High Performance Asymmetric Coupled Line Balun at Sub-THz Frequency
Abstract
:1. Introduction
2. Theoretical Background
3. Design of the Asymmetric Coupled Line Balun
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heinemann, B.; Barth, R.; Bolze, D.; Drews, J.; Fischer, G.G.; Fox, A.; Fursenko, O.; Grabolla, T.; Haak, U.; Knoll, D.; et al. SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2.0 ps CML gate delay. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 30–35. [Google Scholar] [CrossRef]
- Kucharski, M.; Kissinger, D.; Ng, H.J. Scalable 79- and 158-GHz integrated radar transceivers in SiGe BiCMOS technology. In Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 14–17 May 2018; pp. 342–344. [Google Scholar] [CrossRef]
- Wang, D.; Schmalz, K.; Eissa, M.H.; Borngräber, J.; Kucharski, M.; Elkhouly, M.; Ko, M.; Ng, H.J.; Kissinger, D. Integrated 240-GHz Dielectric Sensor With dc Readout Circuit in a 130-nm SiGe BiCMOS Technology. IEEE Trans. Microw. Theory Tech. 2018, 66, 4232–4241. [Google Scholar] [CrossRef]
- Laemmle, B.; Schmalz, K.; Scheytt, J.C.; Weigel, R.; Kissinger, D. A 125 GHz Permittivity Sensor With Read-Out Circuit in a 250-nm SiGe BiCMOS Technology. IEEE Trans. Microw. Theory Tech. 2013, 61, 2185–2194. [Google Scholar] [CrossRef]
- Sarkas, I.; Hasch, J.; Balteanu, A.; Voinigescu, S.P. A Fundamental Frequency 120-GHz SiGe BiCMOS Distance Sensor With Integrated Antenna. IEEE Trans. Microw. Theory Tech. 2012, 60, 795–812. [Google Scholar] [CrossRef]
- Dacquay, E.; Tomkins, A.; Yau, K.H.K.; Laskin, E.; Chevalier, P.; Chantre, A.; Sautreuil, B.; Voinigescu, S.P. D-Band Total Power Radiometer Performance Optimization in an SiGe HBT Technology. IEEE Trans. Microw. Theory Tech. 2012, 60, 813–826. [Google Scholar] [CrossRef]
- Zhao, Y.; Ojefors, E.; Aufinger, K.; Meister, T.F.; Pfeiffer, U.R. A 160-GHz Subharmonic Transmitter and Receiver Chipset in an SiGe HBT Technology. IEEE Trans. Microw. Theory Tech. 2012, 60, 3286–3299. [Google Scholar] [CrossRef]
- Eissa, M.H.; Malignaggi, A.; Wang, R.; Elkhouly, M.; Schmalz, K.; Ulusoy, A.C.; Kissinger, D. Wideband 240-GHz Transmitter and Receiver in BiCMOS Technology With 25-Gbit/s Data Rate. IEEE J. Solid-State Circuits 2018, 53, 2532–2542. [Google Scholar] [CrossRef]
- Kissinger, D.; Rothbart, N.; Schmalz, K.; Bornzraber, J.; Hx00FCbers, H.W. Sensitive Millimeter-Wave/ Terahertz Gas Spectroscopy Based on SiGe BiCMOS Technology. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018; pp. 1–2. [Google Scholar]
- Ang, K.S.; Robertson, I.D. Analysis and design of impedance-transforming planar Marchand baluns. IEEE Trans. Microw. Theory Tech. 2001, 49, 402–406. [Google Scholar] [CrossRef]
- Ang, K.S.; Leong, Y.C.; Lee, C.H. Analysis and design of miniaturized lumped-distributed impedance-transforming baluns. IEEE Trans. Microw. Theory Tech. 2003, 51, 1009–1017. [Google Scholar] [CrossRef]
- Howard, D.C.; Cho, C.S.; Cressler, J.D. A broadband, millimeter wave, asymmetrical Marchand balun in 180 nm SiGe BiCMOS technology. In Proceedings of the 2012 IEEE Radio Frequency Integrated Circuits Symposium, Montreal, QC, Canada, 17–19 June 2012; pp. 425–428. [Google Scholar] [CrossRef]
- Zheng, S.; Pan, Y. A new Marchand balun with harmonic suppression. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Johansen, T.; Krozer, V. Analysis and design of lumped element Marchand baluns. In Proceedings of the MIKON 2008—17th International Conference on Microwaves, Radar and Wireless Communications, Wroclaw, Poland, 19–21 May 2008; pp. 1–4. [Google Scholar]
- Chiou, H.; Yang, T. Low-Loss and Broadband Asymmetric Broadside-Coupled Balun for Mixer Design in 0.18-μm CMOS Technology. IEEE Trans. Microw. Theory Tech. 2008, 56, 835–848. [Google Scholar] [CrossRef]
- Xu, L.; Sjöland, H.; Törmänen, M.; Tired, T.; Pan, T.; Bai, X. A Miniaturized Marchand Balun in CMOS With Improved Balance for Millimeter-Wave Applications. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 53–55. [Google Scholar] [CrossRef]
- Yen, H.; Huang, G.; Shiao, Y.J.; Huang, F. A compact millimeter-wave broadband stacked coupled balun. In Proceedings of the 2012 Asia Pacific Microwave Conference Proceedings, Kaohsiung, Taiwan, 4–7 December 2012; pp. 992–994. [Google Scholar] [CrossRef]
