Species of the Genus Salix L.: Biochemical Screening and Molecular Docking Approach to Potential Acetylcholinesterase Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Extraction Procedure
2.4. Determination of Total Phenolics and Flavonoids Content
2.5. Chemical Characterization by High Performance Liquid Chromatography (HPLC)
2.6. DPPH Radical Scavenging Assay
2.7. OH Radical Scavenging Assay
2.8. Molecular Docking
2.9. Statistical Analysis
3. Results and Discussion
3.1. Preliminary Phytochemical Screening of Extracts
3.2. Chemical Composition of Bark and Leaves Extracts of Various Species from the Genus Salix
3.3. Antioxidant Activity
3.4. Molecular Docking
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.; Nyman, T.; Wang, D.C.; Argus, G.W.; Yang, Y.P.; Chen, J.H. Phylogeny of the Salix subgenus Salix s.l. (Salicaceae): Delimitation, biogeography, and reticulate evolution. BMC Evol. Biol. 2015, 15, 31. [Google Scholar] [CrossRef]
- Rechinger, K.H.; Akeroyd, J.R. Salix L. In Flora Europaea, 2nd ed.; Tutin, T.G., Burges, N.A., Chater, A.O., Edmondson, J.R., Heywood, V.H., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1993; Volume 1, pp. 53–64. [Google Scholar]
- Poblocka-Olech, L.; Krauze-Baranowska, M. SPE-HPTLC of procyanidins from the barks of different species and clones of Salix. J. Pharm. Biomed. Anal. 2008, 48, 965–968. [Google Scholar] [CrossRef]
- Schmidt, B.; Kötter, I.; Heide, L. Pharmacokinetics of salicin after oral administration of oral administration of a standardised willow bark extract. Eur. J. Clin. Pharmacol. 2001, 57, 387–391. [Google Scholar] [CrossRef]
- Nahrstedt, A.; Schmidt, M.; Jaggi, R.; Metz, J.; Khayyal, M.T. Willow bark extract: The contribution polyphenols to the overall effects. Wien Med. Wochenschr. 2007, 157, 348–351. [Google Scholar] [CrossRef]
- Agnolet, S.; Wiese, S.; Verpoorte, R.; Staerk, D. Comprehensive analysis of commercial willow bark extracts by new technology platform: Combined use of metabolomics, high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy and high-resolution radical scavenging assay. J. Chromatogr. A 2012, 1262, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Shara, M.; Stohs, S.J. Efficacy and safety of white willow bark (Salix alba) extracts. Phytother. Res. 2015, 29, 1112–1116. [Google Scholar] [CrossRef]
- Sultana, S.; Saleem, M. Salix caprea inhibits skin carcinogenesis in murine skin: Inhibition of oxidative stress, ornithine decarboxylase activity and DNA synthesis. J. Ethnopharmacol. 2004, 91, 267. [Google Scholar] [CrossRef]
- Ahmed, A.; Shah, W.A.; Akbar, S.; Younis, M.; Kumar, D. A short chemical review on Salix caprea commonly known as goat willow. Int. J. Res. Phytochem. Pharmacol. 2011, 1, 17–20. [Google Scholar]
- Pobłocka-Olech, L.; Krauze-Baranowska, M.; Głód, D.; Kawiak, A.; Łojkowska, E. Chromatographic analysis of simple phenols in some species from the genus Salix. Phytochem. Anal. 2010, 21, 463–469. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaiter, A.; Becker, L.; Petit, J.; Zimmer, D.; Karam, M.-C.; Baudelaire, E.; Scher, J.; Dicko, A. Antioxidant and antiacetylcholinesterase activities of different granulometric classes of Salix alba (L.) bark powders. Powder Technol. 2016, 301, 649–656. [Google Scholar] [CrossRef]
- Seniya, C.; Khan, G.J.; Uchadia, K. Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer’s disorders using molecular docking and molecular dynamics simulation. Biochem. Res. Int. 2014, 2014, 705451. [Google Scholar] [CrossRef]
- Poblocka-Olech, L.; van Nederkassel, A.M.; Vander Heyden, Y.; Krauze-Baranowska, M.; Głód, D.; Bascek, T. Chromatographic analysis of salicylic compounds in different species of the genus Salix. J. Sep. Sci. 2007, 30, 2958–2966. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R. Phenolic constituents of Salix: A chemotaxonomic survey of further finnish species. Phytochemistry 1989, 28, 2115–2125. [Google Scholar] [CrossRef]
- European Medicines Agency. Assessment Report on Salix [Various Species Including S. purpurea L., S. daphnoides Vill., S. fragilis L.], Cortex. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_HMPC_assessment_report/2017/07/WC500230918.pdf (accessed on 23 July 2018).
