A New Ultrasound Speckle Reduction Algorithm Based on Superpixel Segmentation and Detail Compensation
Abstract
:1. Introduction
2. Proposed Superpixel-Based Model
2.1. Image Sparsification
2.2. Image Reconstruction
2.3. Image Compensation
3. Experiments
3.1. Influence of the Superpixel Size
3.2. Tests on Synthetic Images
3.3. Tests on Real Ultrasound Images
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Noble, A.; Boukerroui, D. Ultrasound image segmentation: A survey. IEEE Trans. Med Imaging 2006, 25, 987–1010. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.D.; Shan, J.; Ju, W.; Guo, Y.; Zhang, L. Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognit. 2010, 43, 299–317. [Google Scholar] [CrossRef]
- Qiang, G.; Zhang, C.; Zhang, Y.; Hui, L. An Efficient SVD-Based Method for Image Denoising. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 868–880. [Google Scholar]
- Farouj, Y.; Freyermuth, J.M.; Navarro, L.; Clausel, M.; Delachartre, P. Hyperbolic Wavelet-Fisz denoising for a model arising in Ultrasound Imaging. IEEE Trans. Comput. Imaging 2016, 3, 1–10. [Google Scholar] [CrossRef]
- Joel, T.; Sivakumar, R. An extensive review on Despeckling of medical ultrasound images using various transformation techniques. Appl. Acoust. 2018, 138, 18–27. [Google Scholar] [CrossRef]
- Carlo, T.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the IEEE International Conference on Computer Vision, Bombay, India, 4–7 January 1998; Volume 98. [Google Scholar]
- Lee, J.S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 2, 165–168. [Google Scholar]
- Kuan, D.T.; Sawchuk, A.A.; Strand, T.C.; Chavel, P. Adaptive Restoration of Images with Speckle. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 373–383. [Google Scholar]
- Yu, Y.; Acton, S.T. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 2002, 11, 1260–1270. [Google Scholar]
- Shao, L.; Yan, R.; Li, X.; Liu, Y. From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern. 2017, 44, 1001–1013. [Google Scholar] [CrossRef]
- Tay, P.C.; Garson, C.D.; Acton, S.T.; Hossack, J.A. Ultrasound despeckling for contrast enhancement. IEEE Trans. Image Process. 2010, 19, 1847–1860. [Google Scholar] [CrossRef] [PubMed]
- Pierrick, C.; Pierre, H.; Charles, K.; Christian, B. Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 2009, 18, 2221–2229. [Google Scholar]
- Yi, Z.; Ding, M.; Wu, L.; Zhang, X. Nonlocal means method using weight refining for despeckling of ultrasound images. Signal Process. 2014, 103, 201–213. [Google Scholar]
- Zhu, L.; Fu, C.W.; Brown, M.S.; Heng, P.A.; Zhu, L.; Fu, C.W.; Brown, M.S.; Heng, P.A. A Non-Local Low-Rank Framework for Ultrasound Speckle Reduction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5650–5658. [Google Scholar]
- Li, X.; Yan, Q.; Yang, X.; Jia, J. Structure Extraction from Texture via Relative Total Variation. ACM Trans. Graph. 2012, 31, 139. [Google Scholar]
- Jian, Y.; Fan, J.; Ai, D.; Wang, X.; Zheng, Y.; Tang, S.; Wang, Y. Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. Neurocomputing 2016, 195, 88–95. [Google Scholar]
- Santos, C.A.N.; Martins, D.L.N.; Mascarenhas, N.D.A. Ultrasound Image Despeckling Using Stochastic Distance-Based BM3D. IEEE Trans. Image Process. 2017, 26, 2632–2643. [Google Scholar] [CrossRef]
- Jabarulla, M.Y.; Lee, H.N. Speckle Reduction on Ultrasound Liver Images Based on a Sparse Representation over a Learned Dictionary. Appl. Sci. 2018, 28, 903. [Google Scholar] [CrossRef]