- Chiou, H.; Lin, J. Symmetric Offset Stack Balun in Standard 0.13-μmCMOS Technology for Three Broadband and Low-Loss Balanced Passive Mixer Designs. IEEE Trans. Microw. Theory Tech. 2011, 59, 1529–1538. [Google Scholar] [CrossRef]
- Song, I.; Schmid, R.L.; Howard, D.C.; Cressler, J.D. A 34-110 GHz wideband, asymmetric, broadside-coupled Marchand balun in 180 nm SiGe BiCMOS technology. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Ahmed, F.; Furqan, M.; Stelzer, A. A 200-325-GHz wideband, low-loss modified Marchand balun in SiGe BiCMOS technology. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 40–43. [Google Scholar] [CrossRef]
- La Spada, L. Metasurfaces for Advanced Sensing and Diagnostics. Sensors 2019, 19, 355. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi Estakhri, N.; Edwards, B.; Engheta, N. Inverse-designed metastructures that solve equations. Science 2019, 363, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- La Spada, L.; Spooner, C.; Haq, S.; Hao, Y. Curvilinear MetaSurfaces for Surface Wave Manipulation. Sci. Rep. 2019, 9, 3107. [Google Scholar] [CrossRef] [PubMed]
- Vakil, A.; Engheta, N. Transformation Optics Using Graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Spada, L.L.; Vegni, L. Near-zero-index wires. Opt. Express 2017, 25, 23699–23708. [Google Scholar] [CrossRef] [PubMed]
- Greybush, N.J.; Pacheco-Peña, V.; Engheta, N.; Murray, C.B.; Kagan, C.R. Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers. ACS Nano 2019, 13, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Mongia, R.; Bahl, I.; Bhartia, P. RF and Microwave Coupled-Line Circuits; Artech House: Norwood, MA, USA, 1998; pp. 109–114. [Google Scholar]
- Zhang, Z.Y.; Guo, Y.X.; Ong, L.C.; Chia, M.Y.W. A new planar marchand balun. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 17 June 2005; pp. 1207–1210. [Google Scholar] [CrossRef]
- Ali, A.; Cipriani, E.; Johansen, T.K.; Colantonio, P. Study of 130 nm SiGe HBT Periphery in the Design of 160 GHz Power Amplifier. In Proceedings of the 2018 First International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Germany, 2–4 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ali, A.; Cipriani, E.; Colantonio, P. Common emitter and cascode topologies at G band: A comparative study on a single stage 183 GHz power amplifier. In Proceedings of the 2018 International Conference on IC Design Technology (ICICDT), Otranto, Italy, 4–6 June 2018; pp. 81–84. [Google Scholar] [CrossRef]
f (GHz) | Technology | Topology | Insertion Loss (min.–max.) (dB) | Amplitude Imbalance (dB) | Phase Imbalance (degree) | Ref. |
---|---|---|---|---|---|---|
16.5–67 | 180-nm CMOS | Asymm.stack | (1.1–4) | 1 | 5 | [15] |
57–67 | 65-nm CMOS | With groundedT-bars | (1.5–3.5) | 0.5 | 1 | [16] |
27.6–65.5 | 65-nm CMOS | Stack | (2.8–4.2) | 0.8 | 8 | [17] |
20–67 | 130-nm CMOS | Symm.offset stack | (1.4–3) | 1 | 4 | [18] |
34–110 | 180-nm SiGe BiCMOS | Stack | (1.7–4.7) | 1.5 | 7 | [19] |
200–325 | 130-nm SiGe BiCMOS | 3-line symm. edge coupled | (2.5–3.3) | 1.5 | 10 | [20] |
88–224 | 130-nm SiGe BiCMOS | 3-line asymm. edge coupled | (1.2–1.5) (1.2–3) | <1 | <7 | This Work |
106–262 | 130-nm SiGe BiCMOS | 3-line asymm. edge coupled | (1.2–1.9) (1.2–2.1) (1.35–3.8) | <1 <1.8 | <6.2 | This Work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Yun, J.; Jalli Ng, H.; Kissinger, D.; Giannini, F.; Colantonio, P. High Performance Asymmetric Coupled Line Balun at Sub-THz Frequency. Appl. Sci. 2019, 9, 1907. https://doi.org/10.3390/app9091907
Ali A, Yun J, Jalli Ng H, Kissinger D, Giannini F, Colantonio P. High Performance Asymmetric Coupled Line Balun at Sub-THz Frequency. Applied Sciences. 2019; 9(9):1907. https://doi.org/10.3390/app9091907
Chicago/Turabian StyleAli, Abdul, Jongwon Yun, Herman Jalli Ng, Dietmar Kissinger, Franco Giannini, and Paolo Colantonio. 2019. "High Performance Asymmetric Coupled Line Balun at Sub-THz Frequency" Applied Sciences 9, no. 9: 1907. https://doi.org/10.3390/app9091907
APA StyleAli, A., Yun, J., Jalli Ng, H., Kissinger, D., Giannini, F., & Colantonio, P. (2019). High Performance Asymmetric Coupled Line Balun at Sub-THz Frequency. Applied Sciences, 9(9), 1907. https://doi.org/10.3390/app9091907