliability Principles to Transform Access and Throughput by Creating a Centralized Operations Center. J. Nurs. Adm. 2018, 48, 93–99. [Google Scholar] [CrossRef]
- Samlan, R.A.; Story, B.H. Influence of Left-Right Asymmetries on Voice Quality in Simulated Paramedian Vocal Fold Paralysis. J. Speech Lang. Hear. Res. 2017, 60, 306–321. [Google Scholar] [CrossRef]
- Rosenthal, A.L.; Lowell, S.Y.; Colton, R.H. Aerodynamic and acoustic features of vocal effort. J. Voice 2014, 28, 144–153. [Google Scholar] [CrossRef]
- Jiang, J.J.; Zhang, Y.; McGilligan, C. Chaos in voice, from modeling to measurement. J. Voice 2006, 20, 2–17. [Google Scholar] [CrossRef]
- Jiang, J.J.; Titze, I.R. A methodological study of hemilaryngeal phonation. Laryngoscope 1993, 103, 872–882. [Google Scholar] [CrossRef]
- Heman-Ackah, Y.D.; Michael, D.D.; Goding, G.S., Jr. The relationship between cepstral peak prominence and selected parameters of dysphonia. J. Voice 2002, 16, 20–27. [Google Scholar] [CrossRef]
- Heman-Ackah, Y.D.; Michael, D.D.; Baroody, M.M.; Ostrowski, R.; Hillenbrand, J.; Heuer, R.J.; Horman, M.; Sataloff, R.T. Cepstral peak prominence: A more reliable measure of dysphonia. Ann. Otol. Rhinol. Laryngol. 2003, 112, 324–333. [Google Scholar] [CrossRef]
- Halberstam, B. Acoustic and perceptual parameters relating to connected speech are more reliable measures of hoarseness than parameters relating to sustained vowels. ORL 2004, 66, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Eadie, T.L.; Baylor, C.R. The effect of perceptual training on inexperienced listeners’ judgments of dysphonic voice. J. Voice 2006, 20, 527–544. [Google Scholar] [CrossRef] [PubMed]
- Maryn, Y.; Dick, C.; Vandenbruaene, C.; Vauterin, T.; Jacobs, T. Spectral, cepstral, and multivariate exploration of tracheoesophageal voice quality in continuous speech and sustained vowels. Laryngoscope 2009, 119, 2384–2394. [Google Scholar] [CrossRef]
- Balasubramanium, R.K.; Bhat, J.S.; Fahim, S., 3rd; Raju, R., 3rd. Cepstral analysis of voice in unilateral adductor vocal fold palsy. J. Voice 2011, 25, 326–329. [Google Scholar] [CrossRef]
- Hillenbrand, J.; Houde, R.A. Acoustic correlates of breathy vocal quality: Dysphonic voices and continuous speech. J. Speech Lang. Hear. Res. 1996, 39, 311–321. [Google Scholar] [CrossRef]
- Heman-Ackah, Y.D.; Sataloff, R.T.; Laureyns, G.; Lurie, D.; Michael, D.D.; Heuer, R.; Rubin, A.; Eller, R.; Chandran, S.; Abaza, M.; et al. Quantifying the cepstral peak prominence, a measure of dysphonia. J. Voice 2014, 28, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Samlan, R.A.; Kunduk, M.; Ikuma, T.; Black, M.; Lane, C. Vocal Fold Vibration in Older Adults with and without Age-Related Dysphonia. Am. J. Speech-Lang. Pathol. 2018, 27, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Awan, S.N.; Roy, N.; Dromey, C. Estimating dysphonia severity in continuous speech: Application of a multi-parameter spectral/cepstral model. Clin. Linguist. Phon. 2009, 23, 825–841. [Google Scholar] [CrossRef] [PubMed]
Abbreviation, Unit, References | Parameter | Meaning and Interpretation |
---|---|---|
(A) GAW Parameter | ||
GGI (a.u.) [5] | Glottal gap index | Minimum glottal area/maximum glottal area: [0–0.01] glottis entirely closed ]0.01–0.4[ glottis partially closed [0.4–1] little movement and no contact of vocal folds |
ALR (a.u.) [49] | Amplitude to length ratio | Dynamic range of GAW (max–min)/glottis length: the larger the more deformable the vocal folds |