- Stankovic, M.S.; Topuzovic, M.; Solujic, S.; Mihailovic, V. Antioxidant activity and concentration of phenols and flavonoids in the whole plant and plant parts of Teuvrium chamaedrys L. var. glanduliferum Haussk. J. Med. Plant Res. 2010, 4, 2092–2098. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Ziakova, A.; Bransteterova, E. Validation of HPLC determination of phenolic acids present in some Lamiaceae Family Plants. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 443–453. [Google Scholar] [CrossRef]
- Guvenc, A.; Arihan, O.; Altun, M.L.; Dinc, E.; Baleanu, D. Determination of salicin content of some Salix L. species by HPLC method. Rev. Chim. 2007, 58, 8–12. [Google Scholar]
- Cvetanović, A.; Švarc-Gajić, J.; Mašković, P.; Savić, S.; Nikolić, L. Antioxidant and biological activity of chamomile extracts obtained by different techniques: Perspective of using superheated water for isolation of biologically active compounds. Ind. Crop Prod. 2015, 65, 582–591. [Google Scholar] [CrossRef]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Vandermeersch, T.; Zrek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 1–17. [Google Scholar] [CrossRef]
- Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Malinowska, P.; Gliszczynska-Swigło, A.; Szymusiak, H. Protective effect of commercial acerola, willow, and rose extracts against oxidation of cosmetic emulsions containing wheat germ oil. Eur. J. Lipid Sci. Technol. 2014, 116, 1553–1562. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Sugier, D.; Dziki, D.; Sugier, P. Bioaccessibility In Vitro of Nutraceuticals from Bark of Selected Salix Species. Sci. World J. 2014, 2014, 782763. [Google Scholar] [CrossRef]
- Krimat, S.; Dob, T.; Lamari, L.; Boumeridja, S.; Chelghoum, C.; Metidji, H. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria. J. Coast Life Med. 2014, 2, 478–483. [Google Scholar]
- Mylonaki, S.; Kiassos, E.; Makris, D.P.; Kefalas, P. Optimization of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal. Bioanal. Chem. 2008, 392, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Dickmann, D.I.; Kuzovkina, J. Poplars and Willows of the World, With Emphasis on Silviculturally Important Species. In Poplars and Willows: Trees for Society and the Environment; Isebrands, J.G., Richardson, J., Eds.; CABI: Rome, Italy, 2014; pp. 15–16. [Google Scholar]
- Skvortsov, A.K. Willows of Russia and Adjacent Countries: Taxonomical and Geographical Revision; University of Joensuu: Joensuu, Finland, 1999. [Google Scholar]
- Noleto-Dias, C.; Ward, J.L.; Bellisai, A.; Lomax, C.; Beale, M.H. Salicin-7-sulfate: A new salicionoid from willow and implications for herbal medicine. Fitoterapia 2018, 127, 166–172. [Google Scholar] [CrossRef]
- Förster, N.; Ulrichs, C.; Zander, M.; Kätzel, R.; Mewis, I. Factors influencing the variability of antioxidative phenolic glycosides in Salix species. J. Agric. Food Chem. 2010, 58, 8205–8210. [Google Scholar] [CrossRef] [PubMed]