- Li, X.; He, H.; Wang, R.; Cheng, J. Superpixel-guided nonlocal means for image denoising and super-resolution. Signal Process. 2016, 124, 173–183. [Google Scholar] [CrossRef]
- Wu, C.H.; Chang, H.H. Superpixel-based image noise variance estimation with local statistical assessment. Eurasip J. Image Video Process. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Peng, F.; Li, C.; Cai, W.; Sun, Q. A spatially cohesive superpixel model for image noise level estimation. Neurocomputing 2017, 266, 420–432. [Google Scholar]
- Radhakrishna, A.; Appu, S.; Kevin, S.; Aurelien, L.; Pascal, F.; Sabine, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar]
- Takeshita, D.; Gollisch, T. Nonlinear spatial integration in the receptive field surround of retinal ganglion cells. J. Neurosci. 2014, 34, 7548–7561. [Google Scholar] [CrossRef]
- Zhang, X.S.; Gao, S.B.; Li, C.Y.; Li, Y.J. A Retina Inspired Model for Enhancing Visibility of Hazy Images. Front. Comput. Neurosci. 2015, 9, 151. [Google Scholar] [CrossRef]
- Shao-Bing, G.; Kai-Fu, Y.; Chao-Yi, L.; Yong-Jie, L. Color Constancy Using Double-Opponency. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1973–1985. [Google Scholar]
- Shapley, R.; Hawken, M.J. Color in the Cortex: Single- and double-opponent cells. Vis. Res. 2011, 51, 701–717. [Google Scholar] [CrossRef]
- Jensen, J.A. Field: A program for simulating ultrasound systems. Med. Biol. Eng. Comput. 1996, 4, 351–353. [Google Scholar]
- Jensen, J.A.; Svendsen, N.B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 262–267. [Google Scholar] [CrossRef]
- Coupe, P.; Hellier, P.; Kervrann, C.; Barillot, C. Bayesian non local means-based speckle filtering. In Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 1291–1294. [Google Scholar]
- Zhou, W.; Alan Conrad, B.; Hamid Rahim, S.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar]
- Xiang, D.; Tao, T.; Zhao, L.; Yi, S. Superpixel Generating Algorithm Based on Pixel Intensity and Location Similarity for SAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1414–1418. [Google Scholar] [CrossRef]
- Suriawinata, A.A.; Thung, S.N. Liver Pathology: An Atlas and Concise Guide; Demos Medical Publishing: New York, NY, USA, 2011. [Google Scholar]
Method | Figure 5b | Figure 5d | |||
---|---|---|---|---|---|
Original | 23.35 | 22.26 | 21.41 | 21.07 | 17.73 |
Bilateral filter | 26.32 | 24.88 | 23.73 | 23.31 | 18.77 |
OBNLM [29] | 27.20 | 25.77 | 24.69 | 24.31 | 18.19 |
Zhu et al. [14] | 27.10 | 26.23 | 25.56 | 25.24 | 18.64 |
Proposed method | 26.84 | 25.59 | 24.52 | 24.13 | 19.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, M.; Yan, H.-M.; Li, Y.-J.; Yang, K.-F. A New Ultrasound Speckle Reduction Algorithm Based on Superpixel Segmentation and Detail Compensation. Appl. Sci. 2019, 9, 1693. https://doi.org/10.3390/app9081693
Chen Y, Zhang M, Yan H-M, Li Y-J, Yang K-F. A New Ultrasound Speckle Reduction Algorithm Based on Superpixel Segmentation and Detail Compensation. Applied Sciences. 2019; 9(8):1693. https://doi.org/10.3390/app9081693
Chicago/Turabian StyleChen, Yang, Ming Zhang, Hong-Mei Yan, Yong-Jie Li, and Kai-Fu Yang. 2019. "A New Ultrasound Speckle Reduction Algorithm Based on Superpixel Segmentation and Detail Compensation" Applied Sciences 9, no. 8: 1693. https://doi.org/10.3390/app9081693
APA StyleChen, Y., Zhang, M., Yan, H.-M., Li, Y.-J., & Yang, K.-F. (2019). A New Ultrasound Speckle Reduction Algorithm Based on Superpixel Segmentation and Detail Compensation. Applied Sciences, 9(8), 1693. https://doi.org/10.3390/app9081693