STIFFNESS (1/frames) [50] | Maximum absolute value of 1st derivative/dynamic range: the higher the value the stiffer the tissue | |
ASQ (a.u.) [51] | Asymmetry quotient | Speed quotient/(Speed quotient + 1) |
CQ (a.u.) [52] | Closing quotient | Glottis closing time/cycle duration 0: glottis does not close at all 0,5: glottis is closed 50% of the cycle duration 1,0: glottis is closed all the time, does not open |
OQ (a.u.) [53] | Open quotient | Glottis open time/cycle duration 0: glottis does not open at all 0,5: glottis is open 50% of the cycle duration 1,0: glottis is open all the time, does not close |
SQ (a.u.) [53] | Speed quotient | Opening time/closing time |
ASI (a.u.) [54] | Amplitude symmetry index | Spatial symmetry of GAW: rate between maximum left and right glottal area, the closer to 1 the more symmetric values are by definition between [0;1] |
PAI (a.u.) [55] | Phase asymmetry index | Symmetry in time: deviation in time between left and right GAW amplitude: the closer to 0 the higher the symmetry values are by definition between [0;1] |
(B) Aerodynamic parameters | ||
RB (Pa s−1) [56] | Laryngeal flow resistance | low-high flow resistance, ratio between the transglottal pressure difference and the mean glottal flow rate. A high flow resistance is desired in phonation |
SPL (dB) | Sound pressure level | Intensity of acoustic signal |
PS (Pa) | Subglottal pressure | Averaged air pressure measured below the vocal folds |
(C) Harmonic measures | ||
CPPA,P (dB) [57] | Cepstral peak prominence | Development of harmonics, the higher the better low: low periodicity of the acoustic signal high: high periodicity of the acoustic signal (computed from the audio “A” and the subglottal pressure “P” signal) |
f0 (Hz) | PS (Pa) | Flow (mL s−1) | RB (Pa s−1) | SPL (dB) | |
---|---|---|---|---|---|
Mean ± std | 655 ± 147 | 1324 ± 798 | 120 ± 42 | 11428 ± 5631 | 74.3 ± 8.9 |
Minimum values | 343 | 196 | 42 | 2587 | 54.7 |
Maximum values | 895 | 3318 | 175 | 21557 | 90.7 |
Airflow levels | ∑ = 51 |
1 = onset | 3 |
2–6 = low | 15 |
7–11 = medium | 11 |
12–16 = high | 22 |
Weight levels | ∑ = 51 |
w1 = 1 g—low | 12 |
w2 = 2 g—medium | 11 |
w3 = 5 g—high | 28 |
Parameters | Kruskal-Wallis-test | Post hoc tests (corrected significance level p = 0.017) | Mann-Whitney-U-/t-test | ||
---|---|---|---|---|---|
GGI1,2,3 | GGI1,2 | GGI1,3 | GGI2,3 | GroupS,A | |
(A) GAW Measures | |||||
ALR (a.u.) | 0.040 | 0.776 | 0.001 | 0.003 | 0.000 |
STIFFNESS (frames−1) | 0.014 | 0.014 | 0.018 | 0.300 | 0.085 |
ASQ (a.u.) | 0.054 | - | - | - | 0.040 |
CQ (a.u.) | 0.005 | 0.002 | 0.018 | 0.511 | 0.002 |
OQ (a.u.) | 0.000 | 0.000 | 0.000 | 0.124 | 0.870 |
SQ (a.u.) | 0.113 | - | - | - | 0.187 |
ASI (a.u.) | 0.017 | 0.016 | 0.825 | 0.036 | 0.429 |
PAI (a.u.) | 0.017 | 0.027 | 0.606 | 0.020 | 0.009 |
(B) Aerodynamic parameters | |||||
RB (Pa s−1) | 0.038 | - | - | - | 0.440 |
SPL (dB) | 0.004 | 0.981 | 0.002 | 0.014 | 0.000 |
PS (Pa) | 0.086 | - | - | - | 0.715 |
(C) Harmonic measures | |||||
CPPA | 0.020 | 0.129 | 0.005 | 0.066 | 0.677 |
CPPP | 0.123 | - | - | - | 0.231 |
Parameters | Mean ± standard deviations | Tendency for GGI1-3 | ||
---|---|---|---|---|
GGI1 | GGI2 | GGI3 | ||
(A) GAW Measures | ||||
ALR (a.u.) | 16.5 ± 4.5 | 16.1 ± 6.7 | 4.9 ± 5.1 | decrease |
STIFFNESS (frames−1) | 0.33 ± 0.06 | 0.28 ± 0.05 | 0.26 ± 0.06 | decrease |