- Enayat, S.; Banerjee, S. Comparative antioxidant activity of extracs from leaves, bark ad catkins of Salix aegyptiaca sp. Food Chem. 2009, 116, 23–28. [Google Scholar] [CrossRef]
- Jürgenliemk, G.; Petereit, F.; Nahrstedt, A. Flavan-3-ols and procyanidins from the bark of Salix purpurea L. Pharmazie 2007, 62, 231–234. [Google Scholar] [PubMed]
- Olugbami, J.O.; Gbadegesin, M.A.; Odunola, O.A. In vitro free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens. Pharmacogn. Res. 2015, 7, 49–56. [Google Scholar] [CrossRef]
- Treml, J.; Smejkal, K. Flavonoids as potent scavengers of hydroxyl radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Durak, A.; Gawlik-Dziki, U.; Sugier, D. Coffee enriched with willow (Salix purpurea and Salix myrsinifolia) bark preparation—Interactions of antioxidative phytochemicals in a model system. J. Funct. Foods 2015, 18, 1106–1116. [Google Scholar] [CrossRef]
- Kladar, N.; Anačkov, G.; Rat, M.; Srđenović, B.; Grujić, N.; Šefer, E.; Božin, B. Biochemical Characterization of Helichrysum italicum (Roth) G.Don subsp. italicum (Asteraceae) from Montenegro: Phytochemical Screening, Chemotaxonomy, and Antioxidant Properties. Chem. Biodivers. 2015, 12, 419–431. [Google Scholar] [CrossRef]
- Khan, M.T.H.; Orhan, I.; Şenol, F.S.; Kartal, M.; Şener, B.; Dvorská, M.; Šmejkal, K.; Šlapetová, T. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem. Biol. Interact. 2009, 181, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Hay, A.E.; Marston, A.; Hostettmann, K. Acetylcholinesterase-inhibitory activity of linarin from Buddleja davidii, structure-activity relationships of related flavonoids, and chemical investigation of Buddleja nitida. Pharm. Biol. 2008, 46, 596–601. [Google Scholar] [CrossRef]
- Johnson, G.; Moore, S.W. The Peripheral Anionic Site of Acethylcholinesterase: Structures, Functions and Potential Role in Rational Drug Design. Curr. Pharm. Des. 2006, 12, 217–225. [Google Scholar] [CrossRef]
- Tran, T.-D.; Nguyen, T.-C.-V.; Nguyen, N.-S.; Nguyen, D.-M.; Nguyen, T.-T.-H.; Le, M.-T.; Thai, K.-M. Synthesis of Novel Chalcones as Acetylcholinesterase Inhibitors. Appl. Sci. 2016, 6, 198. [Google Scholar] [CrossRef]
Species | Yield [%] 1 | Total Phenolics [mg GAE/g d.e.] 1 | Total Flavonoids [mg QE/g d.e.] 1 | |||
---|---|---|---|---|---|---|
Bark | Leaf | Bark | Leaf | Bark | Leaf | |
S. alba | 15.23 ± 0.76 b | 21.11 ± 0.39 f | 40.9 ± 0.46 f | 37.2 ± 0.14 e | 3.48 ± 0.12 b | 18.88 ± 0.17 f |
S. amplexicaulis | 19.68 ± 0.32 e | 19.71 ± 0.29 e | 49 ± 0.33 h | 20.51 ± 0.51 d | 20.64 ± 0.36 g | 32.82 ± 0.18 l |
S. babylonica | 17.41 ± 0.19 c | 19.82 ± 0.38 e | 20.17 ± 0.42 d | 10.88 ± 0.18 a | 3.13 ± 0.37 ab | 11.4 ± 0.52 d |
S. eleagnos | 17.34 ± 0.44 c | 28.62 ± 0.27 h | 61.27 ± 0.73 i | 13.7 ± 0.36 b | 6.93 ± 0.15 c | 23.45 ± 0.45 h |
