Environmental Assessment of Large Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Process Description
2.2. Environmental Assessment Using the Waste Reduction Algorithm (WAR)
2.2.1. Toxicological Impact Categories
2.2.2. Atmospheric Impact Categories
3. Results and Discussion
3.1. Total Potential Environmental Impact (PEI)
3.2. Local Toxicological Impacts
3.3. Atmospheric Impacts
3.4. Effect of Energy Source
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrade, Â.L.; Valente, M.A.; Ferreira, J.M.; Fabris, J.D. Preparation of size-controlled nanoparticles of magnetite. J. Magn. Magn. Mater. 2012, 324, 1753–1757. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, F.; Edrissi, M. Effect of pressure on the size of magnetite nanoparticles in the coprecipitation synthesis. Mater. Sci. Eng. B 2010, 171, 86–89. [Google Scholar] [CrossRef]
- Nash, M.A.; Waitumbi, J.N.; Hoffman, A.S.; Yager, P.; Stayton, P.S. Multiplexed Enrichment and Detection of Malarial Biomarkers Using a Stimuli-Responsive Iron Oxide and Gold Nanoparticle Reagent System. ACS Nano 2012, 6, 6776–6785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ta, D.T.; Vanella, R.; Nash, M.A. Magnetic separation of elastin-like polypeptide receptors for enrichment of cellular and molecular. Nano Lett. 2017, 17, 7932–7939. [Google Scholar] [CrossRef] [PubMed]
- Aliramaji, S.; Zamanian, A.; Sohrabijam, Z. Characterization and Synthesis of Magnetite Nanoparticles by Innovative Sonochemical Method. Procedia Mater. Sci. 2015, 11, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Koop-Santa, C.; López-Mena, E.R.; Orozco-Guareño, E.; García-Guaderrama, M. N-doped TiO2 nanoparticles obtained by a facile coprecipitation method at low temperature. Ceram. Int. 2018, 44, 5273–5283. [Google Scholar] [CrossRef]
- Akbari, S.; Masoudpanah, S.M.; Mirkazemi, S.M.; Aliyan, N. PVA assisted coprecipitation synthesis and characterization of MgFe2O4 nanoparticles. Ceram. Int. 2017, 43, 6263–6267. [Google Scholar] [CrossRef]
- Iranmanesh, P.; Yazdi, S.T.; Mehran, M.; Saeednia, S. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values. J. Magn. Magn. Mater. 2018, 449, 172–179. [Google Scholar] [CrossRef]
- Tao, K.; Dou, H.; Sun, K. Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence. Colloids Surf. A 2008, 320, 115–122. [Google Scholar] [CrossRef]
- Elsayed, M.A.; Ismaeel, W.S.E. Environmental assessment for major development projects: A case study “Qattara Depression”. J. Clean. Prod. 2019, 215, 522–533. [Google Scholar] [CrossRef]
- Fathollahi, H.; Mousavi-Avval, S.H.; Akram, A.; Rafiee, S. Comparative energy, economic and environmental analyses of forage production systems for dairy farming. J. Clean. Prod. 2018. [Google Scholar] [CrossRef]
- Petrescu, L.; Cormos, C.C. Waste reduction algorithm applied for environmental impact assessment of coal gasification with carbon capture and storage. J. Clean. Prod. 2015, 104, 220–235. [Google Scholar] [CrossRef]
- Barrett, W.M.; van Baten, J.; Martin, T. Implementation of the waste reduction (WAR) algorithm utilizing flowsheet monitoring. Comput. Chem. Eng. 2011, 35, 2680–2686. [Google Scholar] [CrossRef]
- Cassiani-Cassiani, D.; Meza-González, D.A.; Gonzalez-Delago, A.D. Environmental Evaluation of Agar Production from Macroalgae Gracilaria sp. Chem. Eng. Trans. 2018, 70, 2005–2010. [Google Scholar]
- Meramo, S.I.; Bonfante, H.; Avila-Montiel, G.; Herrera-Barros, A.; Gonzalez-Delgado, A.D. Environmental Assessment of a Large-Scale Production of TiO2 Nanoparticles via Green Chemistry. Chem. Eng. Trans. 2018, 70, 1063–1068. [Google Scholar]
- Herrera-Aristizábal, R.; Salgado-Dueñas, J.S.; Yolima, Y. Environmental Evaluation of a Palm-based biorefinery under North-Colombian Conditions. Chem. Eng. Trans. 2017, 57, 193–198. [Google Scholar]
- Young, D.M.; Cabezas, H. Designing sustainable processes with simulation: The waste reduction (WAR) algorithm. Comput. Chem. Eng. 1999, 23, 1477–1491. [Google Scholar] [CrossRef]
- Okoro, O.V.; Sun, Z.; Birch, J. Catalyst-free biodiesel production methods: A comparative technical and environmental evaluation. Sustainability 2018, 10, 127. [Google Scholar] [CrossRef]
- Álvarez-Cordero, A.; De Avila-Alvis, Y.; Ortiz-Rincon, M.; Gonzalez-Delgado, A.; Peralta-Ruiz, Y. Environmental Assessment of Dual Crude Palm and Kernel Oil Production in North-Colombia using WAR Algorithm. J. Eng. Appl. Sci. 2017, 12, 7265–7271. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arteaga-Díaz, S.J.; Meramo-Hurtado, S.I.; León-Pulido, J.; Zuorro, A.; González-Delgado, A.D. Environmental Assessment of Large Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation. Appl. Sci. 2019, 9, 1682. https://doi.org/10.3390/app9081682
Arteaga-Díaz SJ, Meramo-Hurtado SI, León-Pulido J, Zuorro A, González-Delgado AD. Environmental Assessment of Large Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation. Applied Sciences. 2019; 9(8):1682. https://doi.org/10.3390/app9081682
Chicago/Turabian StyleArteaga-Díaz, Steffy J., Samir I. Meramo-Hurtado, Jeffrey León-Pulido, Antonio Zuorro, and Angel D. González-Delgado. 2019. "Environmental Assessment of Large Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation" Applied Sciences 9, no. 8: 1682. https://doi.org/10.3390/app9081682
APA StyleArteaga-Díaz, S. J., Meramo-Hurtado, S. I., León-Pulido, J., Zuorro, A., & González-Delgado, A. D. (2019). Environmental Assessment of Large Scale Production of Magnetite (Fe3O4) Nanoparticles via Coprecipitation. Applied Sciences, 9(8), 1682. https://doi.org/10.3390/app9081682