ASQ (a.u.) | 0.60 ± 0.15 | 0.49 ± 0.14 | 0.52 ± 0.05 | decrease |
CQ (a.u.) | 0.34 ± 0.14 | 0.50 ± 0.15 | 0.48 ± 0.05 | increase |
OQ (a.u.) | 0.87 ± 0.13 | 0.99 ± 0.0 | 1.00 ± 0.00 | increase |
SQ (a.u.) | 2.47 ± 2.50 | 1.34 ± 0.97 | 1.25 ± 0.31 | decrease |
ASI (a.u.) | 0.74 ± 0.15 | 0.85 ± 0.08 | 0.74 ± 0.13 | - |
PAI (a.u.) | 0.14 ± 0.10 | 0.10 ± 0.12 | 0.14 ± 0.06 | - |
(B) Aerodynamic parameters | ||||
RB (Pa s−1) | 14376 ± 5090 | 9992 ± 5759 | 10510 ± 4414 | decrease |
SPL (dB) | 76.7 ± 6.5 | 76.0 ± 7.6 | 59.5 ± 7.5 | decrease |
PS (Pa) | 1783 ± 1073 | 1050 ± 514 | 1423 ± 662 | - |
(C) Harmonic measures | ||||
CPPA (dB) | 17.9 ± 4.3 | 15.8 ± 6.5 | 11.0 ± 3.4 | decrease |
CPPP (dB) | 19.4 ± 5.8 | 16.9 ± 5.6 | 14.0 ± 2.9 | decrease |
Parameter | Mean ± standard deviation | Tendency for GroupS,A | |
---|---|---|---|
GroupS | GroupA | ||
(A) GAW measures | |||
ALR (a.u.) | 18.0 ± 5.5 | 8.1 ± 4.4 | decrease |
STIFFNESS (frames−1) | 0.30 ± 0.06 | 0.28 ± 0.05 | decrease |
ASQ (a.u.) | 0.50 ± 0.14 | 0.59 ± 0.14 | increase |
CQ (a.u.) | 0.49 ± 0.15 | 0.35 ± 0.11 | decrease |
OQ (a.u.) | 0.96 ± 0.06 | 0.93 ± 0.15 | decrease |
SQ (a.u.) | 1.46 ± 1.11 | 2.18 ± 2.40 | increase |
ASI (a.u.) | 0.81 ± 0.13 | 0.79 ± 0.11 | decrease |
PAI (a.u.) | 0.11 ± 0.13 | 0.13 ± 0.05 | increase |
(B) Aerodynamic parameters | |||
RB (Pa s−1) | 11001 ± 5846 | 12363 ± 5387 | increase |
SPL (dB) | 78.1 ± 6.8 | 65.9 ± 7.3 | decrease |
PS (Pa) | 1370 ± 824 | 1223 ± 781 | decrease |
(C) Harmonic measures | |||
CPPA (dB) | 16.1 ± 6.2 | 15.4 ± 5.3 | decrease |
CPPp (dB) | 17.9 ± 6.0 | 16.0 ± 4.5 | decrease |
Parameters | GGI1 | GGI2 | GGI3 |
---|---|---|---|
(A) GAW Measures | |||
ALR (a.u.) | +8% | +5% | −37% |
STIFFNESS (frames−1) | −3% | +0% | +0% |
ASQ (a.u.) | −3% | −20% | −12% |
CQ (a.u.) | +6% | +32% | +17% |
OQ (a.u.) | +5% | +0% | +0% |
SQ (a.u.) | +43% | −22% | −18% |
ASI (a.u.) | −6% | +2% | +1% |
PAI (a.u.) | +8% | +0% | +8% |
(B) Aerodynamic parameters | |||
RB (Pa s−1) | −4% | −15% | +42% |
SPL (dB) | −3% | −0% | −14% |
PS (Pa) | +6% | −25% | +60% |
(C) Harmonic measures | |||
CPPA (dB) | −25% | −30% | −43% |
CPPP (dB) | −29% | −36% | −45% |
GGI1 | GGI2 | GGI3 | ∑ | |
---|---|---|---|---|
GroupS | 13 | 21 | 1 | 35 |
GroupA | 3 | 8 | 5 | 16 |
∑ | 16 | 29 | 6 | 51 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thornton, F.; Döllinger, M.; Kniesburges, S.; Berry, D.; Alexiou, C.; Schützenberger, A. Impact of Subharmonic and Aperiodic Laryngeal Dynamics on the Phonatory Process Analyzed in Ex Vivo Rabbit Models. Appl. Sci. 2019, 9, 1963. https://doi.org/10.3390/app9091963
Thornton F, Döllinger M, Kniesburges S, Berry D, Alexiou C, Schützenberger A. Impact of Subharmonic and Aperiodic Laryngeal Dynamics on the Phonatory Process Analyzed in Ex Vivo Rabbit Models. Applied Sciences. 2019; 9(9):1963. https://doi.org/10.3390/app9091963
Chicago/Turabian StyleThornton, Fabian, Michael Döllinger, Stefan Kniesburges, David Berry, Christoph Alexiou, and Anne Schützenberger. 2019. "Impact of Subharmonic and Aperiodic Laryngeal Dynamics on the Phonatory Process Analyzed in Ex Vivo Rabbit Models" Applied Sciences 9, no. 9: 1963. https://doi.org/10.3390/app9091963
APA StyleThornton, F., Döllinger, M., Kniesburges, S., Berry, D., Alexiou, C., & Schützenberger, A. (2019). Impact of Subharmonic and Aperiodic Laryngeal Dynamics on the Phonatory Process Analyzed in Ex Vivo Rabbit Models. Applied Sciences, 9(9), 1963. https://doi.org/10.3390/app9091963