S. fragilis | 13.48 ± 0.27 a | 21.58 ± 0.53 f | 20.4 ± 0.40 d | 10.26 ± 0.75 a | 3.35 ± 0.35 ab | 15.13 ± 0.32 e |
S. purpurea | 18.45 ± 0.68 d | 29.13 ± 0.88 h | 69.1 ± 0.25 j | 42.83 ± 0.17 g | 31 ± 0.54 k | 28.38 ± 0.22 j |
S. triandra | 30.03 ± 0.79 f | 24.35 ± 0.36 i | 18.41 ± 0.59 c | 87.06 ± 0.43 k | 2.88 ± 0.18 a | 26.76 ± 0.19 i |
Compound | S. alba | S. amplexicaulis | S. babylonica | S. elaeagnos | S. fragilis | S. purpurea | S. triandra |
---|---|---|---|---|---|---|---|
(mg/g of bark) | |||||||
GA | 0.17 ± 0.00 a | n.d. | 0.17 ± 0.01 a | n.d. | 0.19 ± 0.01 b | n.d. | 0.26 ± 0.03 c |
CHLA | 1.65 ± 0.17 b | 1.51 ± 0.14 b | 1.92 ± 0.02 bc | 2.08 ± 0.14 c | 1.54 ± 0.01 b | 1.14 ± 0.01 a | 1.63 ± 0.01 b |
PHB | 0.32 ± 0.01 a | 0.92 ± 0.01 b | 1.21 ± 0.02 c | 1.24 ± 0.01 c | 0.39 ± 0.04 a | n.d. | n.d. |
VA | n.d. | n.d. | n.d. | n.d. | 0.24 ± 0.04 | n.d. | n.d. |
SA | 0.22 ± 0.01 b | n.d. | 0.34 ± 0.014 c | 0.20 ± 0.04 ab | 0.16 ± 0.01 a | n.d. | n.d. |
CA | n.d. | n.d. | n.d. | 0.53 ± 0.01 a | n.d. | 1.05 ± 0.01 b | n.d. |
EPC | 1.17 ± 0.05 a | 1.30 ± 0.00 a | 2.68 ± 0.06 d | 1.98 ± 0.15 bc | 2.57 ± 0.09 d | 2.08 ± 0.02 c | 1.77 ± 0.25 b |
PCA | 0.15 ± 0.01 ab | 1.55 ± 0.04 c | 0.15 ± 0.01 ab | 0.14 ± 0.00 ab | 0.08 ± 0.00 a | 1.53 ± 0.05 c | 0.22 ± 0.01 b |
R | 1.75 ± 0.03 a | 22.09 ± 0.04 d | 1.36 ± 0.15 a | 5.20 ± 0.34 c | 1.26 ± 0.04 a | 4.30 ± 0.03 b | 1.73 ± 0.06 a |
Q | 0.38 ± 0.02 a | 0.61 ± 0.01 b | 0.52 ± 0.00 ab | 1.28 ± 0.04 c | 0.41 ± 0.01 a | 1.13 ± 0.01 c | 0.67 ± 0.01 b |
TCA | 0.15 ± 0.05 a | 0.65 ± 0.14 b | 0.57 ± 0.01 b | 0.52 ± 0.03 b | 0.49 ± 0.00 b | 0.13 ± 0.01 a | 0.53 ± 0.03 b |
N | 0.20 ± 0.01 a | 0.48 ± 0.01 d | 0.27 ± 0.09 b | 0.38 ± 0.06 c | 0.26 ± 0.00 b | 0.26 ± 0.01 b | 0.33 ± 0.00 c |
S | 3.99 ± 0.18 a | 8.29 ± 0.09 b | 3.11 ± 2.50 a | 2.60 ± 0.06 a | 3.47 ± 0.04 a | 7.53 ± 0.30 b | 2.87 ± 0.03 a |
Compound | S. alba | S. amplexicaulis | S. babylonica | S. elaeagnos | S. fragilis | S. purpurea | S. triandra |
---|---|---|---|---|---|---|---|
(mg/g of leaf) | |||||||
GA | n.d. | n.d. | 0.20 ± 0.01 | n.d. | n.d. | n.d. | n.d. |
CHLA | 2.26 ± 0.04 d | 0.74 ± 0.35 a | 1.62 ± 0.02 c | 2.22 ± 0.21 d | 5.82 ± 0.09 e | 1.04 ± 0.27 b | 7.53 ± 0.07 f |
PHB | 0.36 ± 0.11 ab | 0.27±0.13 a | 0.46±0.15 b | 0.39±0.05 b | n.d. | n.d. | n.d. |
VA | n.d. | n.d. | n.d. | n.d. | 0.35±0.35 | n.d. | n.d. |
SA | 0.11 ± 0.01 a | n.d. | 0.20 ± 0.01 b | 0.19±0.00 b | 0.16±0.05 b | n.d. | 0.18 ± 0.08 b |
CA | n.d. | n.d. | n.d. | n.d. | 0.46 ± 0.04 | n.d. | n.d. |
EPC | 0.96 ± 0.06 b | 0.71 ± 0.01 a | 1.55 ± 0.04 d | 1.19 ± 0.04 bc | 2.09 ± 0.19 e | 4.83 ± 0.22 f | 1.30 ± 0.11 c |
PCA | 0.19 ± 0.04 ab | 0.68 ± 0.06 c | 0.13 ± 0.01 a | 0.19 ± 0.00 ab | 0.24 ± 0.01 b | 1.92 ± 0.11 d | 0.17 ± 0.02 ab |
R | 1.74 ± 0.03 a | 11.4 ± 1.13 c | 2.05 ± 0.05 a | 18.56 ± 0.03 d | 1.57 ± 0.78 a | 9.44 ± 0.05 b | 1.69 ± 0.99 a |
Q | 0.52 ± 0.02 ab | 1.46 ± 0.09 d | 0.38 ± 0.01 a | 0.68 ± 0.00 b | 0.46 ± 0.07 a | 0.76 ± 0.23 bc | 0.47 ± 0.01 a |
TCA | 0.33 ± 0.10 ab | 1.45 ± 0.11 d | 0.25 ± 0.02 a | 0.45 ± 0.06 b | 0.45 ± 0.06 b | 1.59 ± 0.15 e | 0.78 ± 0.04 c |
N | 0.19 ± 0.00 a | 0.88 ± 0.01 d | 0.22 ± 0.00 a | 0.91 ± 0.00 d | 0.55 ± 0.01 b | 0.69 ± 0.02 c | 0.24 ± 0.02 a |
S | n.d. | 6.00 ± 0.11 b | 1.62 ± 0.10 a | 5.87 ± 0.74 b | 2.73 ± 0.19 a | 17.33 ± 1.54 c | 1.92 ± 0.08 a |
Species | DPPH• 1 | •OH 1 | ||
---|---|---|---|---|
Bark | Leaf | Bark | Leaf | |
IC50 (µg/mL) | ||||
S. alba | 1.83 ± 0.09 a | 2.43 ± 0.11 bc | 34.76 ± 0.24 g | 42.18 ± 0.32 i |
S. amplexicaulis | 2.12 ± 0.12 ab | 7.05 ± 0.15 g | 51.69 ± 0.31 j | 31.38 ± 0.14 f |
S. babylonica | 2.59 ± 0.16 c | 4.43 ± 0.17 de | 40.44 ± 0.56 h | 44.61 ± 0.39 c |
S. eleagnos | 2.34 ± 0.28 bc | 5.51 ± 0.19 f | 29.71 ± 0.29 e | 51.96 ± 0.14 j |
S. fragilis | 4.11 ± 0.13 d | 8.07 ± 0.43 h | 22.20 ± 0.36 a | 25.15 ± 0.46 b |
S. purpurea | 4.73 ± 0.26 e | 7.34 ± 0.16 g | 26.31 ± 0.63 c | 63.51 ± 0.17 k |
S. triandra | 7.79 ± 0.21 h | 1.95 ± 0.08 a | 28.01 ± 0.29 d | 36.10 ± 0.18 h |
Compound | Binding Energy (Kcal/mol) | Inhibition Constant (nM) | Interaction Site |
---|---|---|---|
Epicatechin | −9.33 | 145.64 | Tyr 72, Trp 86, Tyr 124, Trp 286, Phe 295, Phe 297, Tyr 337, Phe 338, Tyr 341 |
Salicin | −7.38 | 3890 | Tyr 72, Asp 74, Tyr 124, Trp 286, Phe 295, Phe 297, Phe 338, Tyr 341 |
Chlorogenic acid | −7.87 | 1700 | Tyr 72, Trp 86, Gly 121, Tyr 124, Ser 203, Trp 286, Phe 295, Phe 297, Tyr 337, Phe 338, Tyr 341, His 447 |
Rutin | −0.87 | 232030000 | Gly 345, Ser 347 |
Donepezil | −11.43 | 4.2 | Trp 86, Gly 121, Tyr 124, Ser 203, Trp 286, Phe 295, Phe 297, Tyr 337, Phe 338, Tyr 341, His 447 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gligorić, E.; Igić, R.; Suvajdžić, L.; Grujić-Letić, N. Species of the Genus Salix L.: Biochemical Screening and Molecular Docking Approach to Potential Acetylcholinesterase Inhibitors. Appl. Sci. 2019, 9, 1842. https://doi.org/10.3390/app9091842
Gligorić E, Igić R, Suvajdžić L, Grujić-Letić N. Species of the Genus Salix L.: Biochemical Screening and Molecular Docking Approach to Potential Acetylcholinesterase Inhibitors. Applied Sciences. 2019; 9(9):1842. https://doi.org/10.3390/app9091842
Chicago/Turabian StyleGligorić, Emilia, Ružica Igić, Ljiljana Suvajdžić, and Nevena Grujić-Letić. 2019. "Species of the Genus Salix L.: Biochemical Screening and Molecular Docking Approach to Potential Acetylcholinesterase Inhibitors" Applied Sciences 9, no. 9: 1842. https://doi.org/10.3390/app9091842
APA StyleGligorić, E., Igić, R., Suvajdžić, L., & Grujić-Letić, N. (2019). Species of the Genus Salix L.: Biochemical Screening and Molecular Docking Approach to Potential Acetylcholinesterase Inhibitors. Applied Sciences, 9(9), 1842. https://doi.org/10.3390/app9091842